« Automorphisms of Induced Subgraphs of Gn,p.
March 11, 2020, 12:15 PM - 1:15 PM
Location:
Mathematics Graduate Student Lounge -- 7th Floor
Rutgers University
Hill Center
Mathematics Department
110 Frelinghuysen Road
Piscataway, NJ 08854
Keith Frankston, Rutgers University
The ErdÅ‘s Rényi random graph (denoted Gn,p) is a random object on n vertices where each edge appears independently with probability p. We call a graph rigid if it has no non-trivial automorphisms. A classical result in random graph theory states that the probability that Gn,p is rigid goes to 1 (as n goes to infinity) for p(1-p)>>log(n)/n. In this talk we discuss what happens when we instead at look at induced subgraphs of Gn,p. We will show that almost surely any induced subgraph of sufficient size is rigid by proving a more general result.