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In continuation of previous work@L. K. Gallos, P. Argyrakis, and K. W. Kehr, Phys. Rev. E52, 1520
~1995!#, we present two additional analyses in the search for possible multifractality of the distribution of
^Sn&, the mean number of distinct sites visited by a random walk inn steps on percolation clusters at their
critical point. The first analysis utilizes the number of the different origins of the random walk as the relevant
size parameter. This analysis shows that the distribution of^Sn& over different disorder environments isnot a
multifractal but rather exhibits constant gap scaling. In the second analysis, the moments of the distribution
W(^Sn&) are studied with respect to theirn dependence. Here also constant gap scaling is observed.
@S1063-651X~96!02110-1#

PACS number~s!: 05.40.1j, 66.30.Jt

In a recent study@1#, the transport properties of percola-
tion clusters at their critical point were investigated. The sta-
tistics ofSn , the number of distinct sites visited inn steps by
a random walk, was investigated, starting from an arbitrary
siter on an infinite percolation cluster. In the first part of@1#,
the quantitŷ Sn(r )& was considered, wherê& denotes aver-
aging over an ensemble of random walks starting fromr , and
the nature of its fluctuations from one disorder environment
to the other was studied. In the second part the distribution of
Sn was investigated. In this paper, we reconsider the first part
of @1#, propose two additional analyses of the fluctuations,
and demonstrate unambiguously that these fluctuations do
not obey multifractal scaling.

Let s5^Sn(r )&, for a given initial siter on the perco-
lation cluster. We considerNr different initial sites ~or
equivalently disorder environments! and calculate
$si ; i51, . . . ,Nr%. For convenience, we consider the scaled
variables

s̃i5
si2smin
smax2smin

, ~1!

where smax and smin are the maximum and the minimum
values ofs in the set$si ; i51, . . . ,Nr%. Thus eachs̃i can be
represented as a dot on the unit line segment (0,1). Our aim
is to study the nature of the density distribution of these dots.
In @1#, a finite but large value ofNr was considered and the
distribution of the dots was analyzed as follows. The unit
line was divided into nonoverlapping intervals, each of size,
say, l . Let pi( l ) denote the fraction of the total number of
dots that are contained in thei th interval. The partition func-
tion is given by

Z~q,l !5(
i
pi
q~ l !, ~2!

where the sum is taken over nonempty intervals only. A
scaling ansatz was made

Z~q,l ! ;
l→0

l t~q!, ~3!

where2`,q,`, and the limitl→0 was taken by setting
l52n and takingn to be 1,2, . . . .This amounts to dividing
the unit line segment into 2,4,8,16, . . . intervals and calcu-
lating the scaling behavior of the partition function with re-
spect to the indexn. The scaling exponents are given by
t(q). Such an analysis reported in@1# showed that the
t(q) curve was not a straight line, nor did it vary with a
monotonically decreasing slope, characteristic of a multifrac-
tal measure. No definitive conclusions could be drawn about
the nature of the distribution. The reason can perhaps be
traced to finite-size effects and to the fact that the partitions
used were not compatible with the structure of the set.

A natural way to partition the unit line segment, for de-
scribing the set ofNr dots, is to consider equal intervals,
each of width 1/Nr . The reason for such a choice is simple.
If the dots were distributed uniformly, then each interval
would contain one dot. On the other hand, if there is a ten-
dency for the dots to cluster, then we would find several
intervals with more than one dot and several empty intervals.
To study the nature of clustering of dots, if any, we calculate
the partition function@see Eq.~2!# by setting l51/Nr and
investigate its scaling behavior by lettingNr→`. The idea is
that if we want to probe a structure~of points! with a given
resolution, we should also generate the structure at the same,
if not finer, resolution. Thus, achieving thel→0 limit, by
settingl51/Nr and lettingNr→`, meets this requirement in
a simple and straightforward manner; see, e.g.,@2#. Such an
analysis would help make unambiguous statements about the
nature of the distribution of the dots. To this end we turn our
attention below.
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We consider the same data used in@1# and check the
validity of the scaling ansatz,@see Eq. ~3!# by plotting
Z(q,l51/Nr) versusNr on a log-log graph. The plots for
different values ofq are shown in Fig. 1. In the present
calculations, we have kept the number of steps at a constant
value ofn51000. The partition function depicted in Fig. 1
has been obtained by averaging over several realizations.
The first observation we make is that the data for each value
of q fall on a straight line verifying the scaling ansatz. The
slope of the straight line for a givenq gives the scaling
exponentt(q). Figure 2 depictst(q) versusq for values of
q ranging from210 to110. We find thatt(q) varies lin-
early with q and the variation is described by the equation
t(q)512q. This implies that theNr values of the mean
number of distinct sites visited are distributed uniformly over
its range.

The second analysis we propose here~see for example,
@3#!, considers the moments of the random variable
s5^Sn& and their asymptotic (n→`) scaling behavior. In

this analysis, the number of stepsn takes the role of the
system size parameter. The moments ofs are calculated by

M ~q,n!5
1

Nr
(
i51

Nr

si
q , ~4!

where the sum runs over a large number of different realiza-
tions of the disorder. We have takenNr510 000. We first
make a scaling ansatz

M ~q,n! ;
n→`

nj~q!. ~5!

Figure 3 depicts theM (q,n) versusn on a log-log graph, for
various values ofq. The data for eachq fall on a straight line
and thus the scaling ansatz is verified. The slope gives the
scaling exponentj(q). Figure 4 depictsj(q) versusq. It is
linear and is described byj(q)50.628q. This implies that
the distribution of^Sn& over disorder obeys a constant gap
scaling with respect to the number of stepsn.

Summarizing, we employed two methods of analysis to-
ward a multifractal characterization of the fluctuations of the

FIG. 1. log-log plot ofZ(q,l ) vsNr , for differentq values. The
q values are shown at the right of every line.

FIG. 2. Plot of the mass exponentst(q) as a function of the
moment orderq. The symbols represent the slopes of the lines in
Fig. 1, while the continuous line represents the homogeneous be-
havior t(q)512q. It is obvious that the two curves are identical.

FIG. 3. log-log plot of the momentsM (q,n) as a function of
n, for differentq values.

FIG. 4. Plot of the scaling exponentj(q) as a function of the
moment orderq.
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mean number of distinct sites visited~by a particle diffusing
on a percolation cluster! from one disorder environment to
the other. We first studied the scaling of the partition func-
tion with the number of disorder configurations for a fixed
but large number of stepsn. In the second method we inves-

tigated the asymptotic (n→`) scaling behavior of the mo-
ments of̂ Sn&. In both we found a constant gap scaling of the
pertinent quantities. We conclude that the number of distinct
sites visited by a particle diffusing on an infinite percolation
cluster belongs truly to the constant gap scaling class.
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