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Revealing effective classifiers through network comparison
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PACS 89.75.Fb – Structures and organization in complex systems
PACS 89.75.Da – Systems obeying scaling laws
PACS 87.23.Ge – Dynamics of social systems

Abstract – The ability to compare complex systems can provide new insight into the fundamental
nature of the processes captured, in ways that are otherwise inaccessible to observation. Here, we
introduce the n-tangle method to directly compare two networks for structural similarity, based
on the distribution of edge density in network subgraphs. We demonstrate that this method can
efficiently introduce comparative analysis into network science and opens the road for many new
applications. For example, we show how the construction of a “phylogenetic tree” across animal
taxa according to their social structure can reveal commonalities in the behavioral ecology of
the populations, or how students create similar networks according to the University size. Our
method can be expanded to study many additional properties, such as network classification,
changes during time evolution, convergence of growth models, and detection of structural changes
during damage.

editor’s  choice Copyright c© EPLA, 2014

Advances in quantitative methods for network analysis
have found many applications in a startling diversity of
fields [1]. As in the progression of many quantitative tools,
while initial efforts to use network analysis were mainly
descriptive [2], research then advanced to focus on using
them as predictive tools, isolating particular characteris-
tics that can provide insight into the system of interest.
However, the richest and most interesting level of investi-
gation from new metrics frequently arises when they are
ultimately used to make comparisons across systems, dis-
covering which characteristics are shared and which are
not. The ability to compare systems has always been a
strong driving force in science [3].

Currently, there is not a rigorous definition of network
similarity. This allows similarity to be as broadly inter-
preted as just one single quantity averaged over the entire
system —e.g. networks with the same average degree—
or it can be extremely restrictive, e.g. node-to-node cor-
respondence in identical networks. Obviously, no one
property can fully characterize a network: for instance,
networks can be structurally very different even if they
have the same degree distribution but different clustering
coefficient, or different modularity, etc. It is not known
how many and which properties should be combined to
construct a weighted index of similarity. Therefore, cur-
rent research has been directed to alternative methods.

For example, correlation analysis has been used to de-
tect similarities in financial and biological systems [4–7].
Structure-based methods, such as motif comparison [8] or
graphlet comparison [9], are based on the idea that if we
continuously isolate parts of the network and find the same
patterns to occur in the same frequency in two networks,
these networks will have a higher probability of being
“similar” to each other. However, there are many practi-
cal constraints that render these techniques incapable of
handling larger networks or larger motifs [10]. The most
recent advance in the field [11] introduced a novel concept
in which the network is broken down in communities at
different scales and the comparison is based on network
modularity properties. The question of similarity under
this method becomes: “How similar is the modular struc-
ture of the networks?”

Here we introduce a measure to detect similarity based
on direct topological properties: Topological Analysis of
Network subGraph Link/Edge (tangle) Density. Many of
these properties can be captured by the distance from a
tree structure at different length scales —which means
that all tree structures will be deemed equivalent even
if they are different structures, e.g. a scale-free tree vs.
an ER tree. The method combines the insight of motifs,
simplified for efficiency, and focuses on microscopic struc-
ture compared to the mesoscopic approach of modularity
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comparison in Onnela et al. [11]. Where the advantage of
the motif method is that it takes into account the local
configuration of the links, if we relax the motif require-
ment for exactly matching patterns we can use the links
density as our metric. The basic foundation of our method
is to calculate how the density of links behaves at different
scales across the network. It is also possible to use other
properties instead of density, such as the local degree dis-
tribution or clustering coefficient, but the crucial step is
the sampling of the connected subgraphs. For example,
the method can be easily extended to cover weighted net-
works, by substituting the number of links in the subgraph
with the total sum of weights in the same subgraph. The
general interpretation of the method is that if two net-
works are found similar then, given a part from one net-
work, we cannot distinguish from which network the part
was extracted.

The crux of this method is to capture how many affili-
ations we expect to find when we isolate any given size
of connected sub-group. The concept is the following:
Consider a connected group of 10 students, which is ran-
domly selected from a class of 100 students. If you are
in this group, how many direct friends do you expect to
find in this sample, or in other words what is the aver-
age edge density in the group? We define this to be the
10-tangle density (or n-tangle, for any n). If we construct
the histogram of densities from different samples over dif-
ferent sizes, then we can compare these distributions in
two different networks, and we can know the extent of as-
sociation in a group of a given size independently of the
pattern formed in each subgroup. In this way, our method
bypasses the need to determine direct node-to-node corre-
spondence [12], while still capturing node-level properties
of the network for comparison.

Formally, we define the n-tangle method in the follow-
ing way. In a graph G(V, E) comprising a set V of nodes
and a set E of edges we isolate all possible connected in-
duced sub-graphs Gin(Vn, En). The condition for these
sub-graphs is that they should include exactly n nodes
(|Vn| = n) and the subset En of E should include all en

links among those n nodes in G. For each subgraph we
define the n-tangle density, tn, as the normalized edge den-
sity of this subgraph, i.e. the fraction of existing over all
possible links, after we remove the n − 1 links that are
needed for connectivity:

tn =
en − (n − 1)

n(n − 1)/2 − (n − 1)
=

2(en − n + 1)
n2 − 3n + 2

. (1)

It is important that the size of the n-tangle remains much
smaller than the network size N , n � N , so that the
sampled subgraphs are statistically independent of each
other. To include the considerably inhomogeneous char-
acter of the local structure in networks, we consider the
n-tangle distribution P (tn) of all Gin (figs. 1(A), (B)).
This distribution represents the “signature” of a network
at a given subgraph size n. We repeat this process for
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Fig. 1: (Color online) The n-tangle method. (A) We randomly
sample connected induced subgraphs of n nodes and calcu-
late their normalized link density tn. (B) We construct the
n-tangle histogram P (tn) for a given value of n (the example
shows the 8-tangle distribution for 4 animal social networks).
(C) We calculate the distance between any two distributions I
and J through, e.g., a Kolmogorov-Smirnov statistic Dn(I−J).
These D values are used as the distance between the origi-
nal networks and can be mapped to a minimum spanning tree
(shown here for the four networks), a hierarchical tree, or a
threshold-based network. (D) Variation of the distance be-
tween these 4 networks as a function of the subgraph size n.
(E) The distance of a random scale-free network with a degree
exponent γ from a network with γ1 = 2.25 increases monotoni-
cally as we increase the value of γ (left). Similarly, the n-tangle
distance among random Barabási-Albert networks (center) or
random Erdős-Rényi networks (right) is close to zero, while
distances with other model networks are significantly higher.

all different subgraph sizes n, resulting to potentially dif-
ferent signatures as we vary n. We can then compare
the degree of similarity of two networks A and B at a
given scale by a simple Kolmogorov-Smirnov statistic [13],
Dn(A − B) = sup |FA(tn) − FB(tn)|, where FA(tn) is
the corresponding n-tangle cumulative probability in net-
work A and sup denotes the supremum value (fig. 1(C)).
Since the full comparison involves all subgraph sizes, this
method can reveal how two networks can be similar at a
local scale, while at a larger scale they may exhibit differ-
ent structures, allowing both global network comparison
and local analysis of the scale at which similarity may be
greatest (fig. 1(D)).

Our approach avoids the inherent constraints of motif [8]
or graphlet [9] based methods [14], by ignoring the costly
calculation of the specific pattern created by the group and
instead placing emphasis on the density of the group, i.e.
a single number. Therefore, the exponential increase in
the number of patterns as a function of group size, which
limits those techniques to very small-size patterns, does
not influence the applicability of our method to larger
sub-graphs. Using this method, we only need to keep the
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Fig. 2: (Color online) (A) Hierarchical tree of 236 networks from different fields, based on the n-tangle distance (here n = 5).
We used the UPGMA (Unweighted Pair-Group Method using Arithmetic Averages) hierarchical clustering method [15]. Colors
represent networks in the same family, as indicated in the index. (B) The Minimum Spanning Tree for animal networks, based
on the n-tangle distance (n = 12). The species color corresponds to varying levels of normalized degree 〈k〉/N and separates
nicely the species. The citations in the index indicate the source of the corresponding datasets.

number of links for each configuration, which makes the
calculation and storage very fast. Even though the compu-
tational complexity of the n-tangle method does increase
with the subgraph size, the connectedness of bigger social
groups can be probed at practically any size n, through
a fast sampling method. We used a simple Monte Carlo
method to sample a large number of configurations, where
we repeatedly selected random subgraphs and calculated
the links within.

Our method can successfully detect changes in stan-
dard network properties. In fig. 1(E) we compare a series
of random scale-free networks created by the configura-
tion model with a similar network with degree exponent
γ1 = 2.25. The networks become more distant as the expo-
nent of these networks increases, demonstrating that the
method can separate similar structures with different pa-
rameters. Similarly, we compare a number of networks to
a sample Barabási-Albert (BA) network. Different real-
izations of BA networks are found to be at almost zero
distance from each other, but a randomly rewired BA
network has a different structure. Similarly, lattices and
Erdős-Rényi (ER) networks are also far from the BA net-
work. Analogous results are found when we compare these
model networks with an ER network.

We demonstrate the n-tangle method first by comparing
236 network structures of different origins (described in
the appendix). The hierarchical tree in fig. 2(A) indicates
that networks from the same family tend to cluster with
each other. For example, friendship networks in facebook
are, in general, closer to each other than to, e.g., animal
social networks, which also tend to be detected as similar.
We consider this natural separation as a simple verification
test for the method.

A more interesting problem is to detect network simi-
larities in systems from within the same family. For ex-
ample, we can construct a “phylogeny” of animal species
based on their social structure [16]. In this way, we explore
whether species with similar descriptive characterizations
in behavioral ecology do, in fact, exhibit similar social

structures [17]. We analyze empirically determined con-
tact affiliation networks of 33 animal species. In molecular
biology, phylogenetic trees can be constructed from evolu-
tionary distance (pairwise distances between sequences).
Here, rather than using species genetic data, our input
data are the pair-wise distances of the n-tangle method.
We are therefore able, using our analysis, to determine
whether or not a meaningful cluster results from a choice
of a particular facet of the system. In this example, we find
that the normalized average degree, i.e. 〈k〉/N , is able to
generate clear clustering by n-tangle analysis. This result
of our method can provide the first insights into whether
qualitatively similar social classifications in fact yield sim-
ilar population-level networks of interaction across species
(for example, do all dominance hierarchies yield similar
social structures for the entire population?). This is a
critical next step in understanding animal social systems.

The n-tangle method can also be used to isolate key
network features that enable classification of networks. In
fig. 3 we present the n-tangle connectivity trees result-
ing from a) Facebook friendship networks in 100 univer-
sities in 2005 [18], b) arxiv.org co-authorship [19] in
17 different fields, and c) software code in 14 different
projects [20,21]. For the Facebook friendship, there is
no clear clustering with the average degree, but when we
consider student enrollment, then we discover a similar-
ity between networks at universities of similar size, at all
sizes. The n-tangle method therefore enables us to ob-
tain meaningful sociological insight into the process, where
students create online friendships according to the size of
the pool of possible connections, even though the aver-
age number of friendships is much smaller than the pool
size. It may therefore be that the fundamental nature of
the social activities and experience is shaped by the to-
tal size of the university, even though that number can
be significantly larger than the size of the average friend-
group. For the case of co-authorship, on the other hand,
the classification of networks according to the network
size does not work well. We instead discover that the
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Fig. 3: (Color online) Comparison of static networks. (A) Minimum Spanning Tree and threshold-based network representation
of similarities in the networks of Facebook friendship in 100 US universities. The color of the university nodes corresponds
to either the average degree or the university size, in terms of enrollment size. The enrollment size is the key property for
clustering. The plot at the bottom row compares the rank of a university to its neighbors rank. The enrollment size has a very
hierarchical structure where ranks of the same order connect to each other, in contrast to average degree ranking where a nodes
rank cannot predict the rank of its neighbors. (B) The similarity network of scientific fields, based on co-authorship, exhibits
the opposite trend. The average degree is a nice indicator for clustering, while the network size is not. This result is supported
by the plot comparing the rank with the neighbors rank. (C) The network of similarity between software projects cannot be
clustered according to either the average degree or the network size. The two modules correspond however to networks that
were built by two independent methods.

important factor in this case is the average degree of an
author, i.e. fields with large number of co-authors yield
similar networks with each other. This classification of
networks according to an underlying structural property
does not trivially result from the n-tangle method. In the
example of software project networks in fig. 3(C) we were
not able to determine any particular structural property
that separates the projects in the n-tangle networks. In-
terestingly, each of the two modules in fig. 3(C) includes
software projects that were generated by different circum-
stances. This method therefore, not only allows compari-
son across networks, but enables hypothesis testing about
which facets might be the most salient organizational fea-
tures that drive the emergence of networks within the sys-
tems studied.

We also applied this method to characterize network
evolution. In the examples of the Internet growth [22] and
online social-networking evolution [23] in fig. 4, we com-
pare the network at a given time with the same network
at subsequent times. The starting date for the Internet
data was January 2004. Our method indicates that the
Internet topology was already fixed in time by January
2004 and did not change much by November 2007, when
the network had already doubled in size. This result holds
across all subgraph sizes, and is also consistent with the
macroscopic fact that the average link density was declin-
ing slowly from 2.4 · 10−4 to 1.4 · 10−4 over three years.
On the contrary, the Facebook-like online network shows
a stable behavior only at small scales n. The number of

Fig. 4: (Color online) Comparison of network evolution.
(A) Similarity of the Internet at the AS level with itself as
a function of time. We compare the KS index Dn(Nx − N0) of
the Internet topology at N0 = January 2004 with the topology
at time Nx, which is increasing monthly. Independently of the
scale n, the topology remains the same throughout the network
evolution for 3 years. (B) Comparison of the KS index in so-
cial networking friendships as a function of time. We compare
the network topology of the early network containing 500 links
with the networks at subsequent times. The network remains
the same for small values of n, but changes drastically at larger
scales.

edges in the network increases by a factor of 25, but the
n-tangle density remains very similar at any time when
n < 20. When we consider larger n values, though, there is
a very sharp change between the initial reference network
and the subsequent instances of it. Therefore, within the
same network the small-scale structures remain the same,
while larger-scale structures evolve into different forms.
The method can therefore separate structurally stabilized

38001-p4



Revealing effective classifiers through network comparison

networks over time from unstabilized ones. Moreover, in
networks of evolving topology we can identify differences
in the stability of short-scale and larger-scale structures.
This may therefore enable accurate estimation of the qual-
ity of approximation of static snapshots of continually
shifting networks, which has been shown to be of critical
importance in areas such as epidemiology [24].

The calculation of the n-tangle density provides a sim-
ple and powerful method for efficient network comparison.
It can also be used to compare the structure of multilayer
networks [25], either among the layers of a network or
across multilayer networks. Understanding the degree of
similarity between two networks is the key to promote the
classification of networks into clusters for further analysis
of their common features that would otherwise remain un-
known, and allows us to hypothesize meaningfully about
how these clusters may capture fundamental properties of
networks and the systems they represent.
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Appendix: datasets. – The datasets we used in this
study and their sources are as follows:

Animal affiliation networks. We have compiled a set
of 37 empirically determined social networks in different
species that can be found in the published literature.

Facebook in 100 universities. These networks
are based on Facebook friendship connections in
100 colleges and universities in USA on September
2005. The data have been made publically avail-
able (http://people.maths.ox.ac.uk/˜porterm/data/
facebook100.zip) and have been analyzed in ref. [18].

Arxiv co-authorship networks. We downloaded the en-
tire database of all papers in arxiv.org from 1991 until
December 31, 2012. We used the sites classification of
papers into 18 broad categories, and created one network
for each category using all the papers in that field, e.g.
Mathematical Physics, Computer Science, Math, etc. The
networks connect co-authors of a paper in each category.

Software networks. We used networks of soft-
ware from two sources: 1) The data for junit,
jmail, flamingo, jung, colt, org, java, and javax were
downloaded from http://lovro.lpt.fri.uni-lj.si/
publications.jsp?show=ssc. The analysis of these data
was done in [21]. 2) We also used the software pack-
ages Abiword, DigitalMaterial, Linux, Mysql, VTK, and
XMMS from ref. [20].

Internet (evolving network). We downloaded the
CAIDA Autonomous System graphs from January 2004
to November 2007 from the SNAP Stanford datasets in

http://snap.stanford.edu/data/as-caida.html. The
data are described and analyzed in ref. [22].

Messages in an online social networking site. The
dataset was downloaded from http://toreopsahl.
com/datasets/#online social network and has been
analyzed in [23]. It includes online messages sent among
students at the University of California, Irvive, through a
Facebook-like Social Network. Each message was time-
stamped so we were able to follow the entire network
evolution. Our starting point was when the first 500 links
were created, and we sampled snapshots of the network
with 1000, 2000, 4000, 8000, and 13838 links.

Gnutella sharing. We used the 9 snapshots of a peer-to-
peer Gnutella network [26], where nodes represent hosts
and links are the connections between these hosts.

Protein interaction networks. We used 9 protein in-
teraction networks from BioGrid [27] for the follow-
ing species: A. thaliana, C. elegans, D. melanogaster,
H. sapiens, M. musculus, P. falciparum, R. norvegicus,
S. cerevisiae, and S. pombe.

Metabolic networks. We used the 43 metabolic networks
from ref. [28].

Road networks. A node in this network represents an
intersection and the links correspond to the roads that
connect these intersections. The three state-wide networks
we used were for California, Pennsylvania, and Texas [29].

Thesauri networks. We extracted the networks from 5
thesauri datasets, where nodes represent words and the
links indicate that the two words are synonyms. These
data were extracted from the LibreOffice Thesaurus for
English (UK), English (US), Spanish (AR), Spanish (ES),
and Spanish (VE).

Web networks. The datasets for the web networks
of Berkeley and Stanford, Google, Notre Dame, and
Stanford [29] were downloaded from the Stanford SNAP
database.

Amazon co-purchase. This network connects items that
were frequently purchased together in amazon.com, as
found by crawling software [30]. The data were down-
loaded from the Stanford SNAP database.
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