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Abstract

We review recent findings of self-similarity in complex networks. Using the box-covering technique, it was shown that

many networks present a fractal behavior, which is seemingly in contrast to their small-world property. Moreover, even

non-fractal networks have been shown to present a self-similar picture under renormalization of the length scale. These

results have an important effect in our understanding of the evolution and behavior of such systems. A large number of

network properties can now be described through a set of simple scaling exponents, in analogy with traditional fractal

theory.

r 2007 Published by Elsevier B.V.
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1. Introduction

Fractal geometry is a valuable tool that can efficiently describe a large number of complex systems [1]. Using
the self-similarity property of the so-called fractal objects that look similar under different magnification
levels, we are able to build a simplified theory that captures the main features of these objects. This absence of
a characteristic length scale seems to be common in many different systems in nature [2]. In the field of
complex networks, a similar discovery was made but it refers to the absence of a characteristic degree (i.e. the
number of connections for a network node) rather than to a length scale. These networks were accordingly
termed scale-free networks [3].

A crucial property for the majority of these networks is their small-world character [4]. This refers mainly to
the very small distances in the network compared to the total number of network nodes. The famous first
example of this observation was the ‘six degrees of separation’ in social networks [5], where the average
number of successive acquaintances (or equivalently the distance) between any two individuals in a population
of the order of billions is just six acquaintances. In general, in scale-free networks that are characterized by a
power-law degree distribution PðkÞ�k�g, where g is the degree exponent, the average distance h‘i scales
logarithmically with the network size as h‘i� lnN [6].

At first sight, it seems that the idea of fractality (similarity over different length scales) contradicts the small-
world property, since in such a system there do not even exist different length scales and thus these two
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features cannot co-exist in the same network. Still, it is extremely interesting to understand the behavior of a
complex network under a scale transformation, although it seems that it is not even possible to modify the
scale of our problem. Fortunately, this proved to be a very prolific problem [7]. If we try to measure the fractal
dimension of a network using the cluster growing technique where we choose random nodes and grow a
cluster within a distance ‘B, then the distribution of the mass in these boxes grows exponentially with this
distance, pointing out that fractality is absent in all these networks. However, cluster growth is mainly
influenced by the small-world character, so that the highly connected nodes, called hubs, are encountered
many times and the same hub appears in most of the boxes, biasing thus the result. If, on the contrary, we use
the box-covering technique and apply the proper definition of the Haussdorff dimension then it is possible to
reveal the underlying self-similarity of networks, at least for the cases where it is present.

2. Self-similarity, renormalization and how to calculate them

The process of identifying the existence of fractality in a complex network [7] is similar to that of regular
fractals (see Fig. 1). We start by covering a network with boxes. Each box contains nodes so that the distance
‘ij between any pair of nodes i and j in a box has to be ‘ijo‘B, where ‘B is the maximum box diameter. If the
required number of boxes is NB then these two quantities scale as

NB�‘
�dB

B , (1)

where dB is now the fractal dimension of the network. The above relation is valid only when the number of
boxes NB is the minimum possible for a given ‘B value. This requirement poses a large number of practical
problems. One possible solution is mapping the maximum coverage problem to the coloring problem. Of
course, this is an NP-hard problem and only approximate solutions exist. For this particular calculation we
have used a greedy algorithm which, together with two alternative approaches, are studied in detail in Ref. [8].

When we apply these methods and calculate the dependence of NB on ‘B we find two main families of
networks (see also Fig. 2). The first one includes the fractal networks where the power-law form of Eq. (1) is
verified and the exponent dB has a finite value. Examples of fractal networks can be found in Biology, such as
the metabolic network or the protein interaction network, in some technological networks, such as the WWW,
and social networks, e.g. the actor collaboration network in IMDB. The non-fractal family of networks
(including e.g. the Internet at the router level) is characterized by a sharp decay of NB with ‘B, which is better
described by an exponential form, or equivalently an infinite fractal dimension dB !1.

After optimally covering a network with boxes of a given diameter ‘B, we can apply a renormalization
transformation, where each box is now replaced by a single node [7]. We also transfer the links of the original
network to the renormalized one, so that if a link existed between any two nodes belonging in two different
boxes, these boxes are now linked. Thus, we create a network where the small-scale details have been blurred
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Fig. 1. The box-covering algorithm as applied in (a) a typical fractal tree, and (b) a complex network of eight nodes. The behavior of the

number of boxes NB as a function of the box diameter ‘B determines the fractality in a network.
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and the length scale is now different. We can apply this process to the renormalized network, as well, and
continue until we are left with a single node. We can only apply this transformation a limited number of times,
because of the small-world character of the networks, but this is enough to find out that the main properties of
a network, such as its degree distribution, remain invariant during all these renormalization stages.
Surprisingly, this self-similarity under different length scales seems to be a more general feature that also
applies in non-fractal networks such as the Internet. Although the traditional fractal theory does not
distinguish between fractality and self-similarity, in complex networks these two properties can be considered
to be distinct. Fractal networks are those where the exponent dB in Eq. (1) has a finite value, while self-
similarity refers to networks that remain invariant under the above described renormalization scheme.

The renormalization process can also be used to explore the evolution of many networks, and notably the
evolution of biological networks. Starting from the present-day network of e.g. the protein–protein interaction
network we can repeatedly cover the network with boxes until we reach a single node. If we consider that
duplication–divergence mechanisms have acted to shape the network into its present form then we can assume
that this renormalization scheme is similar as going back in time. Similarly, the inverse process can be seen as
the time evolution of the network from a small number of primitive proteins duplicating and diverging into a
more complex network. This inverse process is illustrated in Fig. 3 and is similar to replacing a node with a
box that contains more nodes and a larger number of links between them.
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Fig. 2. The minimum number of boxes NBð‘BÞ needed to cover the Internet and the WWW, respectively, as a function of the maximum

diameter ‘B in the box. The fractal dimension dB for the WWW is 4.15, while the (non-fractal) Internet follows an exponential decay.

Fig. 3. Example of the modularity evolution in a network of eight nodes. The modular evolution can be seen as the inverse of the

renormalization procedure. Time in the figure increases from right to the left.
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The degree of a box k0 in the renormalized network was also found [7] to be related with the degree k of the
most-connected node in the corresponding box through a simple linear relation k0�sð‘BÞk. The factor sð‘BÞ

scales with the box diameter as sð‘BÞ�l�dk

B , where now dk is the degree exponent, describing how the boxes are
connected with each other. Interestingly enough, it was shown that the fractal exponent dB and the degree
exponent dk are not independent, but are linked through the exponent of the degree distribution g with the
following scaling relation:

g ¼ 1þ
dB

dk

. (2)

3. The origins of fractality and a fractal network generation model

The standard models for generating scale-free networks, such as the configuration model [9] or the
Barabasi–Albert model [3], fail to produce self-similar fractal networks, although the exponent g in the degree
distribution PðkÞ may still be the same. The main feature that seems to distinguish the fractal networks,
though, is an effective ‘repulsion’ between the hubs [10]. In other words, the highly connected nodes tend to
not be directly linked with each other. This indicates the importance of the joint degree distribution Pðk1; k2Þ,
which represents the probability of finding a node with degree k1 connected to a node with k2 links. These
correlations are the most important feature for fractality, and it was shown that non-fractal networks are very
compact systems, where hubs are mainly connected to hubs. In contrast, the hub to non-hub connections are
favored in fractal networks.

A simple model that can capture the main features of this behavior has been introduced in Ref. [10]. We
start from a very simple structure, such as e.g. two or three nodes connected to each other. During an
evolution step, for each link we assign m new offsprings to each node of the previous generations and at the
same time an existing link is substituted by a link between two newly added nodes with probability 1� e, as
shown in Fig. 4.

Since the model evolves by linking new nodes to already existing nodes, those nodes that appeared in the
earlier stages are going to form the hubs in the network. The value of the parameter e determines the strength
of fractality by tuning the probability of hubs being directly connected. When e ¼ 0 the resulting network is a
well-defined fractal where no hubs are directly connected to each other. As the value of e increases the model
becomes progressively a ‘weaker’ fractal in the sense that the small-world property becomes more important.
For e ¼ 1 there is no trace of fractality left, and the structure is a small-world non-fractal network.

This model, despite its simplicity, reproduces the main features of real networks. The mechanisms that drive
the system into its final state are the exponential increase of the length, the mass and the degree with time.
If the values of these quantities are known in time t, then their corresponding values at tþ 1 are

‘ðtþ 1Þ ¼ a‘ðtÞ; Nðtþ 1Þ ¼ nNðtÞ; kðtþ 1Þ ¼ skðtÞ, (3)

where the constants n, s and a describe the growth rates of the corresponding quantities. Using these growth
rates we can also predict the exponents for the model, which are

dB ¼
ln n

ln a
; dk ¼

ln s

ln a
; g ¼ 1þ

ln n

ln s
. (4)

4. What is the influence of fractality in networks?

All the fractal networks belong in the class of scale-free networks with a characteristic wide degree
distribution, so they share the well-studied specific features of this class. However, as we have described above,
the joint degree distribution is different in fractal networks, with a direct impact on the structure and function
of these networks under a number of varying conditions.

An important property that has received considerable attention is the increased robustness of fractal
networks against intentional attacks compared to scale-free networks with the same exponent g. Thus, it seems
that fractality provides better protection when the hubs are removed from the system [10]. This can be
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attributed to the isolation of the hubs from each other and can provide an explanation on why most biological
networks have evolved towards a fractal behavior that can help them survive easier against lethal attacks.

Another property that is heavily influenced by fractality is transport on these networks. We have recently
developed a scaling theory on transport, where we are able to identify a set of critical exponents that describe
flow on networks [11]. The corresponding problem in non-fractal networks is very difficult, since the small-
world property with the associated small distances render the diffusion problem very hard to solve, or at least
limit its practical applications.

Finally, fractality seems to be closely related with modularity. Since hubs are isolated, we can consider that
each box is built around a local hub. These boxes in turn correspond to different functional modules, which
can be readily identified in e.g. biological networks, such as the metabolic cycle and protein interaction
networks.
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Fig. 4. A simple illustration of the fractal network model with m ¼ 2. We start with (a) five nodes at t ¼ 0. Depending on the value of e we

can have different structures, such as (b) non-fractal networks for e ¼ 0, which we call Mode I, or (c) fractal networks for e ¼ 1, which we

call Mode II. An intermediate value of e can be seen as a combination of these two modes, such as the case of e ¼ 0:5 shown in (d).
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