PHYSICAL REVIEW E 72, 017101 (2005)

Reaction-diffusion processes on correlated and uncorrelated scale-free networks
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We compare reaction-diffusion processes of the A+A — 0 type on scale-free networks created with either the
configuration model or the uncorrelated configuration model. We show via simulations that except for the
difference in the behavior of the two models, different results are observed within the same model when the
minimum number of connections for a node varies from k;,=1 to k.;,=2. This difference is attributed to the
varying local properties of the two systems. In all cases, we are able to identify a power-law behavior of the
density decay with time, with an exponent f> 1, considerably larger than its lattice counterpart.
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Recently, a growing interest for dynamic processes taking
place on scale-free networks has arisen [1,2]. A scale-free
network is one where the node connectivity k& (number of
links on a node) follows a power-law distribution of the form

P(k) ~ k77, (1)

where vy is a positive number, typically in the range 2 <<y
<4. In this frame, we recently presented [3] simulation re-
sults for reaction-diffusion processes both of the type
A+A—0 and A+B — 0, where the substrate for diffusion is a
scale-free network. Such dynamical processes can be used as
models for, among other things, virus-antivirus reactions on
the Internet, epidemics spreading in societies, pathways of
chemical reactions, etc. Following this, Catanzaro et al. [4]
developed an elegant theory for the A+A — 0 process, which
applies on networks created with the uncorrelated configura-
tion model (UCM) [5]. Their analytic results were found to
be in good agreement with their simulations, but were devi-
ating from the results in Ref. [3], where the networks were
created with the configuration model (CM). The authors at-
tributed the difference in the results to the different method
of preparing the networks. In this Brief Report, we directly
compare results for both the UCM and CM models.

The CM has become more or less the standard for simu-
lating networks of a given 7y value in the literature. For each
one of the N system nodes, a random k value is assigned,
drawn from the probability distribution function of Eq. (1).
Pairs of links are then randomly chosen between the nodes,
taking care that no double links between two nodes or self-
links in the same node are established. When the maximum
value of k is not predefined, then the natural upper cutoff
scales with the system size as ky,~N""D [6,7]. This
model is known to create correlations in the connectivity
distribution between the system nodes for y<<3, in the sense
that the average connectivity of a node’s neighbors depends
on its rank k. In other words, nodes that are highly connected
prefer to attach to nodes with lower k values, rather than to
equally well-connected nodes. These correlations arise due to
the exclusion of double links and self-loops, and are only
present for y<<3 because the degree cutoff is then greater
than k,,,,, ~ N'/?. The UCM uses the same construction algo-
rithm, with the difference that the upper cutoff is fixed in
advance to k,,,=N"2. Then, it has been shown [5] that con-
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nectivity correlations dissapear and the average connectivity
for the neighbors of any node is constant.

In Ref. [3], we had found that the reaction rate was evolv-
ing surprisingly faster than on regular lattices. The variation
of the particle concentration p(r) was still following a power
law with time ¢ of the form
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but with a value f>1 for y<<3.5. This result was valid as-
ymptotically within the simulation accuracy, and before
finite-size effects settled in. The networks that we had used
had been created with the CM with a minimum value for the
connectivity of a node (lower cutoff) k,;,=1. Since this pro-
cess may create isolated clusters, we only had used the larg-
est cluster which, depending on the value of vy, would span
from 35% to 100% of the system nodes.

In Ref. [4], the A+A — 0 process was studied, and it was
analytically found that for an infinite-size network, the expo-
nent f of Eq. (2) is given by f=1/(y-2) when 2<y<3, i.e.,
again f>1. For y=3.0, the behavior was predicted analyti-
cally to be 1/p~tIn t. However, for finite-size networks and
long times the behavior of 1/p is masked for all y by the
mean-field exponent f=1, which seems also to be valid as-
ymptotically from the simulation results. Both the analytic
solution and the simulations in that paper were based on
networks created under the UCM, with a lower cutoff value
of kpin=2. The authors of Ref. [4] reported that in their simu-
lations it was not possible to find a noticeable regime with
f>1, and they attribute the discrepancy between the two
studies solely to the different network creation method. We
argue here that a power-law regime with f>1 is indeed
present and clearly identified in all cases. Additionally, a
very important factor is the lower cutoff value, k;,.

In this Brief Report, we present and compare simulation
results for both the CM and UCM with k;,=1 and k;,=2.
Results for the time evolution of the particle density in all
four possible cases are shown in Fig. 1. All four curves in the
case of y=2.5 [Fig. 1(a)] behave differently from each other.
The CM and UCM clearly yield different results, but even
within the UCM or CM the curves for k,;,=1 and k;,=2
deviate from each other. The main difference is that the
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FIG. 1. Plot of the reaction progress 1/p—1/p,, as a function of
time for the A+A—0 reaction on scale-free networks of (a) y
=2.5 and (b) y=3.0. Results correspond to CM (thin lines) and
UCM (thick lines), with k=1 (solid lines) and k.,;,=2 (dashed
lines). The initial density was py=0.5. All results correspond to
networks of N=10° nodes.

crossover to the power-law behavior for k,,;,=1 appears later
in time, and the asymptotic mean-field behavior (f=1) also
exhibits itself roughly one decade later.

The case of y=3.0 [Fig. 1(b)] is simpler. For this vy value,
the two models (CM and UCM) are expected to coincide,
since in general the natural upper cutoff in the CM scales as
k.~N"=1and for y=3.0 the value k.=N'? is exactly the
same as in the UCM. This coincidence is shown to be valid
in the figure. However, the results for k;,=1 are still differ-
ent from the results for k,;,=2. The crossover to the power-
law behavior is not as prominent as in the case of k;,=1.

We then assess whether there exists an observable power-
law behavior in these curves and whether asymptotically a
linear regime masks this power law. The results for y=2.5
are presented in Fig. 2. In the first plot, we divide the curves
of Fig. 1(a) by the linear function z. If asymptotically the
expected behavior is linear [f=1 in Eq. (2)], then we expect
that this division will yield a constant value, i.e., a horizontal
line parallel to the x axis. The only case which is close to this
behavior is that of the UCM and k,,;,=2 (thick dashed line in
the plot). Even then, the result is not entirely satisfactory, and
the curve seems to have a slope greater than 0. Notice also
that although from Fig. 1(a) one can visually get the impres-
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FIG. 2. Results for networks with y=2.5. Plots of inverse par-
ticle density (1/p—1/p,) divided by (a) ¢ and (b) #, as a function of
time. Thick lines correspond to the UCM and thin lines to the CM
while in solid curves ky,;,=1 and in dashed lines k;,=2. In (b) the
f values are shown in the plot.

sion that a slope of 1 is describing quite accurately this
curve, the more detailed analysis in Fig. 2(a) reveals that this
is not true. In all other cases, there are only weak hints for a
parallel line, but it cannot be argued that this linear relation is
in general valid, and this is why it was not observed in Ref.
[3]. The abruptly falling curves at longer times are due to
very low particle densities, where fewer than 10 particles
remain in the system.

In Fig. 2(b), we also test the hypothesis for power-law
behavior by dividing the raw data of Fig. 1(a) by #. Since
curves corresponding to different models exhibit varying ex-
ponents f, we choose the value of f that maximizes the ex-
tent of the horizontal part in each line.

The presence of a power-law regime is clear in all occa-
sions, but it is also noteworthy that the validity of the power
law lies in a narrower time range for k;,=2, and especially
from the UCM, rendering this estimation more difficult.
Most probably, this is the reason that the authors of Ref. [4]
did not characterize this regime. The case where in a simu-
lation a particular power law appears only in a very limited
time domain is not unusual; see, e.g., the Zeldovich behavior
of the A + B reaction on a three-dimensional lattice, where the
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FIG. 3. Results for networks with y=3.0. Plots of inverse par-
ticle density (1/p—1/p,) divided by (a) # and (b) In¢, as a func-
tion of time. The CM and UCM yield the same curves, so we only
present results for CM with k,;,=1 (solid lines) and k;,=2 (dashed
lines).

density exponent has a nominal value of f=0.75, which ap-
pears only in one time decade [8]. The slopes of the curves
for ky;,=1 are consistently larger compared to the slopes of
the k;,=2 curves. We also note that the analytical prediction
of Ref. [4] predicts a slope of f=2.0, which is very close to
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the slope of the CM for k;,=1, but deviates remarkably
from the slope of the UCM, although this prediction was
based on the uncorrelated network hypothesis.

We have already seen that when y=3.0, the CM and
UCM are identical. For clarity, in Fig. 3 we analyze only the
results of the CM. Again, the hypothesis that asymptotically
there is a linear increase is not directly supported from our
simulation results. On the contrary, if we consider a power-
law fit for the intermediate time regime, we observe an ex-
tended horizontal part that spans a few decades. The slopes
for both k;,=1 and 2 are similar and close to 1.3. An in-
crease in the network size N has been shown to further ex-
tend the region of validity for the power-law behavior in the
f>1 regime (see, e.g., Fig. 1 of [3] and Fig. 6 of [4]).

The analytic considerations in Ref. [4] for y=3.0 predict a
logarithmic correction (1/p~11n¢). In general, it is not easy
to distinguish between this form and a power-law curve.
However, when we divide our raw simulation data with the
tIn ¢ function in Fig. 3(b), we observe that for k,;,=2 there
is an excellent agreement, but this function fails to reliably
describe the results for k. ;,=1.

The most probable explanation for the difference in the
results for the varying k,;, values is that the local environ-
ment in the case of k;,=1 is remarkably different from that
of kin=2. Although k_;,=2 is known to yield one giant con-
nected cluster [9], its structural characteristics seem to be
modified, basically because of the treelike features (many
nodes are connected to just one neighbor). Bottlenecks and
revisitations are, thus, more frequent than in the case where a
larger lower cutoff is used.

In short, the value of the exponent characterizing a
reaction-diffusion process on scale-free networks depends
not only on the network construction model, but it is also
sensitive to the lower cutoff value for the connectivity k.,
although such a dependence has not been predicted analyti-
cally. More importantly, we have verified the existence of a
power-law regime that is large enough to be observable in all
cases, while a careful analysis also revealed that an
asymptotic linear behavior is not valid in general.
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