Telcordia. Technologes

Performance from Experience

Coloring SONET Rings and Related Things

J oint work with Steve Cosares and Iraj Saniee

Prepared For:
IMA Industrial
Affiates

Telcordia Contact:
Tami Carpenter
12/10/99

Quick Overview

- The general setting
- The ring sizing problem
- Its relations and relaxations
- Simple ring sizing heuristics
- Performance guarantees
- Computational gizmos
- Future directions

Reference: DIMACS tech report 97-02: Demand Routing and Slotting on Ring Networks (Site: www.dimacs.rutgers.edu)

BS: Before SONET

- It was hard to multiplex traffic between different pairs of nodes.
- So...a network design might have dedicated connections between every pair of nodes between which there was demand.
- If demands needed protection, there would be two such connections. (Diversely routed.)

And then there was SONET

- Standardized transmission protocols enable multiplexing traffic between different pairs of nodes.

Higher capacity links with more sharing
Sparser networks
Even more need to protect demands

Before and After...

Before

After

Telcordia...
Technologies

Networks based on Rings

- Topologically: minimal two-connected subnetwork.
-Efficient use of equipment
-Survivable
- SONET technology allows you to:
-Serve and protect demands on rings cost-effecively.
- Assure fast recovery from single failures on the ring.
- Rings are a basic building block of SONET networks...

9 node ring

Planning a SONET Network

- Identify nodes in a "community of interest".
-Decide which nodes to group on the ring.
- Find a minimum length cycle connecting these nodes in the network.
-This orders the nodes on the ring.
- Determine the required ring size....
\Rightarrow Ring Sizing Problem (RSP)
- RSP may be solved 1000's of times in a session!

Periormance from Experience

References:

Cosares, Deutsch, Saniee, \& Wasem Cook \& Seymour

The Ring Sizing Problem

Given a ring and a set of demands to be routed around the ring....
-For each demand:

- Determine its routing on the ring.
- All units must route the same way...
- For each demand unit:
- Assign it a slot
- Demand units sharing a slot cannot overlap.
- Minimize the number of slots used.

An Example

Demands: | 1 | $\Rightarrow 4$ |
| ---: | :--- |
| 2 | $\Rightarrow 5$ |
| 2 units | |
| 3 | $\Rightarrow 6$ |

6 slots required

Telcorda ${ }^{\text {m }}$
Technologes

RSP Formulation

\[

\]

Two Relaxations (no slotting)

- Ring Loading Problem minimize L ${ }^{*}$
s.t.: $x_{k}+\bar{x}_{k}=1 \quad \forall k$
$\sum_{k: l \in c(k)} d_{k} x_{k}+\sum_{k: l \in c c(k)} d_{k} \bar{x}_{k} \leq L^{*} \quad \forall l$

$$
x_{k}, \bar{x}_{k} \in\{0,1\}
$$

Route to minimize traffic on a link

- LP Relaxation

$$
\operatorname{minimize} z^{*}
$$

s.t.: $x_{k}+\bar{x}_{k}=1 \quad \forall k$

$$
\sum_{k: l \in c(k)} d_{k} x_{k}+\sum_{k: l \in c c(k)} d_{k} \bar{x}_{k} \leq z^{*}
$$

$$
0 \leq x_{k}, \bar{x}_{k} \leq 1
$$

Route to minimize traffic on a link routing may be SPLIT

More Examples

RSP vs RLP

$$
C^{*}=6
$$

$$
L^{*}=5
$$

LP Relaxation
Demands split equally

$$
\rightarrow \mathrm{z}^{*}=3
$$

Telcordian
Technologes

Relaxations without Slotting

- Ring Loading Problem (NP-Hard)
- Cosares and Saniee
- Schrijver, Seymour \& Winkler (SSW)
- LP Relaxation
- Okamura \& Seymour
- Vachani, Shulman, Kubat \& Ward (VKSW)
- "Integer Relaxation" of RLP (Polynomial)
- Integer Multi-commodity Flow
- Frank; Frank, Nishizeki, Saito, Suzuki \& Tardos (FNSST)
-SSW
- VKSW

Relaxation without one-way-routing

- "Integer splitting" allowed.
- All demands are one unit
- Demand units must be slotted.
- The "WDM version" of the problem.
- Slots = wavelengths.
- NP-Hard: Erlebach \& Jansen.
- Better approximation bounds.
- Kumar
- Cheng
(Not a complete list!!)

A Generalization from Circuit Design

- Demands may include more than two points on the ring that must be connected
- Demands are UNIT-sized.
- A "demand" is essentially a "wire" that will connect the constituent nodes.
- There are n possible routings of a demand with n nodes.
- Slotting and no slotting variants:
- Objective 1: Minimize congestion (overlap) on a link.
- Minimum Congestion Hypergraph Embedding in a Cycle.
- Objective 2: Wires must stay within a channel, minimize the number of channels. (Moat Routing)
- References: Ganley \& Cohoon.
- Both variants are NP-Hard.

A Circuit and its Model as a Cycle

Telcordia
Technologes

Relaxations of RSP: Lower Bounds

- We can get lower bounds from relaxations.

$$
z^{*} \leq L^{*} \leq C^{*}
$$

- Okamura \& Seymour characterize value of LP:
-Let $\mathrm{D}(\mathrm{i}, \mathrm{j})$ be the amount of demand separated by removing links i and j.

$$
z^{*}=\frac{\max _{i, j}(D(i, j))}{2}
$$

- With "integer splitting" maximum load on a link is no more than $\mathrm{z}^{*}+1$ (FNSST).

Heuristics for RSP: Upper Bounds

- Why heuristics?
- Difficult problem that is solved repeatedly.
- We consider "two-phased" heuristics:
- Route THEN slot.
- Easier to think about.
- Components are known entities.
- More flexible. (Everyone has a routing method...)
- For these heuristics:

$$
z^{*} \leq C^{*} \leq C \leq 2 z^{*}
$$

- Methods are very simple!

"Favorite" Routing Methods

- "Cost-based" routing:
- Each link has a non-negative cost and we route to minimize the cost.
- "Min hop" is a popular special case.
- "One way" routing is a simple special case.
- "Unsplitting" the LP solution.
- Routing from the Ring Loading Problem,
- Either optimal or heuristic.

Slotting a Given Routing

Slotting \Leftrightarrow Coloring the vertices of a Circular Arc Graph (which is NP-Hard)

Circular arcs

Circular arc graph

To demonstrate bounds for RSP heuristics we need only a very simple slotting heuristic

Interval Graphs

- A simple special case....
- Overlap graph associated with a collection of interval on a line
- Nice properties:
-Chromatic number = max overlap (slots = load)
-Linear time coloring.

A Slotting Heuristic

- Tucker's Algorithm:
-Select the point on the ring overlapped by the least demand. Assign each of these demand units to their own slot.
- The remaining (unslotted) demands form an interval graph, so slot them optimally.

TA uses 4 slots

Bounds for Two-phase Heuristics

- Cost*-based routing + Tucker's Algorithm (TA)
- uses $\leq 2 z^{*}$ slots
- Unsplitting the LP solution + TA
- uses $\leq 2 \mathrm{z}^{*}$ slots
- Optimal load routing + TA
- uses $\leq 2 \mathrm{~L}^{*}$ slots
- optimal slotting is no better!
- All bounds are tight.

Simplest Case: One-way Routing (Or Edge-Avoidance Routing...)

- Route all demand clockwise.
- This requires $\leq \mathbf{2 z *}$ slots.
-Observe: This routing does not use link ($n, 1$).
-Consider the optimal LP routing. It routes at most z^{*} units on $(\mathrm{n}, 1)$. Reverse the routing of these demands, and we get the clockwise routing and have increased the load on no link by more than z^{*}.
-Now we have an interval graph with a maximum overlap of no more than $2 z^{*}$.
- Interval graph coloring gives the slotting.
- Clockwise routing trick gives 2-approximation for MCHEC and Moat Routing. (Carpenter, Cosares, Ganley \& Saniee) Technologies

Parallel Routings

- Represent each demand as a chord:

$»$ Two demands are crossing if their chords intersect.
»Two demands are parallel if they do not.
- A routing is parallel if no edge between two parallel demands has load from each of them.

Examples of Parallel Routings

- Edge-avoidance routing
- Cost-based routing
- With positive cost or appropriate tie-breaking rule
- A parallel optimal LP solution
- Can be obtained from any LP solution. (SSW)
- A parallel optimal solution to the "integer relaxation"
- Any unsplitting of a parallel routing
- Parallel Routings require no more than $2 z^{*}$ slots

Optimal: Perhaps NOT Parallel

Optimal solutions for RSP or RLP may not be parallel

$$
C^{*}=L^{*}=3
$$

Parallel routing can be no better than 4.

Technologes

Slotting Parallel Routings

- Helpful Lemma: In a parallel routing, for any edge e there is a node n such that no demand routes over both n and e .

Slotting Parallel Routings...

- Given a parallel routing R, let e be the edge with maximum load, L.
- Let / load on the least loaded point.
-TA slots using at most L+/ slots.

We can show that $\mathrm{L}+\mathrm{I} \leq \mathbf{2 z}^{*}$:

- Reverse the direction of all demands crossing e.
- The load at n increases by L and is at least $L+l$.
- This routing avoids e, so no load exceeds $2 \mathbf{z}^{*}$
|so..... $2 z^{*} \geq$ load at $n \geq L+I$

How Good is the Optimal RLP Routing?

- An "optimal" two-phased approach is theoretically no better than a naïve one:
-Find the optimal solution to RLP
-Find the optimal slotting of this routing
-The result guarantees no better than twice optimal.
- We can construct an example for which the optimal load routing requires asymptotically twice as many slots as the optimal slot routing.

"Bad Cases" for "Optimal" Two-Phase

- Ring of size $2 n$, where n is odd.
- Demands:
-"short demands":
2 units between nodes i and $i+1$ for all odd i.
- "long demands":

2 unit-sized demands between nodes i and $i+n, i<n$

Short demands

Long demands (2 each)

Some Observations

- $\mathrm{z}^{*}=\mathrm{n}+1$ because cutting the ring in half separates all of the long demands and one short demand. ($2 \mathrm{n}+2$ units.)
- This is a lower bound on both link load and the number of slots.
- If both units of the long demands route in the same direction, then we need at least $2 n$ slots.

The Optimal Load (RLP) Routing

- The short demands route along ($\mathbf{i}, \mathrm{i}+1$)
- Both units of each long demand route to overlap as few short demands as possible.
- The maximum link load is $\mathrm{n}+1$, so this is optimal for RLP.
- This is a unique optimal
- It requires 2 n slots.

A Better Routing

- Route the short demands (i,i+1)
- Route one unit of each long demand in each direction
- This requires $\mathbf{n + 2}$ slots.

Optimal load routing -all arcs are 2 demand
Telcordıa
Technologies

Optimal slot routing-short arcs are 2 units

To Recap....

- Edge-avoidance routing $\leq 2 z^{*}$ slots
- Cost-based routing $\leq 2 z^{*}$ slots
- LP unsplitting $\leq 2 \mathbf{z}^{*}$ slots
- Optimal Load routing $\leq 2 L^{*}$ slots
- All ≤ 2 C* slots

A "Practical" Version of Tucker’s Algorithm

- We must use enough slots to slots demands that overlap a point.
- Don't place demands that "straddle" a point alone in a slot:
- Find an independent set that includes a straddling demand plus demands from the interval graph.
- Use the fact that demands terminate at a small number of nodes.
- Iterate: try "cutting" the ring at each node and use the best solution.

A Two-phased Heuristic

- Find a routing using Cosares \& Saniee dual ascent procedure.
- (An iterative cost-based approach.)
- Find a slotting:
- At each node:
- For each "straddler" d:
- Find a maximum independent set that includes d.
- Slot these demands together.
- Slot the remaining interval graph.
- Use the best solution...

More Integrated Heuristics

- Consider routing and slotting together.
- Begin with the CAG that contains arcs for both possible routings for each demand.
- Iteratively find maximum independent sets.
- Route \& slot the demands in the set.
- Remove arc corresponding to alternate route \& continue.
- MIS variations: max weight independent set, MIS containing a particular demand.
- Observation: the maximum weight set of crossing demands gives a lower bound on the number of slots required.
- This is the maximum weight clique in the circle graph.
- Begin by finding independent sets that include these....

Sample Results

\mathbf{Z}^{*}	\mathbf{L}^{*}	\mathbf{C}^{*}	optslot(L*)	Two-phase	MIS	$\mathbf{2 Z}^{*}$
34	38	38	45	38	40	68
44.5	48	48	48	48	53	89
28.5	29	29	29	31	32	57
29	29	29	29	30	32	58
44.5	50		62	56	62	89
30	30	30	32	30	32	60
32	32	32	32	32	34	64
38	40		45	44	49	76
44.5	49		52	50	58	89
29	29	29	33	30	29	58

Telcordia
Technologies
10 node ring
20 demands
Weibull $(3,20)$

Continuing Work

- More thorough examination of heuristics.
- Complete development of "integrated" approaches.
- Solving the integer program directly.
- Might be able to exploit the modularity of real problems.
-"Integer-split" version (with slotting) might have more structure to exploit.
- Better understanding of the LP relaxation for the "circuit design" problems.
- Can we characterize the LP solution as Okamura and Seymour did for the case when demands have two endpoints?

