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The human brain is organized in functional modules. Such an
organization presents a basic conundrum: Modules ought to be
sufficiently independent to guarantee functional specialization
and sufficiently connected to bind multiple processors for efficient
information transfer. It is commonly accepted that small-world
architecture of short paths and large local clustering may solve this
problem. However, there is intrinsic tension between shortcuts
generating small worlds and the persistence ofmodularity, a global
property unrelated to local clustering. Here, we present a possible
solution to this puzzle. We first show that a modified percolation
theory can define a set of hierarchically organized modules made
of strong links in functional brain networks. These modules are
“large-world” self-similar structures and, therefore, are far from
being small-world. However, incorporating weaker ties to the net-
work converts it into a small world preserving an underlying back-
bone of well-defined modules. Remarkably, weak ties are precisely
organized as predicted by theory maximizing information transfer
with minimal wiring cost. This trade-off architecture is reminiscent
of the “strength of weak ties” crucial concept of social networks.
Such a design suggests a natural solution to the paradox of effi-
cient information flow in the highly modular structure of the brain.

One of the main findings in neuroscience is the modular or-
ganization of the brain, which in turn implies the parallel

nature of brain computations (1–3). For example, in the visual
modality, more than 30 visual areas analyze simultaneously dis-
tinct features of the visual scene: motion, color, orientation,
space, form, luminance, and contrast, among others (4). These
features, as well as information from different sensory modalities,
have to be integrated, as one of the main aspects of perception is
its unitary nature (1, 5).

This leads to a basic conundrum of brain networks: Modular
processors have to be sufficiently isolated to achieve independent
computations, but also globally connected to be integrated in
coherent functions (1, 2, 6). A current view is that small-world
networks provide a solution to this puzzle because they combine
high local clustering and short path length (7–9). This view has
been fueled by the systematic finding of small-world topology in a
wide range of human brain networks derived from structural (10),
functional (11–13), and diffusion tensor MRI (14). Small-world
topology has also been identified at the cellular-network scale
in functional cortical neuronal circuits in mammals (15, 16) and
even in the nervous system of the nematode Caenorhabditis ele-
gans (8). Moreover, small-world property seems to be relevant for
brain function because it is affected by disease (17), normal aging,
and by pharmacological blockade of dopamine neurotransmis-
sion (13).

Although brain networks show small-world properties, several
experimental studies have also shown that they are hierarchical,
fractal and highly modular (2, 3, 18). As there is an intrinsic
tension between modular and small-world organization, the main
aim of this study is to reconcile these ubiquitous and seemingly
contradictory topological properties. Indeed, traditional models

of small-world networks cannot fully capture the coexistence of
highly modular structure with broad global integration. First,
clustering is a purely local quantity that can be assessed inspecting
the immediate neighborhood of a node (8). On the contrary,
modularity is a global property of the network, determined by
the existence of strongly connected groups of nodes that are only
loosely connected to the rest of the network (2, 3, 19, 20). In fact,
it is easy to construct modular and unclustered networks or,
reciprocally, clustered networks without modules.

Second, the short distances of a small world may be incompa-
tible with strong modularity, which typically presents the proper-
ties of a “large world” (21–27) characterized by long distances
that effectively suppress diffusion and free flow in the system
(26). Although a clustered network preserves its clustering coef-
ficient when a small fraction of shortcuts are added (converting it
into a small world) (8), the persistence of modules is not equally
robust. As we show below, shrinking the network diameter may
quickly destroy the modules.

Hence, the concept of small world may not be entirely suffi-
cient to explain the modular and integration features of func-
tional brain networks on its own. We propose that a solution to
modularity and broad integration can be achieved by a network in
which strong links form large-world fractal modules, which are
shortcut by weaker links establishing a small-world network. A
modified percolation theory (28, 29) can identify a sequence of
critical values of connectivity thresholds forming a hierarchy
of modules that progressively merge together. This proposal is
inspired by a fundamental notion of sociology termed by Gran-
ovetter as “the strength of weak ties” (30, 31). According to this
theory, strong ties (close friends) clump together forming mod-
ules. An acquaintance (weak tie) becomes a crucial bridge (a
shortcut) between the two densely knit clumps (modules) of close
friends (30).

Interestingly, this theme also emerges in theoretical models
of large-scale cognitive architecture. Several theories suggest
integration mechanisms based on dynamic binding (6, 32) or on
a workspace system (1, 33). For instance, the workspace model
(1, 33) proposes that a flexible routing system with dynamic and
comparably weaker connections transiently connects modules
with very strong connections carved by long-term learning me-
chanisms.
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Results
Experimental Design and Network Construction. We capitalize on
a well-known dual-task paradigm, the psychological refractory per-
iod (34). A total of 16 subjects responded with the right hand to a
visual stimulus and with the left hand to an auditory stimulus (see
SI Text). The temporal gap between the auditory and visual stimuli
varied in four stimulus onset asynchrony, SOA ¼ 0, 300, 900, and
1,200 ms. The sequence of activated regions that unfolds during the
execution of the task has been reported in a previous study (35).

The network analysis relies on the time-resolved blood oxygen
level-dependent functional magnetic resonance imaging (BOLD-
fMRI) response based on the phase signal obtained for each voxel
of data (36). We first compute the phase of the BOLD signal
for each voxel with methods developed previously (36). For each
subject and each SOA task, we obtain the phase signal of the ith
voxel of activity, ϕiðtÞft¼1;::;Tg, over T ¼ 40 trials performed for a
particular SOA value and subject.We use these signals to construct
the network topology of brain voxels based on the equal-time
cross-correlation matrix, Cij, of the phase activity of the two voxels
(see SI Text). The accuracy of the calculated Cij values was esti-
mated through a bootstrapping analysis (see SI Text and Fig. S1).

To construct the network, we link two voxels if their cross-
correlation Cij is larger than a predefined threshold value p
(11, 12, 37). The resulting network for a given p is a representa-
tion of functional relations among voxels for a specific subject
and SOA.We obtain 64 cross-correlation networks resulting from
the four SOA values presented to the 16 subjects.

Percolation Analysis. Graph analyses of brain correlations relies
on a threshold (11), which is problematic because small-world-
like properties are sensitive to even a small proportion of varia-
tion in the connections. The following analysis may be seen as
an attempt to solve this problem.

The thresholding procedure explained above can be naturally
mapped to a percolation process (defined in the N × N space of
interactions Cij). Percolation is a model to describe geometrical
phase transitions of connected clusters in random graphs; see
ref. 28, chapters 2 and 3, and refs. 29 and 38.

In general, the size of the largest component of connected
nodes in a percolation process remains very small for large p.
The crucial concept is that the largest connected component
increases rapidly through a critical phase transition at pc, in which
a single incipient cluster dominates and spans the system (28, 29,
38). A unique connected component is expected to appear if the
links in the network are occupied at random without correlations.
However, when we apply the percolation analysis to the func-
tional brain network, a more complex picture emerges revealing
a hierarchy of clusters arising from the nontrivial correlations in
brain activity.

For each participant, we calculate the size of the largest con-
nected component as a function of p. We find that the largest
cluster size increases progressively with a series of sharp jumps
(Fig. 1A, SOA ¼ 900 ms, all participants, other SOA stimuli are
similar). This suggests a multiplicity of percolation transitions
where percolating modules subsequently merge as p decreases
rather than following the typical uncorrelated percolation process
with a single spanning cluster. Each of these jumps defines a
percolation transition focused on groups of nodes that are highly
correlated, constituting well-defined modules.

Fig. 1B shows the detailed behavior of the jumps in a typical
individual (subject labeled #1 in our dataset available at http://
lev.ccny.cuny.edu/~hmakse/brain.html, SOA ¼ 900 ms). At high
values of p, three large clusters are formed localized to the medial
occipital cortex (red), the lateral occipital cortex (orange), and
the anterior cingulate (green). At a lower p ¼ 0.979, the orange
and red clusters merge as revealed by the first jump in the per-
colation picture. As p continues to decrease this mechanism of
cluster formation and absorption repeats, defining a hierarchical
process as depicted in Fig. 1B Upper. This analysis further reveals
the existence of “stubborn” clusters. For instance, the anterior
cingulate cluster (green), known to be involved in cognitive con-
trol (39, 40) and which hence cannot commit to a specific func-
tional module, remains detached from the other clusters down to
low p values. Even at the lower values of p, when a massive region
of the cortex—including motor, visual and auditory regions—has
formed a single incipient cluster (red, p ≈ 0.94), two new clusters
emerge; one involving subcortical structures including the thala-
mus and striatum (cyan) and the other involving the left frontal
cortex (purple). This mechanism reveals the iteration of a process
by which modules form at a given p value and merged by com-
parably weaker links. This process is recursive. The weak links of
a given transition become the strong links of the next transition,
in a hierarchical fashion.

Below, we focus our analysis on the first jump in the size of the
largest connected component, for instance, pc ¼ 0.979 in Fig. 1B.
We consider the three largest modules at pc with at least
1,000 voxels each. This analysis results in a total of 192 modules
among all participants and stimuli, which are pooled together for
the next study. An example of an identified module in the medial
occipital cortex of subject #1 and SOA ¼ 900 ms is shown in
Fig. 1C in the network representation and in Fig. 1D in real space.
The topography of the modules reflects coherent patterns across
the subjects and stimuli as analyzed in SI Text (see Fig. S2).

Scaling Analysis and Renormalization Group.To determine the struc-
ture of the modules we investigate the scaling of the “mass” of
each module (the total number of voxels in the module, Nc)
as a function of three length scales defined for each module: (I)

Fig. 1. Percolation analysis. (A) Size of the largest con-
nected component of voxels (as measured by the fraction
to the total system size) versus p for the 16 subjects
(SOA ¼ 900 ms). The other three SOA values give similar re-
sults. The Inset presents a detail around p ≈ 0.95. (B) Detail
for a representative individual. As we lower p, the size of
the largest component increases in jumps when new mod-
ules emerge, grow, and finally get absorbed by the largest
component. We show the evolution of the modules by plot-
ting connected components with more than 1,000 voxels.
The hierarchical tree at the top of the plot shows how clus-
ters evolve by merging with each other. (C) A typical module
in network representation. (D) The same module as in C em-
bedded in real space—this specific module projects to the
medial occipital cortex, see SI Text for the spatial projection
of all modules.
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the maximum path length, ℓmax; (ii) the average path length be-
tween two nodes, hℓi; and (iii) the maximum Euclidean distance
among any two nodes in the cluster, rmax. The path length, ℓ, is
the distance in network space defined as the number of links
along the shortest path between two nodes. The maximum ℓmax
is the largest shortest path in the network.

Fig. 2A indicates power-law scaling for these quantities (21,
28). For instance,

NcðrmaxÞ ∼ ðrmaxÞdf [1]

defines the Euclidean Hausdorff fractal dimension, df ¼ 2.1�
0.1. The scaling with ℓmax and hℓi is consistent with Eq. 1, as seen
in Fig. 2A. The exponent df quantifies how densely the volume of
the brain is covered by a specific module.

Next, we investigate the network properties of each module,
applying renormalization group (RG) analysis for complex net-
works (21–25). This technique allows one to observe the network
at different scales transforming it into successively simpler copies
of itself, which can be used to detect characteristics that are
difficult to identify at a specific scale of observation. We use this
technique to characterize submodular structure within each brain
module (2).

We consider each module identified at pc separately. We then
tile it with the minimum number of boxes or submodules,NB, of a
given box diameter ℓB (21); i.e., every pair of nodes in a box has
shortest path length smaller than ℓB. Covering the network with
minimal NB submodules represents an optimization problem that
is solved using standard box-covering algorithms, such as the
Maximum Excluded Mass Burning algorithm, MEMB, which
was introduced in refs. 21, 22, and 41 to describe the self-similar-
ity of complex networks ranging from the World Wide Web, bio-
logical, and technical networks (see SI Text and Fig. 2B describing
MEMB; the entire experimental dataset and modularization and
fractal codes are available at http://lev.ccny.cuny.edu/~hmakse/
brain.html). The requirement to minimize the number of boxes
is important because the resulting boxes are characterized by the
proximity between all their nodes and minimization of the links
connecting the boxes (26). Thus, the box-covering algorithm de-
tects boxes/submodules that also tend to maximize modularity.

The repetitive application of box-covering at different values
of ℓB is an RG transformation (21) that yields a different parti-
tion of the brain modules in submodules of varying sizes (Fig. 2B).
Fig. 2C shows the scaling of NB versus ℓB averaged over all the
modules for all individuals and stimuli. This property is quantified
in the power-law relation (21):

NBðℓBÞ ∼ ℓ
−dB
B ; [2]

where dB is the box fractal dimension (21–25), which charac-
terizes the self-similarity between different scales of the module
where smaller-scale boxes behave in a similar way as the original
network. The resulting dB averaged over all the modules is
dB ¼ 1.9� 0.1.

Morphology of the Brain Modules. The RG analysis reveals that the
module topology does not have many redundant links, and it
represents the quantitative statement that the brain modules are
large worlds. However, this analysis is not sufficient to precisely
characterize the topology of the modules. For example, both, a
two-dimensional complex network architecture and a simple two-
dimensional lattice are compatible with the scaling analysis and
the value of the exponents described in the previous section.

To identify the network architecture of the modules we follow
established analysis (18, 42) based on the study of the degree dis-
tribution of the modules, PðkÞ, and the degree-degree correlation
Pðk1;k2Þ (22, 43). The form of PðkÞ distinguishes between a
Euclidean lattice (delta function), an Erdos–Renyi network (Pois-
son) (29), or a scale-free network (power law) (42). We find
that the degree distribution of the brain modules is a power law
(11, 42) PðkÞ ∼ k−γ over an interval of k values. In the SI Text
and Fig. S3 we describe a statistical analysis based on maximum
likelihood methods and KS analysis, which yield the value of
the degree exponent γ ¼ 2.1� 0.1 and the interval and error prob-
ability of the hypothesis that the data follow a power law (Fig. S4).
The analysis rules out an exponential distribution (see SI Text).

How can fractal modularity emerge in light of the scale-free
property, which is usually associated with small worlds (18)? In
a previous study (22), we introduced a model to account for the
simultaneous emergence of scale-free, fractality, and modularity in
real networks by a multiplicative process in the growth of the num-
ber of links, nodes, and distances in the network. The dynamic fol-
lows the inverse of the RG transformation (22) where the hubs
acquire new connections by linking preferentially with less con-
nected nodes rather than other hubs. This kind of “repulsion be-
tween hubs” (23) creates a dissasortative structure— with hubs
spreading uniformly in the network and not crumpling in the core
as in scale-free models (42). Hubs are buried deep into the mod-
ules, while low degree nodes are the intermodule connectors (23).

A signature of such mechanism can be found by following
hubs’ degree during the renormalization procedure. At scale ℓB,
the degree of a hub k changes to the degree of its box k0, through
the relation k0 ¼ sðℓBÞk. The dependence of the scaling factor
sðℓBÞ on ℓB defines the renormalized degree exponent dk by
sðℓBÞ ∼ ℓ

−dk
B (21). Scaling theory defines precise relations be-

A DB C

Fig. 2. Strong ties define fractal modules. (A) Number of voxels or mass of each module, Nc , versus ℓmax (red circles), hℓi (green squares), and rmax (blue
diamonds). Each point represents a bin average over the modules for all subjects and stimuli. We use all the modules appearing at pc . The straight lines
are fittings according to Eq. 1. The variance is the statistical error over the different modules. The variance is similar in the other data. (B) Detection of sub-
modules and fractal dimension inside the percolation modules. We demonstrate the box-covering algorithm for a schematic network, following the MEMB
algorithm in refs. 21 and 41 (SI Text). We cover a network with boxes of size ℓB, which are identified as submodules. We define ℓB as the shortest path plus one.
(C) Scaling of the number of boxes NB needed to cover the network of a module versus ℓB yielding dB. We average over all the identified modules for all
subjects. (D) Quantification of the modularity of the brain modules. The identified percolation modules at pc are composed of submodules with a high level of
modularity, as can be seen by the scaling of QðℓBÞ with ℓB that yields a large modularity exponent dM ¼ 1.9� 0.1. Deviations from linear scaling are found at
large ℓB due to boundary effects because the network is reduced to just a few submodules.
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tween the exponents for fractal networks (21), through γ ¼ 1þ
dB∕dk. For the case of brain modules analyzed here (Fig. S4A),
we find dk ¼ 1.5� 0.1. Using the values of dB and dk for the brain
clusters, the prediction is γ ¼ 2.26� 0.11, which is within error
bars of the calculated value γ ¼ 2.1� 0.1 from Fig. S4B.

The previous analysis reveals the mechanism of formation of
a scale-free network, but it does not assure a fractal topology,
yet. Fractality can be determined from the study of the degree-
degree correlation through the distribution, Pðk1;k2Þ to find a link
between nodes with ðk1;k2Þ degree (22, 43). This correlation char-
acterizes the hub-hub repulsion through scaling exponents de and
ϵ (see SI Text and Fig. S6) (22, 43). In a fractal, they satisfy
ϵ ¼ 2þ de∕dk. A direct measurement of these exponents yields
de ¼ 0.51� 0.08 and ϵ ¼ 2.1� 0.1 (Fig. S6). Using the measured
values of de and dk, we predict ϵ ¼ 2.3� 0.1, which is close to the
observed exponent. Taken together, these results indicate a scale-
free fractal morphology of brain modules. Such structure is in
agreement with previous results of the anatomical connectivity
of the brain (2, 3) and functional brain networks (11).

Quantifying Submodular Structure of Brain Modules. Standard mod-
ularity decomposition methods (19, 20) based on maximization
of the modularity factor Q as defined in refs. 2, 19, 20, 26, and
27 can uncover the submodular structure. For example, the Gir-
van–Newman method (19) yields a value ofQ ∼ 0.82 for the brain
clusters, indicating a strong modular substructure. Additionaly,
the box-covering algorithm benefits from detecting submodules
(the boxes) at different scales. Then, we can study the hierarchical
character of modularity (2, 26, 27) and detect whether modularity
is a feature of the network that remains scale-invariant (see SI
Text and Fig. S7 for a comparison of the submodular structure
obtained using Girvan–Newman and box-covering).

The minimization of NB guarantees a network partition with
the largest number of intramodule links and the fewest intermo-
dule links. Therefore, the box-covering algorithm maximizes the
following modularity factor (26, 27):

QðℓBÞ≡
1

NB ∑
NB

i¼1

Lin
i

Lout
i

; [3]

which is a variation of the modularity factor,Q, defined in refs. 19
and 20. Here, Lin

i and Lout
i represent the intra- and intermodular

links in a submodule i, respectively. Large values of Q (i.e.,
Lout
i → 0) correspond to high modularity (26). We make the

whole modularization method available at http://lev.ccny.cuny
.edu/~hmakse/brain.html.

Fig. 2D shows the scaling of QðℓBÞ averaged over all modules
at percolation revealing a monotonic increase with a lack of a
characteristic value of ℓB. Indeed, the data can be fitted with a
power-law form (26):

QðℓBÞ ∼ ℓ
dM
B ; [4]

which is detected through the modularity exponent, dM . We study
the networks for all the subjects and stimuli and find dM ¼ 1.9�
0.1 (Fig. 2D). The lack of a characteristic length scale expressed
in Eq. 4 implies that submodules are organized within larger mod-
ules such that the interconnections between those submodules
repeat the basic modular character of the entire brain network.

The value of dM reveals a considerable modularity in the sys-
tem as it is visually apparent in the sample of Fig. 3A Left, where
different colors identify the submodules of size ℓB ¼ 15 in a
typical fractal module. For comparison, a randomly rewired
network (Fig. 3A Right and Center) shows no modularity and has
dM ≈ 0. Scaling analysis indicates that dM is related to Lout ∼ ℓ

dx
B ,

which defines the outbound exponent dx characterizing the num-
ber of intermodular links for a submodule (26) [dx is related to the
Rent exponent in integrated circuits (3)]. From Eq. 4, we find:

dM ¼ dB − dx, which indicates that the strongest possible modular
structure has dM ¼ dB (dx ¼ 0) (26). Such a high modularity
induces very slow diffusive processes (subdiffusion) for a random
walk in the network (26). Comparing Eq. 4 with Eq. 2, we find
dx ¼ 0, which quantifies the large modularity in the brain modules.

The Conundrum of Brain Networks: Small-World Efficiency or Large-
World Fractal Modularity. An important consequence of Eqs. 1
and 2 is that the network determined by the strong links above
the first pc jump lacks the logarithmic scaling characteristic of
small worlds and random networks (8):

hℓi ∼ logNc: [5]

A fractal network poses much larger distances than those appear-
ing in small worlds (21): A distance ℓmax ∼ 100 observed in Fig. 2A
(red curve) would require an enormous small-world network
Nc ∼ 10100, rather than Nc ∼ 104, as observed for fractal networks
in Fig. 2A. The structural differences between a modular fractal
network and a small-world (and a random network) are starkly
revealed in Fig. 3A. We rewire the fractal module in Fig. 3A Left
by randomly reconnecting a fraction prew of the links while keep-
ing the degree of each node intact (8).

Fig. 3B quantifies the transition from fractal (prev ¼ 0) to small
world (prev ≈ 0.01–0.1) and eventually to random networks
(prev ¼ 1), illustrated in Fig. 3A: We plot ℓmaxðprewÞ∕ℓmaxð0Þ,
the clustering coefficient CðprewÞ∕Cð0Þ, and QðprewÞ∕Qð0Þ for
a typical ℓB ¼ 15 as we rewire prew links in the network. As we
create a tiny fraction prew ¼ 0.01 of shortcuts, the topology turns
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Fig. 3. Transition from fractal to small-world networks. (A) (Left) A typical
percolation module in network space. The colors identify submodules ob-
tained by the box-covering algorithm with ℓB ¼ 15. This fractal module con-
tains 4,097 nodes with hℓi ¼ 41.7, ℓmax ¼ 139, and rmax ¼ 136 mm. When a
small fraction prew of the links are randomly rewired (8), the modular struc-
ture disappears together with the shrinking path length. The rewiring meth-
od starts by selecting a random link and cutting one of its edges. This edge is
then rewired to another randomly selected node, and another random link
starting from this node is selected. This is again cut and rewired to a new
random node, and we repeat the process until we have rewired a fraction
prew of links. The final link is then attached to the initially cut node, so that
the degree of each node remains unchanged. (B) Small-world cannot coexist
with modularity. The large diameter and modularity factor, Eq. 4 for ℓB ¼ 15,
of the fractal module inA (Left) diminish rapidly upon rewiring a tiny fraction
prew ≈ 0.01 of links, while the clustering coefficient still remains quite large.
(C) The transition from fractal to small-world to random structure is shown
when we plot the mass versus the average distance for all modules for
different prew values as indicated. The crossover from power-law fractal to
exponential small-world/random is shown.
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into a collapsed network with no trace of modularity left, while
the clustering coefficient at prew ¼ 0.01still remains quite high
(Fig. 3B). The rewired networks present the exponential behavior
of small worlds (8) and also random networks as prev increases,
obtained from Eq. 5:

Nc ∼ expðhℓi∕ℓ0Þ; [6]

where Nc is averaged over all the modules (Fig. 3C). The char-
acteristic size is very small and progressively shrinks to ℓ0 ¼ 1∕7
when prew ¼ 1. The hallmark of small worlds and random net-
works, exponential scaling (Eq. 6), is incompatible with the hall-
mark of fractal large-worlds, power-law scaling (Eq. 2). More
importantly, although we find a broad domain where short net-
work distances coexist with high clustering forming a small-world
behavior, modularity does not show such a robust behavior to the
addition of shortcuts (Fig. 3B).

Shortcut Wiring Is Optimal for Efficient Flow. Fig. 3B suggests that
modularity and small world cannot coexist at the same level of
connectivity strength. Next, we set out to investigate how the
small world emerges.

When we extend the percolation analysis lowering further the
threshold p below pc, weaker ties are incorporated to the network
connecting the self-similar modules through shortcuts. A typical
scenario is depicted in Fig. 4A, showing the three largest percola-
tion modules identified just before the first percolation jump in
the subject #1 shown in Fig. 1B at p ¼ 0.98. For this connec-
tivity strength, the modules are separated and show submodular
fractal structure indicated in the colored boxes obtained with
box-covering. When we lower the threshold to p ¼ 0.975 (Fig. 4B)
the modules are now connected and a global incipient compo-
nent starts to appears. A second global percolation-like transition
appears in the system when the mass of the largest component
occupies half of the activated area (see, e.g., Fig. 1). For differ-
ent individuals, global percolation occurs in the interval
p ¼ ½0.945;0.96� as indicated in Fig. 1A Inset.

Our goal is to investigate whether the weak links shortcut the
network in an optimal manner. When the cumulative probability
distribution to find a Euclidean distance between two connected
nodes, rij, larger than r follows a power law,

Pðrij > rÞ ∼ r−αþ1; [7]

statistical physics makes precise predictions about optimization
schemes for global function as a function of the shortcut exponent

α and df (25, 44, 45). Specifically, there are three critical values
for α, as shown schematically in Fig. 4C. If α is too large then
shortcuts will not be sufficiently long and the network will behave
as fractal, equal to the underlying structure. Below a critical value
determined by α < 2df (25), shortcuts are sufficient to convert
the network in a small world. Within this regime there are two
significant optimization values:

i. Wiring cost minimization with full routing information. This
considers a network of dimension df , over which shortcuts
are added to optimize communication, with a wiring cost con-
straint proportional to the total shortcut length. It is also
assumed that coordinates of the network are known (i.e., it is
the shortest path that it is being minimized). Under these cir-
cumstances, the optimal distribution of shortcuts is α ¼ df þ 1
(45). This precise scaling is found in the US airport network
(46), where a cost limitation applies to maximize profits.

ii. Decentralized greedy searches with only local information.
This corresponds to the classic Milgram’s “small-world experi-
ment” of decentralized search in social networks (44), where a
person has knowledge of local links and of the final destina-
tion but not of the intermediate routes. Under these circum-
stances, which also apply to routing packets in the Internet,
the problem corresponds to a greedy search, rather than to
optimization of the minimal path. The optimal relation for
greedy routing is α ¼ df (25, 44).

Hence, the analysis of Pðrij > rÞ provides information both
on the topology of the resulting network and on which transport
procedure is optimized. This distribution reveals power-law be-
havior Eq. 7 with α ¼ 3.1� 0.1 when averaged over the modules
below pc (Fig. 4D). Given the value obtained in Eq. 1, df ¼ 2.1,
this implies that the network composed of strong and weak links
is small-world (α < 2df ) (25) and optimizes wiring cost with full
knowledge of routing information (α ¼ df þ 1) (45).

Discussion
The existence of modular organization that becomes small world
when shortcut by weaker ties is reminiscent of the structure found
to bind dissimilar communities in social networks. Granovetter’s
work in social sciences (30, 31) proposes the existence of weak
ties to bind well-defined social groups into a large-scale social
structure. The observation of such an organization in brain net-
works suggests that it may be a ubiquitous natural solution to the
puzzle of information flow in highly modular structures.

Fig. 4. Weak ties are optimally distributed. (A)
Three modules identified at pc ¼ 0.98 for the subject
in Fig. 1B. The colors correspond to different submo-
dules as identified by the box-covering algorithm at
ℓB ¼ 21. (B) When we lower the threshold to
p ¼ 0.975, weak ties connect the modules. The three
original modules as they appear in A are plotted in
red; orange, purple, and the light blue nodes are the
nodes added from A as we lower p. Blue lines repre-
sent the added weak links with distance longer than
10 mm. The weak links collapse the three modules
into one. (C) Sketch of the different critical values
of the shortcut exponent α in comparison with df .
(D) Cumulative probability distribution Pðrij > rÞ.
The straight line fitting yields an exponent
α − 1 ¼ 2.1� 0.1 indicating optimal information
transfer with wiring cost minimization (45). Certain
clusters occupy two diametric parts of the brain. In
practice, these are two modules that are connected
through long-range links. These links increase signif-
icantly the percentage of links at large distances rij ,
because they are superimposed on top of the regular
distribution of links within unfragmented clusters.
This behavior is manifested as a bump in the curve.
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Over the last decades, wire length minimization arguments
have been used successfully to explain the architectural organiza-
tion of brain circuitry (47–51). Our results are in agreement with
this observation, suggesting that simultaneous optimization of
network properties and wiring cost might be a relevant principle
of brain architecture (see SI Text). In simple words, this topology
does not minimize the total wire per se, simply to connect all the
nodes; instead, it minimizes the amount of wire required to
achieve the goal of shrinking the network to a small world. A sec-
ond intriguing aspect of our results, which is not usually high-
lighted, is that this minimization assumes that broadcasting and
routing information are known to each node. How this may be
achieved—what aspects of the neural code convey its own routing
information—remains an open question in neuroscience.

The present results provide a unique view by placing modular-
ity under the three pillars of critical phenomena: scaling theory,
universality, and renormalization groups (52). In this frame-
work, brain modules are characterized by a set of unique scaling
exponents, the septuplet ðdf ;dB;dk;de;dM;γ;αÞ ¼ ð2.1;1.9;1.5;0.5;
1.9;2.1;3.1Þ, and the scaling relations dM ¼ dB − dx, relating frac-
tality with modularity; α ¼ df þ 1, relating global integration with
modularity; γ ¼ 1þ dB∕dk, relating scale-free with fractality; and
ϵ ¼ 2þ de∕dk, relating degree correlations with fractality.

One advantage of this formalism is that the different brain
topologies can be classified into universality classes under RG
(52) according to the septuplet ðdf ;dB;dk;de;dM;γ;αÞ. Universality

applies to the critical exponents but not to quantities like
ðpc;C;ℓ0Þ, which are sensitive to the microscopic details of the
different experimental situations. In this framework, noncritical
small worlds are obtained in the limit ðdf ;dB;dk;de;dM;dxÞ →
ð∞;∞;∞;0;0;∞Þ. A path for future research will be to test the
universality of the septuplet of exponents under different activ-
ities covering other areas of the brain [e.g., the resting-state
correlation structure (53)].

In conclusion, we propose a formal solution to the problem
of information transfer in the highly modular structure of the
brain. The answer is inspired by a classic finding in sociology:
the strength of weak ties (30). The present work provides a gen-
eral insight into the physical mechanisms of network information
processing at large. It builds up on an example of considerable
relevance to natural science, the organization of the brain, to
establish a concrete solution to a broad problem in network
science. The results can be readily applied to other systems—
where the coexistence of modular specialization and global inte-
gration is crucial—ranging from metabolic, protein, and genetic
networks to social networks and the Internet.
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fMRI methods and network construction. A total of 16 participants
(7 women and 9 men, mean age 23, ranging from 20 to 28) were
asked to perform two tasks with the instruction that they had to
respond accurately and fast to each of them. The first task was a
visual task of comparing a given number (target T1) to a fixed
reference, and the second task was an auditory task of judging the
pitch of an auditory tone (target T2) (1). The two stimuli are pre-
sented with a stimulus onset asynchrony (SOA); i.e., the delay in
the onset of T1 and T2, varying from: SOA ¼ 0, 300, 900, and
1,200 ms. In the number-comparison task, a number varying ran-
domly among four values (28, 37, 53, 62) was flashed on a com-
puter screen and subjects had to respond, with a key press using
the right hand, whether the number was larger or smaller than 45.
In the auditory task, subjects had to respond whether the tone was
high or low frequency with a key press using the left hand. Full
details and preliminary statistical analysis of this experiment have
been reported in ref. 1. The study is part of a larger neuroimaging
research program headed by Denis Le Bihan and approved by
the Comité Consultatif pour la Protection des Personnes dans la
Recherche Biomédicale, Hôpital de Bicêtre (Le Kremlin-Bicêtre,
France).

Subjects performed a total of 160 trials (40 for each SOA
value) with a 12 s intertrial interval (2). The 160 trials were per-
formed in five blocks of 384 s with a resting time of approximately
5 min between blocks. For each trial, we recorded whole-brain
functional magnetic resonance imaging (fMRI) images at a sam-
pling time, TR ¼ 1.5 s producing eight fMRI images between two
consecutive trials. From these images we computed the phase
and amplitude of the hemodynamic response of each trial as
explained in ref. 2. The experiments were performed on a 3T
fMRI system (Bruker). Functional images sensitive to blood oxy-
genation level-dependent (BOLD) contrast were obtained with a
T2�-weighted gradient echoplanar imaging sequence [repetition
time ðTRÞ ¼ 1.5 s; echo time ¼ 40 ms; angle ¼ 90°; field of view
ðFOVÞ ¼ 192 × 256 mm; matrix ¼ 64 × 64]. The whole brain was
acquired in 24 slices with a slice thickness of 5 mm. High-resolution
images (three-dimensional gradient echo inversion-recovery se-
quence, inversion time ¼ 700 mm; FOV ¼ 192 × 256 × 256 mm;
matrix ¼ 256 × 128 × 256; slice thickness ¼ 1 mm) were also ac-
quired.

To estimate the periodicity and phase of the event-related
BOLD response, the data from each subject were submitted to a
first-level model in which the signal from each trial (8 TRs of
1.5 s) was fitted with three regressors: a constant, a sine, and a
cosine function at the above period. To facilitate intersubject
averaging across possible differences in anatomical localization,
the regression weights of the sines and cosines were stereotacti-
cally transformed to the standardized coordinate space of Talair-
ach and Tournoux [(Montreal Neurological Institute) MNI 152
average brain] to spatially normalize for individual differences
in brain morphology. Normalized images had a resolution of
8 mm3. Normalized phase images were transformed with the
inverse tangent function to yield a phase lag expressed in radians
for each voxel i and each trial t ¼ 1;::;T over T ¼ 40 trials: ϕiðtÞ ∈
½0;2π� (2), indicating phase lags in the interval [0,12]s.

We calculate cross-correlations between different brain
areas based on these phases (3–5). We determine the equal-time
cross-correlation matrix C with elements Cij measuring the cross-
correlation between the phase activity ϕiðtÞ of the ith and jth
voxel over T ¼ 40 trials for each subject and SOA condition:

Cij ¼
1

T∑
T

t¼1

cosðϕiðtÞ − ϕjðtÞÞ: [S1]

By construction, the elements satisfy −1 ≤ Cij ≤ 1, where Cij ¼ 1

corresponds to perfect correlations, Cij ¼ −1 corresponds to per-
fect anticorrelations, and Cij ¼ 0 describes a pair of uncorrelated
voxels. The entire experimental dataset is available at http://
lev.ccny.cuny.edu/~hmakse/brain.html.

For our analysis, we create a mask where we keep voxels which
were activated in more than 75% of the cases, i.e., in at least 48
instances out of the 64 total cases considered. The obtained num-
ber of activated voxels is N ≈ 60;000, varying slightly for different
individuals and stimuli. The “activated or functional map” exhi-
bits phases consistently falling within the expected response
latency for a task-induced activation (1). As expected for an
experiment involving visual and auditory stimuli and bimanual
responses, the responsive regions included bilateral visual occi-
pito-temporal cortices; bilateral auditory cortices; motor, pre-
motor, and cerebellar cortices; and a large-scale bilateral parie-
to-frontal structure, see section Spatial Projection of the Modules
below. In the present analysis, we do not explore the differences
in networks between different conditions. Rather, we consider
them as independent experiments, generating a total of 64 differ-
ent networks, one for each condition of temporal gap and subject.

The use of fMRI neighboring voxels can be expected to carry
some shared signal due to spatial autocorrelations (vascular, sub-
ject motion, or scanner noise), which could give rise to spurious
correlations over short distance. To test for this effect, we double
the lattice spacing, increasing the voxels volume by a factor of 8,
and repeat the calculations. The results are consistent with the
percolation picture of Fig. 1, albeit with a lower pc, while the main
results on long-range links are insensitive to this type of artifacts.

Bootstrap Analysis to Determine the Accuracy of Cij. In order to
estimate the accuracy of the correlation calculations, we per-
formed a nonparametric bootstrap analysis. We consider the set
of the 40 trials per subject and SOA value. We perform the boot-
strap analysis for each possible pair of voxels. The correlation
between two voxels for each of those trials serves as our original
sample of 40 correlation values. We then draw 10,000 resamples
from this sample with substitution. The arithmetic mean is calcu-
lated for each resample. Calculating the average value of all these
means gives the bootstrap estimate for the mean correlation. The
95% bootstrap confidence interval is calculated by the distribu-
tion of the 10,000 mean values at the 0.05 and 0.95 points of the
distribution, respectively.

The above process yields the confidence interval for the
correlation value between two voxels. A different pair of voxels
may have very different value of correlation, so in Fig. S1 we pre-
sent the 95% bootstrap confidence interval as a function of the
average value of correlation. The interval becomes smaller (i.e.,
the accuracy of the calculation increases) for larger p values. Con-
sidering the networks of Fig. 4 A and B, for example, the 95%
confidence intervals for p ¼ 0.975 and p ¼ 0.98 correspond to
(see Inset) [0.9744, 0.9760] and [0.9795, 0.981], respectively. The
95% confidence interval becomes more narrow for higher Cij
values The corresponding standard deviation is of the order of
0.003. Thus, we typically distinguish between values that differ
by 0.005.
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Spatial Projection of the Modules. The complex network represen-
tation reveals functional links between brain areas, but cannot
directly reveal spatial correlations. Because voxels are embedded
in real space, we also study the topological features of modules in
three dimensions, where now voxels assume their known posi-
tions in the brain and links between them are transferred from
the corresponding network (i.e., they are assigned according to
the degree of correlation between any two voxels, Eq. S1), which
is independent of the voxels proximity in real space. The above
procedure yields a different spatial projection of the modules for
each subject; an example for subject #1 and SOA ¼ 900 ms in
the medial-occipital cortex is shown in Fig. 1D. We study each
of these percolation modules separately and find that they all
carry statistically similar patterns. The topography of the identi-
fied modules reflects coherent patterns across different subjects,
as shown next.

Fig. S2A shows a medial sagital view of the largest four
percolation modules for all the participants under stimulus
SOA ¼ 0. In virtually all subjects, we observe a module covering
the anterior cingluate (AC) region, a module covering the medial
part of the posterior parietal cortex (PPC), and a module cover-
ing the medial part of posterior occipital cortex (area V1∕V2),
along the calcarine fissure.

We measure the likelihood that a voxel appears in the largest
percolation module among all the participants in Fig. S2A by
counting, for each voxel, the number of individuals for which it
was included in one of the first four percolation modules. The
spatial distribution of the first percolation modules averaged over
all the subjects depicted in Fig. S2 B and C shows that modules in
the three main modes, V1∕V2, AC, and PPC, are ubiquitously
present in percolation modules and, to a lesser extent, voxels in
the motor cortex (along the central sulcus) are slightly more pre-
dominant on the left hemisphere. The correlation networks
obtained from each subject yield modules with consistent topo-
graphic projections.

Box-Covering Algorithm MEMB for Fractal Dimension in Network
Space. For a given percolation module, the detection of submo-
dules or boxes follows from the application of the box-covering
algorithm for self-similar networks (6, 7). The algorithm can be
downloaded at http://lev.ccny.cuny.edu/~hmakse/brain.html. In
box-covering, we assign every node to a box or submodule, by
finding the minimum possible number of boxes,NBðℓBÞ, that cov-
er the network and whose diameter (defined as the maximum
distance between any two nodes in this box) is smaller than ℓB.

We implement the maximum excluded mass burning (MEMB)
algorithm from ref. 7 for box-covering. The algorithm uses the
basic idea of box optimization, where we require that each box
should cover the maximum possible number of nodes, and works
as follows: We first locate the optimal “central” nodes, which will
act as the origins for the boxes. This is done by first calculating the
number of nodes (called the mass) within a distance rB from each
node. We use ℓB ¼ 2rB þ 1. The node that yields the largest mass
is marked as a center. Then, we mark all the nodes in the box of
this center node as “tagged.”We repeat the process of calculating
the mass of the boxes starting from all noncenter nodes, and we
identify a second center according to the largest remaining mass,
while nodes in the corresponding box are tagged, and so on.
When all nodes are either centers or tagged, we have identified
the minimum number of centers that can cover the network at the
given rB value. Starting from these centers as box origins, we then
simultaneously burn the boxes from each origin until the entire
network is covered; i.e., each node is assigned to one box [we call
this process burning because it is similar to burning algorithms
developed to investigate clustering statistics in percolation theory
(8, 9)]. In Fig. 2A, we show how box-covering works for a simple
network at different ℓB values. RG is then the iterative applica-
tion of this covering at different ℓB.

Statistical Analysis for the Exponents Calculation Based on Maximum
Likelihood Methods and Bootstrap Analysis. In Fig. 2D of the main
text, we show an aggregate average of the degree distributions
for all clusters. This curve exhibits the general trends of the PðkÞ
distribution, demonstrating, for example, the heavy tail.

Here, we present a rigorous statistical test based on maximum
likelihood methods and bootstrap analysis. We follow ref. 10 for
maximum likelihood estimator for discrete variables. We study
the properties of 192 network clusters, as described in the main
text. The calculation of the scaling exponents is done separately
for each network. The resulting set of 192 values is then analyzed
through nonparametric bootstrap analysis, in order to get the
average value of the exponent and the corresponding confidence
intervals.

Some of the distributions are shown in Fig. S3 for nine differ-
ent clusters, together with the best fittings, in logarithmic and
semilogarithmic plots. We fit these distributions assuming a
power law within a given interval. For this, we use a generalized
power-law form

Pðk; kmin;kmaxÞ ¼
k−γ

ζðγ;kminÞ − ζðγ;kmaxÞ
; [S2]

where kmin and kmax are the boundaries of the fitting interval, and
the Hurwitz ζ function is given by ζðγ;αÞ ¼ ∑iðiþ αÞ−γ .

We use the maximum likelihood method, following the rigor-
ous analysis of Clauset et al. (10). The fit was done in an interval
where the lower boundary was kmin. For a given kmin value we
fix the upper boundary to kmax ¼ wkmin, where w is a parameter.
We calculate the slopes in successive intervals by continuously
increasing kmin and varying the value of w from 4 to 10. In this
way, we sample a large number of possible intervals. For each one
of them, we calculate the maximum likelihood estimator through
the numerical solution of

γ ¼ argmax
�
−γ∑

N

i¼1

ln ki −N ln½ζðγ;kminÞ − ζðγ;kmaxÞ�
�
; [S3]

where ki are all the degrees that fall within the fitting interval,
and N is the total number of nodes with degrees in this interval.
The optimum interval was determined through the Kolmogorov–
Smirnov (KS) test.

For the goodness-of-fit test, we use the Monte Carlo method
described in ref. 10. For each possible fitting interval, we generate
10,000 synthetic random distributions following the best-fit power
law. We then calculate the value of the KS test for each one of
them and measure the fraction pfit of realizations where the real
data KS value was smaller than the synthetic KS value. We accept
the power-law hypothesis when this ratio was larger than pfit >
0.2. The average ratio over all clusters that were retained is
pfit ¼ 0.65. The final exponent is the average of the individual
exponents. Standard bootstrap analysis on the resulting set of the
individual cluster values yielded the exponent γ ¼ 2.1� 0.1, with
a 95% confidence interval [2.039, 2.178].

The same analysis is performed to test for a possible exponen-
tial distribution to describe the data. We scan the same intervals
as for the case of power law and we use the maximum likelihood
method to determine the optimum exponential fitting to the
form:

Pðk; kmin;kmaxÞ ¼
1 − e−λ

e−λkmin − e−λkmax
e−λk: [S4]

We use KS statistics to determine the optimum fitting intervals
and also the goodness-of-fit. In all the cases where the power
law was accepted, the exponential fitting gave an average ratio
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of pfit ¼ 0.017, which rules out the possibility of an exponential
distribution.

Correlation Function Dependence on the Distance Between Voxels.
The embedding of scale-free networks in a finite-dimension real
space constitutes a problem that has attracted recent at-
tention (11–13). Scale-free networks may arise from a two-
dimensional lattice with added dense connectivity locally, where
the weights and connectivity are inversely proportional to the
Euclidean distance on the lattice. To investigate this possibility,
we study the correlation function of the phases of the voxels
as a function of Euclidean distance in real space: CðrÞ ¼
hcosðϕ1 − ϕ2Þi versus r ¼ j ~r1 − ~r2j. This function can be inter-
preted as the correlation between two spins with orientation
determined by the phase ϕi of the voxel at location ~ri (average is
over all pairs at distance r). We find (Fig. S5) that CðrÞ decays
algebraically with distance. Thus, our results indicate that mod-
ules are scale-free networks that can be embedded in a lattice
with an added long-range connectivity.

Scaling Analysis. The structure of a fractal network can be char-
acterized by a set of scaling exponents. They define the scaling
of many important system properties. Some of these properties
and the corresponding exponents are as follows:

i. The degree distribution: PðkÞ ∼ k−γ , where γ is the degree ex-
ponent (14).

ii. The scaling of the mass with size:NB ∼ ℓ
−dB
B , which defines the

fractal exponent dB (6).
iii. The degree-degree distribution Pðk1;k2Þ ∼ k−γþ1

1 k−ϵ2 , where ϵ is
the degree-degree exponent, and can be measured through
EbðkÞ ∼ kϵ, which is the integration of Pðk1;k2Þ over k2 (15).

iv. The probability that modules are connected through their
hubs, E ∼ ℓ

−de
B defines the hub-hub exponent de (6).

v. The scaling of the degree of the modules with the size of the
modules: s ∼ ℓ

−dk
B , which defines the dk exponent (6).

vi. The scaling of the modular factor as defined in Eq. S3:
QðℓBÞ ∼ ℓ

dM
B , through the modularity exponent dM (16, 17).

Scaling theory then defines precise relations between the ex-
ponents valid for fractal scale-free networks:

vii.γ ¼ 1þ dB∕dk (6),
viii. ϵ ¼ 2þ de∕dk (15), and
ix. dM ¼ dB − dx (16, 17).

We have measured directly all the exponents (see Fig. 2 and
Figs. S4 and S6) for the brain modules and find: γ ¼ 2.1� 0.1,
de ¼ 0.51� 0.08, dB ¼ 1.9� 0.1, dk ¼ 1.5� 0.1, ϵ ¼ 2.1� 0.1,
dM ¼ 1.9� 0.1. Using these values in the scaling relations above,
we predict γ ¼ 2.26� 0.11 and ϵ ¼ 2.34� 0.06, which are within
error bars of the calculated exponents γ ¼ 2.1 and ϵ ¼ 2.1 from
the direct measures. This set of results gives support to a scale-
free fractal morphology of the brain modules. Notice that a
Euclidean 2D lattice would be obtained in the limit γ → ∞,
dk ¼ 0, ϵ → ∞.

Modularity Analysis. In the main text of the paper, we have de-
scribed our modularity analysis of the brain clusters according to
the MEMB technique. The modular properties of the same clus-
ters can be also analyzed through techniques that partition a
network according to maximization of modularity. We employed
the Girvan–Newman method (18), which locates the point where
the modularity measure, Q, is maximum. The definition of Q
according to ref. 18 is:

Q ¼ ∑
NM

i¼1

�
li
L
−
�
di
2L

�
2
�
; [S6]

where NM is the number of modules, L is the number of links in
the network, li is the number of links within the module i, and di is

the sum of the degrees in this module. A value of Q ¼ 0 corre-
sponds to a completely random configuration or to the case of
one module only.

For the brain clusters, we found an average modularity value of
Q ¼ 0.82. This is an indication of strong modularity within each
cluster. A direct comparison between box-covering with MEMB
and the Girvan–Newman method shows that they result in quite
similar partitions. We calculated that 92% of the total links
belong within a given module in both methods. A visual compar-
ison is shown in Fig. S7. The maximization of modularity verifies
the modular character of the clusters. The use of the MEMB,
though, provides us with the extra advantage of modifying the
scale at which we observe the modules to determine whether the
modular structure is scale-invariant; i.e., if it is composed of mod-
ules inside modules at all scales.

SI Discussion
Minimizing wire length is in fact of paramount importance, be-
cause about 60% of the cortical volume is taken up by wire (axons
and dendrites) (19). This turns out to optimize conduction rate,
posing a strict packing limitation of the amount of wire in cortical
circuits (20). Our finding of a distribution of weak links that mini-
mizes wiring cost is hence in line with a previous literature, con-
sistently showing that neural circuit design is under pressure to
minimize wiring length. However, some important nuances of
the specific optimization procedure ought to be considered. First,
we specifically showed that at the mesoscopic scale, shortcut dis-
tribution optimizes wiring cost while maintaining network proxi-
mity. This is consistent with the organization of large-scale neural
networks in which total wiring can in fact be decreased by about
32% (in 95 primate cortical areas) and up to 48% in the global
neuronal network of the nematode Caenorhabditis elegans (20).
This extra wiring cost comes from long-range connections that
achieve network benefits of shortening the distance between pairs
of nodes (20).

BOLD-fMRI is an indirect measure of brain activity that relies
on multiple vascular and biophysical factors that couple the neur-
al response to the haemodynamic signal (21). Even if in fMRI
research it is always assumed that haemodynamic signals reflect
metabolic demand generated by local neuronal activity, recent
studies have shown reliable haemodynamic signals that entrain to
task structure independently of standard neural predictors of hae-
modynamics (22). Hence, our results, as any other fMRI analysis,
may partly reflect the underlying structure of vascular motives.
Specifically, the human cortical vascular system has a large num-
ber of arterial anastomoses that show a seemingly looking fractal
structure in the millimeter to centimeter range (23). Precise mea-
surements of fractality have been reported at the micrometer
scales in volumes of the order of a few cubic millimeters (24, 25),
which corresponds to approximately a voxel volume, where
branching structure of microcapilarities then generates fractals.
Hence, it is possible that the fractal organization of brain modules
is inherited from the vascular system itself.

Although we cannot readily test the influence of the vascular
system at a large scale, it is still possible to address this concern at
a microscopic scale, by discarding neighboring correlations.
Neighboring voxels are expected to carry some shared signal
due to spatial autocorrelations from the microvascular network.
To assure that our results do not rely on neighboring correlations
that might be particularly spurious, we coarse-grained the original
fMRI signal by doubling the lattice spacing, reducing the number
of voxels by a factor of 8, and repeating the calculations. The
results are consistent with the percolation picture of fractal mod-
ules, albeit with an expected lower pc. Such a renormalized pc
is expected from renormalization theory to change under coarse-
graining, while the main results on long-range links, such as
the value of the exponents, are insensitive to this type of coarse-
graining.
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We also investigate whether the map of fractal dimension dB
reflects a meaningful organization based on known facts of
functional properties of the cortex and the specific task that
subjects are performing. We found a topographical organization
of fractality in the human brain (Fig. S8). The right portion of the
anterior cingulate, supplementary motor area (SMA), and the
right posterior parietal cortex (PPC) regions involved in routing
of information and cognitive control, which are expected to have
a more complex functional organization, are the clusters with
higher fractal dimension. The left-right asymmetry is interesting
because, in this specific task, the left-hand response is queued for
a few hundred millisencods and has to be temporally connected
to working memory and inhibitory circuits. Although not fully

conclusive, this analysis suggests a functional role of the network
architectures described here.

Another similar concern is that the recovered brain modules
may be a manifestation of the fractal structure of the underlying
three-dimensional vortex grid or of the cortex. However, because
the dimensions of the grid (d ¼ 3) and of the cortex (d ¼ 2.7) (26)
are both sufficiently different from 1.9 and the connectivity
distribution of the modules is much broader than the typical
Euclidean fractal cortex (which should be narrow around k ∼ 6)
or a 3D lattice (k ¼ 6), we may safely assume that these objects
have their own structure. Moreover, we also observed modules
with similar fractal dimension in subcortical structures, suggesting
that these results do not simply reflect anatomical properties of
the cortical mantle.
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Fig. S1. Bootstrap analysis. The interval between the two curves corresponds to the 95% confidence interval for the calculation of the mean fraction of links
hpi as a function of hpi. The Inset zooms in the regime around the values used in Fig. 4A.
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Fig. S2. The emerging modules have consistent spatial projections. (A) Spatial distribution of the four largest percolation modules (yellow, orange, red,
brown) appearing at the first percolation jump, pc , for each subject under stimulus SOA ¼ 0. Most modules are localized in the same regions: anterior cingulate,
posterior medial-occipital, posterior parietal, and thalamus. (B and C) These panels show the number of times that the largest percolation cluster for each of the
16 subjects appears in a given voxel. White bleached regions correspond to voxels that are active in the 16 subjects, while the red regions correspond to voxels
shared by half of the subjects. The anterior cingulate, a fundamental node in cognitive control, is the only region shared by all subjects.
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A

B

Fig. S3. Degree distribution for network clusters. A number of degree distribution functions PðkÞ are shown for different clusters. The red lines correspond to
the best power-law fitting, and the blue ones to an exponential fitting. (A) Degree distribution PðkÞ in logarithmic axes. The power-law slopes correspond to
the exponent γ, and are shown on the plots. (B) The same distributions and fittings in semilogarithmic axes.

A B

Fig. S4. (A) Degree distribution averaged over all the brainmodules. The individual degree distributions for eachmodule are shown in Fig. S3. (B) Dependence
of the scaling factor sðℓBÞ, defined through k0 ¼ sðℓBÞk for the renormalized degree k0, on ℓB. The exponent dk ¼ 1.5 characterizes how the node degree
changes during the renormalization process.
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Fig. S5. Spatial correlation function. This function measures the correlation CðrÞ between the phase of two voxels that are at a Euclidean distance r apart, as a
function of r. As shown in the Inset, it decays as a power law.

A B

Fig. S6. Calculation of the scaling exponents. (A) Hub-hub exponent de through the scaling of EðℓBÞ. (B) Degree-degree exponent ϵ through the dependence
of EbðkÞ on the degree k (15).
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Fig. S7. Modular properties of the brain clusters. Comparison between the partition provided by the MEMB method (at ℓB ¼ 15) with the corresponding
partition using the Garvin–Newman method (11). The modularity index from the Newman definition Q is around 0.82, as found by the latter method. Both
methods yield similar submodules.
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Fig. S8. Topographical map of module fractality. For each voxel, we calculate the average fractal dimension of the clusters to which it belongs, considering
only voxels that form part of a cluster for at least eight subjects, to assure that mean values are not heavily determined by individual contributions. While the
average over all clusters is dB ¼ 1.9� 0.1, the dimension of each cluster exhibits small variations around this value which allows us to identify consistent
differences among them. The clusters in the auditory cortex present the smaller fractal dimension dB, while parietal and motor clusters show intermediate
values of dB. The right portion of the SMA and the right PPC were the clusters with the higher fractal dimension.
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