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Abstract

Skew is prevalent in many data sources such as IP traffic
streams. To continually summarize the distribution of such data, a
high-biased set of quantiles (e.g., 50th, 90th and 99th percentiles)
with finer error guarantees at higher ranks (e.g., errors of 5,
1 and 0.1 percent, respectively) is more useful than uniformly
distributed quantiles (e.g., 25th, 50th and 75th percentiles) with
uniform error guarantees. In this paper, we address the following
two problems. First, can we compute quantiles with finer
error guarantees for the higher ranks of the data distribution
effectively, using less space and computation time than computing
all quantiles uniformly at the finest error? Second, if specific
quantiles and their error bounds are requested a priori, can the
necessary space usage and computation time be reduced?

We answer both questions in the affirmative by formalizing
them as the “high-biased” and the “targeted” quantiles prob-
lems, respectively, and presenting algorithms with provable guar-
antees, that perform significantly better than previously known
solutions for these problems. We implemented our algorithms in
the Gigascope data stream management system, and evaluated al-
ternate approaches for maintaining the relevant summary struc-
tures. Our experimental results on real and synthetic IP data
streams complement our theoretical analyses, and highlight the
importance of lightweight, non-blocking implementations when
maintaining summary structures over high-speed data streams.

1 Introduction

Skew is prevalent in many data sources such as IP traffic
streams. Distributions with skew typically have long tails
which are of great interest. For example, in network man-
agement, it is important to understand what performance
users experience. An important measure of performance
perceived by the users is the round trip time (RTT) which in
turn affects dynamics of the network through mechanisms
such as TCP flow control. RTTs display a large amount
of skew: the tails of the distribution of round trip times

∗ Work carried out when author was at DIMACS Center, Rutgers
University. Supported by NSF ITR 0220280 and NSF EIA 02-05116.

†Supported by NSF EIA 0087022, NSF ITR 0220280 and NSF EIA
02-05116.

can become very stretched. Hence, to gauge the perfor-
mance of the network in detail and its effect on all users
(not just those experiencing the average performance), it is
important to know not only the median RTT but also the
90%, 95% and 99% quantiles of TCP round trip times to
each destination. In developing data stream management
systems that interact with IP traffic data, there exists the fa-
cility for posing such queries [4]. However, the challenge
is to develop approaches to answer such queries efficiently
and accurately given that there may be many destinations
to track. In such settings, the data rate is typically high
and resources are limited in comparison to the amount of
data that is observed. Hence it is often necessary to adopt
the data stream methodology [2, 6, 16]: analyze IP packet
headers in one pass over the data with storage space and
per-packet processing time that is significantly sublinear in
the size of the input.

Typically, IP traffic streams and other streams are
summarized using quantiles: these are order statistics such
as the minimum, maximum and median values. In a
data set of size n, the φ-quantile is the item with rank
dφne.1 The minimum and maximum are easy to calculate
precisely in one pass but exact computation of certain
quantiles can require space linear in n [13]. So the
notion of ε-approximate quantiles relaxes the requirement
to finding an item with rank between (φ−ε)n and (φ+ε)n.
Much attention has been given to the case of finding a
set of uniform quantiles: given 0 < φ < 1, return the
approximate φ, 2φ, 3φ, . . . , b1/φcφ quantiles of a stream
of values.2 Note that the error in the rank of each returned
value is bounded by the same amount, εn; we call this the
uniform error case.

Summarizing distributions which have high skew using
uniform quantiles is not always informative because it

1We use the rank of an item to refer to its position in the sorted order
of items that have been observed.

2While existing formal problem definitions (eg, [7]) find a single order
statistic at rank bφnc, it is trivial to modify the output routine to return
uniform quantiles as defined above; this is consistent with how “quantile”
is defined in the statistics literature (eg, “percentiles” when φ = 0.01).



does not describe the interesting tail region adequately.
Motivated by this, we introduce the concept of high-biased
quantiles: to find the 1 − φ, 1 − φ2, 1 − φ3, . . . , 1 − φk

quantiles of the distribution.3 In order to give accurate
and meaningful answers to these queries, we must also
scale the approximation factor ε so the more biased the
quantile, the more accurate the approximation should be.
The approximate low-biased quantiles should now be in the
range (1−(1±ε)φj)n: instead of additive error in the rank
±εn, we now require relative error of factor (1 ± ε).

Finding high- (or low-) biased quantiles can be seen
as a special case of a more general problem of finding
targeted quantiles. Rather than requesting the same ε for
all quantiles (the uniform case) or ε scaled by φ (the biased
case), one might specify an arbitrary set of quantiles and
the desired errors of ε for each in the form (φj , εj). For
example, input to the targeted quantiles problem might
be {(0.5, 0.1), (0.2, 0.05), (0.9, 0.01)}, meaning that the
median should be returned with 10% error, the 20th
percentile with 5% error, and the 90th percentile with 1%.

Both the biased and targeted quantiles problems could
be solved trivially by running a uniform solution with
ε = minj εj . But this is wasteful in resources since we
do not need all of the quantiles with such fine accuracy.
In other words, we would like solutions which are more
efficient than this naive approach both in terms of memory
used as well as in running time, thereby adapting to the
precise quantile and error requirements of the problem.

Our contributions are as follows:

• We give the first-known deterministic algorithms for
the problem of finding biased and targeted quantiles
with a single pass over the input and prove that they
are correct. These are simple to implement, yet give
strong guarantees about the quality of their output.

• We consider the issues that arise when incorporating
such algorithms into a high speed data stream manage-
ment system (Gigascope), and develop a variety of im-
plementations of them.

• We perform experiments that show our algorithms are
extremely space-efficient, and significantly outperform
existing methods for finding quantiles when applied to
our scenarios. We evaluate them on live and simulated
IP traffic data streams and show that our methods are
capable of processing high throughput network data.

2 Related Work
Computing concise summaries such as histograms and
order statistics on large data sets is of great importance

3Symmetrically, the low-biased quantiles are the φ, φ2 . . . φk quan-
tiles of the distribution.

in particular for query planning. Histogram summaries
such as equi-depth histograms and end-biased histograms
have been studied extensively [11]. Note that our notion
of high-biased quantiles is quite distinct from high-biased
histograms [10] which find the most frequent items (i.e.,
the modes) of the distribution. There is a large body
of work on ways to compute appropriate histograms and
order-statistics in general; here, we describe prior work that
computes quantiles with one pass over the input data since
this is the focus of our work.

A lower bound of Ω(n) space was shown by Munro and
Paterson [13] in order to exactly compute the median of
n values. In the same paper, they showed an algorithm
which finds any quantile in p passes and used memory
O(n1/p log n). Manku et al [14] observed that after the
first pass this algorithm finds bounds on the rank of items,
and so it can be used to answer ε-approximate quantiles
in space O( 1

ε log2(εn)). They also gave improvements
with the same asymptotic space bounds but better constant
factors. These algorithms require some knowledge of
n in advance: they operate with O(log(εn)) buffers of
size O( 1

ε log(εn)) each and so an upper bound on n
must be known a priori.4 Subsequent work removed
this requirement. Manku et al [15] gave a randomized
algorithm, which fails with probability at most δ, in space
O( 1

ε (log2( 1
ε ) + log2(log 1

δ ))).
Greenwald and Khanna made a significant contribution

to computing quantiles in one pass by presenting a deter-
ministic algorithm with space bounded by O( 1

ε log(εn))
and no requirement that n be known in advance. This al-
gorithm very carefully manages upper and lower bounds
on ranks of items in its “sample” and intuitively is more
informed in pruning items of non-interest than random-
sampling based methods. As a result, the worst case space
bound above is often pessimistic; on many typical data sets
it has been observed to use O( 1

ε ) space [7].
All these methods are designed to find uniform quantiles

on insert-only data streams. When items can be deleted
as well as inserted, Gilbert et al [8] gave a randomized
algorithm to find quantiles in space O( 1

ε2 log2 U log log U
δ ),

where U is the size of the universe (ie, the number of
possible values of items); this has since been improved to
space O( 1

ε log2 U log log U
δ ) in [5]. In the sliding window

model, where only the last W data elements are considered,
the problem was first studied in [12] and improved in [1] to
space O( 1

ε log 1
ε log W ).

In this paper, our attention is on extensions of the basic
quantile finding problem where some values are required
to greater accuracy than others. In [15], the authors
study the “extreme values” quantile finding problem: for

4Although, if the estimate of n is too low, this will merely result in
a decline in the quality of the results and a requirement for some extra
buffers.



given values of φ close to zero (or, symmetrically, close
to one), find an ε-approximation of the φ quantile using
space significantly less than is required for maintaining ε-
accuracy for the whole data set. The algorithm randomly
samples at a rate k

nφ but only the k smallest elements of
the sample are retained. The largest of these k items is
returned as the approximate φ-quantile. Analysis sets k,
the memory requirement, to be O(φ

ε log 1
δ ). In the case

where ε = ε′φ (that is, where the “local” ε is simply the
product of a global constant ε′ and the value of φ), then this
simplifies to O( 1

ε′
log 1

δ ).
The problem of finding biased quantiles was studied by

Gupta and Zane [9] in the context of approximating the
number of inversions (disordered pairs of items) in a list.
They presented a similar algorithm of retaining k smallest
elements after sampling at an appropriate rate. This is then
repeated for every quantile of the form 1

ε (1 + ε)i up to n.
This gives a total of 1

ε log εn parallel sampling routines.
The 1

ε smallest items can be stored exactly. Overall,
the space requirement is O( 1

ε2 log2 εn) samples.5 There is
significant opportunity for improvement here; for example,
no information is shared between the different samplers
which operate independently of each other. In this paper,
we give a deterministic algorithm that also keeps “samples”
from the input stream of values and gives ε-approximate
biased or targeted quantiles. As with the result in [7], we
also carefully maintain upper and lower bounds on ranks of
items (to different levels of accuracy in different portions
of the distribution, which is in contrast to [7] where the
levels are uniform over all the quantiles). As a result, we
are able to make informed decisions on pruning items of
non-interest. Interestingly, this improves the space needed
greatly, and is also faster to process each new item.

3 Biased Quantiles Problem
We begin by formally defining the problem of biased
quantiles. To simplify the notation, we present the material
in terms of low-biased quantiles; high-biased quantiles
can be obtained via symmetry, by reversing the ordering
relation.

Definition 1 Let a be a sequence of n items, and let A be
the sorted version of a. Let φ be a parameter in the range
0 < φ < 1. The low-biased quantiles of a are the set of

values A[dφjne] for j = 1, . . . ,
⌊

log1/φ n
⌋

.

Sometimes we will not require the full set of biased-
quantiles, and instead only search for the first k ≤
⌊

log1/φ n
⌋

. Our algorithms will optionally take k as a
parameter.

5In [9], the space bound is proportional to 1

ε3
, but using the sampler

from [15] improves this by a factor of 1

ε
. We set δ = ( 1

εn
)2 to give high

probability bounds.

It is well known that computing quantiles exactly re-
quires space linear in n [13]. In our applications, we seek
solutions that are significantly sublinear in n, preferably
depending on log n or small polynomials in this quantity.
So we will allow approximation of the quantiles, by giving
a small range of tolerance around the answer.

Definition 2 Let φ be a parameter in the range 0 < φ < 1
supplied in advance. The approximate low-biased quantiles
of a sequence of n items, a, is a set of k items q1, . . . , qk

which satisfy

A[
⌊

(1 − ε)φjn
⌋

] ≤ qj ≤ A[
⌈

(1 + ε)φjn
⌉

].

In fact, we can solve a slightly more general problem:
after processing the input, then for any supplied value φ′ ≤
φk, we will be able to return an ε-approximate quantile q′

that satisfies

A[b(1 − ε)φ′nc] ≤ q′ ≤ A[d(1 + ε)φ′ne].

Any such solution clearly can be used to compute a set of
approximate low-biased quantiles.

3.1 Algorithm for biased quantiles
Our algorithm draws inspiration from the algorithm pro-
posed by Greenwald and Khanna [7], henceforth referred
to as GK, for the uniform quantiles problem. The algo-
rithm keeps information about particular items from the in-
put, and also stores some additional tracking information.
The intuition for this algorithm is as follows: suppose we
have kept enough information so that the median can be es-
timated with an absolute error of εn in rank. Now suppose
that there are so many insertions of items above the median
that this item is now the first quartile (the item which oc-
curs 1

4 through the sorted order). For this to happen, then
the current number of items must be at least 2n. Hence, if
the same absolute uncertainty of εn is maintained, then this
corresponds to a relative error of at most 1

2ε. This shows
that we will be able to support greater accuracy for the
high-biased quantiles provided we manage the data struc-
ture correctly.

As in GK, the data structure at time n, S(n), consists
of a sequence of s tuples 〈ti = (vi, gi, ∆i)〉, where each vi

is a sampled item from the data stream and two additional
values are kept: (1) gi is the difference between the lowest
possible rank of item i and the lowest possible rank of item
i − 1; and (2) ∆i is the difference between the greatest
possible rank of item i and the lowest possible rank of item
i. The total space used is therefore O(s). For each entry
vi, let ri =

∑i−1
j=1 gj . Hence, the true rank of vi is bounded

below by ri + gi and above by ri + gi + ∆i. ri can be
thought of as an overly conservative bound on the rank of
the item vi: it is overtight to make the accuracy guarantees
later.



Depending on the problem being solved (uniform, bi-
ased, or targeted quantiles), the algorithm will maintain an
appropriate restriction on gi +∆i. We will denote this with
a function f(ri, n), which for the current values of ri and
n gives an upper bound on the permitted value of gi + ∆i.
For biased quantiles, this invariant is:

Definition 3 (Biased Quantiles Invariant) We set f(ri, n)
= max{b2εric , 1}. Hence, we ensure that gi + ∆i ≤
b2εric for all i.

As each item is read, an entry is created in the data
structure for it. Periodically, the data structure is “pruned”
of unnecessary entries to limit its size. We ensure that the
invariant is maintained at all times, which is necessary to
show that the algorithm operates correctly. The operations
are defined as follows:

Insert. To insert a new item, v, we find i such
that vi < v ≤ vi+1, we compute ri and insert the tuple
(v, g = 1, ∆ = f(ri, n)−1). This gives the correct settings
to g and ∆ since the rank of v must be at least 1 more than
the rank of vi, and (assuming the invariant holds before
the insertion), the uncertainty in the rank of v is at most
one less than the uncertainty of vi(= ∆i), which is itself
bounded by f(ri, n) (since ∆i is always an integer). We
also ensure that min and max are kept exactly, so when
v < v1, we insert the tuple (v, g = 1, ∆ = 0) before
v1. Similarly, when v > vs, we insert (v, g = 1, ∆ = 0)
after vs. To simplify presentation of the algorithms, we
add sentinel values (v0 = −∞, g = 0, ∆ = 0) and
(vs+1 = +∞, g = 0, ∆ = 0).

Compress. Periodically, the algorithm scans the data
structure and merges adjacent nodes when this does not
violate the invariant. That is, remove nodes (vi, gi, ∆i)
and (vi+1, gi+1, ∆i+1), and replace with (vi+1, (gi +
gi+1), ∆i+1) provided that (gi + gi+1 +∆i+1) ≤ f(ri, n).
This also maintains the semantics of g and ∆ being the
difference in rank between vi and vi−1, and the difference
between the highest and lowest possible ranks of vi,
respectively.

Output. Given a value 0 ≤ φ ≤ 1, let i be the
smallest index so that ri + gi + ∆i > φn + 1

2f(φn, n).
Output vi−1 as the approximated quantile.

These three routines are the same for the different
problems we consider, being parametrized by the setting of
the invariant function f . It generalizes the GK algorithm,
which is equivalent to the above routines with f(ri, n) =
b2εnc. Figure 1 presents the pseudocode of the algorithm.

3.2 Correctness of the Algorithm
Theorem 1 The algorithm in Figure 1 correctly maintains
ε-approximate biased quantiles.

Proof: First, observe that Insert maintains the invariant
since, for the inserted tuple, clearly g + ∆ ≤ 2εri. All
tuples below the inserted tuple are unaffected; for tuples
above the inserted tuple, their gi + ∆i remains the same,
but their ri increases by 1, and so the invariant still holds.
Compress checks that the invariant is not violated by its
merge operations, and for tuples not merged, their ri is
unaffected, so the invariant must be preserved.

Next, we demonstrate that any algorithm which main-
tains the biased quantiles invariant guarantees that the out-
put function will correctly approximate biased quantiles.
Because i is the smallest index so that ri + gi + ∆i >
φn+f(φn, n)/2 = φn+ εφn, then ri−1 + gi−1 +∆i−1 ≤
(1+ε)φn. Using the invariant, then (1+2ε)ri > (1+ε)φn
and consequently ri > (1 − ε)φn. Hence (1 − ε)φn <
ri−1 + gi−1 ≤ ri−1 + gi−1 + ∆i−1 ≤ (1 + ε)φn. Re-
call that that the true rank of vi is between ri + gi and
ri + gi + ∆i: so the derived inequality means that vi−1 is
within the necessary error bounds for biased quantiles.

This gives an error bound of ±εφn for every value of φ.
In some cases we have a lower bound on how precisely
we need to know the biased quantiles: this is when we
only require the first k biased quantiles. It corresponds to
a lower bound on the allowed error of εφkn. Clearly we
could use the above algorithm which gives stronger error
bounds for some items, but this may be inefficient in terms
of space. Instead, we modify the invariant as follows to
avoid this slackness and so reduce the space needed. The
algorithm is identical to before but we modify the invari-
ant to be f(ri, n) = 2ε max{ri, φ

kn, 1/2ε}. This invariant
is preserved by Insert and Compress. The Output
function can be proved to correctly compute biased quan-
tiles with this lower bound on the approximation error us-
ing straightforward modification of the above proof.

3.3 Space Bounds

In [7] it is shown that the GK algorithm requires space
O( 1

ε log εn) in the worst case. By analogy, the worst
case space requirement for finding biased quantiles should
be O(k log 1/φ

ε log εn). Consider the space used by the
algorithm to maintain the biased quantiles for the values
whose rank is between n/2 and n. Here we maintain a
synopsis where the error is bounded below by εn and the
algorithm operates in a similar fashion to the GK algorithm.
So the space required to maintain this region of ranks
should be bounded by O( 1

ε log εn). Similarly for the range
of ranks n/4 to n/2, items are maintained to an error no
less than ε/2 but we are maintaining a range of at most
half as many ranks. Thus the space for this should be
bounded by the same amount O( 1

ε log εn). This argument
can be repeated until we reach n/2x = φkn where the same
amount of space suffices to maintain information about
ranks up to φk with error εφk. The total amount of space is



/* n = #items, k = asymptote */
/* S = data structure, s = #samples */
Insert(v):
01 r0 := 0;
02 for i:= 1 to s do
03 ri := ri−1 + gi−1;
04 if (v < vi) break;
05 add (v, 1, f(ri, n) − 1) to S before vi;
06 n + +;

Compress():
01 for i := (s − 1) downto 1 do
02 if (gi + gi+1 + ∆i+1 ≤ f(ri, n)) then
03 merge ti and ti+1;

Output(φ):
01 r0 := 0;
02 for i := 1 to s do
03 ri := ri−1 + gi−1;
04 if (ri + gi + ∆i > φn + f(φn, n)/2)
05 print(vi−1); break;

Main():
01 for each item v do
02 Insert(v);
03 if (Compress Condition()) then
04 Compress();

Figure 1: Approximate Quantiles Algorithm

no more than O(x
ε log εn) = O(k log 1/φ

ε log εn). If φ is not
specified a priori, then this bound can be easily rewritten
in terms of k and ε. Also, we never need k log 1/φ to be
greater than log εn, which corresponds to an absolute error
of less than 1, so the bound is equivalent to O( 1

ε log2 εn).
We also note the following lower bound for any method

that finds the biased quantiles.

Theorem 2 Any algorithm that guarantees to find biased
quantiles φ with error at most φεn in rank must store
Ω( 1

ε min{k log 1/φ, log(εn)}) items.

Proof: We show that if we query all possible values of φ,
there must be at least this many different answers produced.
Assume without loss of generality that every item in the
input stream is distinct. Consider each item stored by the
algorithm. Let the true rank of this item be R. This is a
good approximate answer for items whose rank is between
R/(1+ε) and R/(1−ε). The largest stored item must cover
the greatest item from the input, which has rank n, meaning
that the lowest rank input item covered by the same stored
item has rank no lower than n(1 − ε)/(1 + ε). We can
iterate this argument, to show that the lth largest stored

item covers input items no less than n(1 − ε)/(1 + ε)l.
This continues until we reach an input item of rank at most
m = nφk. Below this point, we need only guarantee
an error of εφk. By the same covering argument, this
requires at least p = (nφk)/(εnφk) = 1/ε items. Thus
we can bound the space for this algorithm as p + l, when
n(1 − ε)/(1 + ε)l ≤ m. Then, since 1−ε

1+ε ≤ (1 − ε), we
have ln(m/n) ≥ l ln(1−ε). Since ln(1−ε) ≤ −ε, we find
l ≥ 1

ε ln n
m = 1

ε ln n
nφk . This bounds l = Ω( k log 1/φ

ε ), and
gives the stated space bounds.

Note that it is not meaningful to set k to be too large,
since then the error in rank becomes less than 1, which
corresponds to knowing the exact rank of the smallest
items. That is, we never need to have εnφk < 1; this
bounds k log 1/φ ≤ log(εn) and so the space lower bounds
translates to Ω( 1

ε min{k log 1/φ, log(εn)}).

4 Targeted Quantiles Problem
The targeted quantiles problem considers the case that
we are concerned with an arbitrary set of quantile values
with associated error bounds that are supplied in advance.
Formally, the problem is as follows:

Definition 4 (Targeted Quantiles Problem) The input is
a set of tuples T = {(φj , εj)}. Following a stream of input
values, the goal is to return a set of |T | values vj such that

A[d(φj − εj)ne] ≤ vj ≤ A[d(φj + εj)ne].

As in the biased quantiles case, we will maintain a set of
items drawn from the input as a data structure, S(n). We
will keep tuples 〈ti = (vi, gi, ∆i)〉 as before, but will keep
a different constraint on the values of gi and ∆i.

Definition 5 (Targeted Quantiles Invariant) We define the
invariant function f(ri, n) as

(i) fj(ri, n) =
2εjri

φj
, φjn ≤ ri ≤ n;

(ii) fj(ri, n) =
2εj(n−ri)
(1−φj)

, 0 ≤ ri ≤ φjn

and take f(ri, n) = max{minj bfj(ri, n)c , 1}. As before
we ensure that for all i, gi + ∆i ≤ f(ri, n).

An example invariant f is shown in Figure 2 where
we plot f(φn, n) as φ varies from 0 to 1. Dotted lines
extrapolate the constraints of type (i) when ri ≤ φjn and
constraints of type (ii) when ri ≥ φjn, to illustrate how the
function is formed. The function f itself is illustrated with
a solid line seen as the lower envelope of the fj’s. Note
that if we allow T to contain a large number of entries then
setting

T = {( 1
n , ε), ( 2

n , ε), . . . , (n−1
n , ε), (1, ε)}



f(
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Figure 2: Error function f(φn, n)/n computed for the
input T = {( 1

8 , 0.02), ( 3
8 , 0.02), ( 6

8 , 0.04), ( 7
8 , 0.01)}. We

plot (x, 2y) with circles for (x, y) ∈ T .

captures the uniform error approximate quantiles problem
solved by GK. Similarly setting

T = {( 1
n , ε

n ), ( 2
n , 2ε

n ) . . . (n−1
n , (n−1)ε

n ), (1, ε)}

captures the biased quantiles problem. In both cases, the
invariant function f computed by Definition 5 reduces
to the function used by GK and in Section 3 above,
respectively.

4.1 Algorithm and Correctness
Insert, Compress and Output operations are the
same as in Figure 1 with the new invariant. Therefore, the
running time is the same as before plus the time to compute
the invariant f which takes time at most O(log |T |) per
invocation. We will show that the operations maintain
the invariant and that if the invariant holds then targeted
quantiles are estimated to the required degree of accuracy.

Lemma 1 The targeted quantiles invariant is preserved by
Insert and Compress operations.

Proof: We will show that assuming the invariant holds for
each vi before an insertion, it must hold afterwards. For
the tuple that is inserted the invariant trivially holds by the
setting of the values in the inserted tuple. However, since
the invariant depends on ri and n, it is possible that the
constraints on other tuples will change and we must ensure
that these do not violate the invariant. Note that if the
new value v is inserted before vi then ri increases by 1.
Otherwise ri stays the same. In all cases n increases by 1.
For each tuple vi, consider the error function f and the fj

that is tightest for the current value of vi. First, suppose that
before and after the insertion the same fj is tight. There are
two cases:
(i) The invariant is 2εjri

φj
. Then whether ri increases or

stays the same, the invariant does not get tighter for vi, and
so the inequality is preserved.

(ii) The invariant is 2εj(n−ri)
(1−φj)

. Then as n increases by
one, and ri either stays the same or increases, again this
invariant does not get tighter, so the inequality is preserved.

Now suppose that before the insertion vi was subject
to some fj and afterward is subject to some fk. There
are many cases to consider depending on the type of
constraint of fj and fk. For example, suppose that vi

was initially constrained by 2εjri

φj
and is then constrained

by 2εk((n+1)−(ri+1))
1−φk

, with j < k. Then observe that

there must be some values of r′ ≥ ri so that 2εjr′

φj
=

2εk((n+1)−(r′+1))
1−φk

, since the constraints are linear. Writing

χ =
εkφj

εj(1−φk) , then the constraint is violated after the

insertion if r
n−ri

> χ = r′

n−r′
. That is, if ri(n − r′) >

r′(n − ri) ⇒ ri > r′. But this contradicts our assertion
that r′ ≥ ri and so the constraint cannot be violated.

There are several similar cases to work through; we omit
full details here. Finally note that compress operations
trivially preserve the invariant since we only delete tuples
when this does not violate the constraint; other tuples are
unaffected by deletions since ri and n are unchanged.

Theorem 3 If the targeted quantiles invariant holds, then
running Output, for all φj , will find the specified quan-
tiles φj within the given error bounds εj .

Proof: Consider the quantile and error pair (φj , εj). The
Output function finds the smallest index i such that ri +
gi + ∆i > φjn + 1

2f(φn, n) ≥ φjn +
εjφjn

φj
= (φj + εj)n

Then ri−1 + gi−1∆i−1 ≤ (φj + εj)n and ri +(gi +∆i) >
(φj + εj)n. Now, consider how gi + ∆i is bound by fj :
we know from Definition 5 that either case (i) or case (ii)
holds. If case (i) holds, then we are done, since we have
φjn ≤ ri ≤ (φj + εj)n. So suppose case (ii) holds. Then,

ri +
2εj(n−ri)

1−φj
> (φj + ε)n

(1 − φj)ri + 2εjn − 2εri > (φj + εj − φ2
j − εjφj)n

(1 − φj)ri − 2εjri > (1 − φj)(φj − εj)n
ri > (φj − εj)n.

In both cases, we can bound (φj − εj)n < ri−1 + gi−1 ≤
ri−1 + gi−1 + ∆i−1 ≤ φjn. So we know that the true rank
of item vi−1 lies in the range (φj ± εj)n.

Informally, we argue that the space used by this algo-
rithm is bounded if we set ε′ = minj εj as O( 1

ε′
log ε′n), by

applying the space bound argument of the Greenwald and
Khanna argument, and by observing that our algorithm can
prune more aggressively than the GK algorithm. In prac-
tice, we would expect to see much tighter space bounds, as
even small εjs can be achieved in smaller space if the cor-
responding φjs are sufficiently far from 1

2 . We expect to

see a dependency on the greatest value of φj

εj
by analogy to

the biased quantiles case.



Note that the algorithm is slightly more general than was
claimed. In addition to the targeted quantiles, information
about the whole distribution is kept. Given an arbitrary
value of 0 ≤ φ ≤ 1, the algorithm will find a value whose
rank is between (φn−f(φn, n)/2) and (φn+f(φn, n)/2).
For example, in Figure 2 which plots f against ε as φ
increases, we see that f is never more than 0.07n. Here we
have omitted formally discussing and proving such general
claims, for brevity.

5 Implementation Issues

As described, the algorithms presented in Sections 3
and 4 allow for much freedom in implementing them.
In this section, we present a few alternatives used to
gain an understanding of which factors are important for
achieving good performance over a data stream. The three
alternatives we considered are natural choices and exhibit
standard data structure trade-offs, but our list is by no
means exhaustive.

The running time of the algorithm to process each
new update v depends on (i) the data structures used to
implement the sorted list of tuples, S, and (ii) the frequency
with which Compress is run. The time for each Insert
operation is that to find the position of the new data
item v in the sorted list. With a sensible implementation
(e.g., a balanced tree structure), this is O(log s), and with
augmentation we can efficiently maintain ri of each tuple
in the same time bounds.

The periodic reduction in size of the quantile summary
done by Compress is based on the invariant function
f which determines tuples eligible for deletion (that is,
merging the tuple into its adjacent tuple). Note that
this invariant function can change dynamically when the
ranks change; hence, it is not possible to efficiently
maintain candidates for compression incrementally. As a
consequence, Compress is much simpler to implement
since it requires a linear pass over the sorted elements in
time O(s). However, instead of periodically performing
a full scan, it can be prudent to amortize the time cost
and the space used by the algorithm, and thus perform
partial scans at higher frequency. This is governed by
the function Compress Condition(), which can be
implemented in a variety of ways: it could always return
true, or return true every 1/ε tuples, or with some other
frequency. Note that the frequency of compressing does not
affect the correctness, just the aggressiveness with which
we prune the data structure.

5.1 Methods

We now describe three alternatives for maintaining the
quantile summary tuples ordered on vi-values in the pres-
ence of insertions and deletions:

• Batch: This method maintains the tuples of S(n) in
a linked list. Incoming items are buffered into blocks
of size 1/2ε, sorted, and then batch-merged into S(n).
Insertions and deletions can be performed in constant
time. However, the periodic buffer sort, occurring every
1/2ε items, costs O((1/ε) log(1/ε)).

• Cursor: This method also maintains tuples of S(n) in a
linked list. Incoming items are buffered in sorted order
and are inserted using an insertion cursor which, like
the compress cursor, sequentially scans a fraction of the
tuples and inserts a buffered item whenever the cursor
is at the appropriate position. Maintaining the buffer in
sorted order costs O(log(1/ε)) per item.

• Tree: This method maintains S(n) using a balanced
binary tree. Hence, insertions and deletions cost
O(log s). In the worst case, all εs tuples considered
for compression can be deleted, so the cost per item is
O(εs log s).

These methods were implemented in C++ and attempts
were made to make the three implementations as uniform
as possible for a fair comparison (for example, all methods
use approximately the same amount of space). The
C++ STL list container type was used for storing
S(n) in both Batch and Cursor whereas a multiset
container was used for Tree.6 Cursor uses the priority
queue from <queue> to maintain the buffer of incoming
items in sorted order. As a disclaimer, there were many
optimizations we did not employ which would likely
improve the performance of all the methods such as
parallelism, pre-allocated memory, cache-locality, etc.

6 Experiments
In the first part of this section, we evaluate the accu-
racy/space trade-off for both the biased quantiles and tar-
geted quantiles problems, in comparison to naively apply-
ing the GK algorithm [7]. In accordance with [7], the al-
gorithms used here differ from that described in Section 3
in two ways: a new observation v is inserted as a tuple
(v, 1, gi + ∆i − 1), where vi−1 < v ≤ vi, and Compress
is run after every insertion into S(n), to delete one tuple
when possible. When no tuple could be deleted without vi-
olating the error constraint, the size of S(n) grows by one.
Space is measured by the number of tuples.

For biased quantiles, we consider two questions. First,
with error requirements that are non-uniform over the
ranks, can we achieve such accuracy in less space than
pessimistically requiring all the quantiles at the finest error?
We compare our proposed algorithm for finding the first k
biased quantiles against GK run with error εφk. Second,
how does space depend on the trail-off parameter k?

6Our implementation of STL uses red-black trees for <set>.



For targeted quantiles, we consider the following two
questions. First, if we know the desired quantiles and their
errors a priori, then can we focus the algorithm to yield the
required accuracy at only those quantiles to save space? We
illustrate using the case when a single order statistic (e.g.,
φ = 0.5, aka the median) is desired within error ε. Whereas
GK allows all quantiles to be given at this accuracy, our
approach only provides this guarantee for a specified φ-
quantile and gives weaker guarantees for other values.
Second, how does the space usage of our algorithm depend
on the value of φ? It has been noted in [15] that, if the
desired quantile is an extreme value (e.g., within the top 1%
of the elements), then the space requirements of existing
algorithms are overly pessimistic. The authors showed
that, when simply taking quantiles over a random sample,
probabilistic guarantees can be obtained in less space for
extreme values than for the median. Our algorithm exhibits
this same phenomenon. Furthermore, we show that, for any
quantile, if the desired error bounds are known in advance,
existing algorithms are also overly pessimistic.

In the second part of this section, we evaluate and
compare the performance of the different implementation
alternatives described in Section 5 using the Gigascope data
stream system [3]. These alternatives vary in terms of the
different aspects of the algorithm they optimize, in terms
of their simplicity, and with respect to blocking behavior.
The goal is to shed some light on which factors are most
important for performance.

6.1 Space Usage for Biased Quantiles

For these experiments, we compared the space usage of
our proposed biased quantile algorithm with that of GK. In
order to obtain pε error at quantiles p ∈ {φ, φ2, . . . , φk},
the GK algorithm must be run at the finest level of error,
yielding εφk-approximate quantiles. We set φ = 0.5 and
tried different parameter values for k and ε. We used
a variety of different data streams: “hard”, sorted, and
“random” (the inputs used in [7]). 7

Figure 3 reports space usage for different values of k and
ε on the “hard” input. Clearly, the proposed method uses
much less space with the gap increasing both with k and
inversely with ε. At time step n = 105 with ε = 0.001, the
ratio is approximately 4 with k = 4 and 19.5 with k = 6.
Figure 4 gives similar graphs for random input. Here we
observed similar trends at different values of ε so we only
present the graphs at ε = 0.001. At time step n = 105, the
ratio is approximately 4.4 with k = 4 and 11.8 with k = 6.
If the space for GK is bounded by O( 1

εφk log εφkn), and

our algorithm for biased quantiles by O( k log 1/φ
ε log εn),

then for φ = 1
2 the ratio of their space usage should be

7The “hard” input is created by examining the current state of the
data structure and inserting items in order to try to force the worst-case
performance.

roughly 2k/k. For random input we in fact see values that
are similar to these: for k = 4 the theoretical ratio is 4
and for k = 6 it is 10.7; for the “hard” input, the ratios
were even higher. Figure 5 plots space as a function of
k, indicating an exponential dependence on k for GK and
a linear dependence on k for the proposed algorithm, as
predicted by the O( 2k

ε log εn) and O( k
ε log εn) bounds.

Figure 6(a) illustrates the space used by three competing
methods: GK run at error ε (denoted “GK1”), GK run at
error εφk (denoted “GK2”), and our proposed method. It
uses the random input, with ε = 0.01 and k = 6, and the
results are given at time step n = 106. Figure 6(b) plots
the bound on error as a function of φ, that are required
for biased quantiles. Note that while GK1 uses the least
space, it does not satisfy the error bound. GK2, on the other
hand, is overly pessimistic, achieving the smallest error at
all φ-values but requiring much more space than the other
methods. The proposed method achieves the least amount
of space while staying within the error bounds. In fact, its
space usage is much closer to that of the algorithm with the
weaker accuracy, GK1 (factor of 4 more space used by our
method) than that of GK2 (factor of 16.5 less).

6.2 Space Usage for Targeted Quantiles

Our targeted quantiles algorithm can find the bφncth
order statistic with a maximum error of ε; its precision
guarantees are weaker for other ranks. We compared
against GK, which is capable of finding any quantile within
ε error. We also considered the random sampling approach
analyzed in [15], but this approach was unable to obtain
reliable estimates for any of the data sets. Given the
space used by our proposed algorithm, we considered the
probabilistic accuracy guarantees that could be given by
the sampling algorithm. For the random input, the bounds
gave guarantees that held with 70% probability to find
quantiles that our algorithm found with absolute certainty.
For the “hard” input, which attempts to force the worst-case
space usage, the probability for the randomized algorithm
improved to around 95%, still far short of the low failure
rates demanded by network managers. Hence, we do not
report further on the results obtained by random sampling
for the remainder of this section.

Figure 7 presents space usage as a function of time step,
with a variety of φ-values from 0.5 to 0.99, for (a) hard
and (b) random inputs; ε = 0.001. The gap in space
usage between the two methods grows with increasing φ-
value, which is consistent with the observation in [15] that
extreme values require less space.

6.3 Performance Comparison

We compared the three implementation alternatives de-
scribed in Section 5 (namely, Batch, Cursor and Tree) with
respect to per-packet processing time and packet loss using
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Figure 3: Comparison of GK and proposed approach on “hard” input: (a) with k = 4; (b) with k = 6. Here ε = 0.01. (c)
with k = 4; (d) with k = 6. Here ε = 0.001.

the User-Defined Aggregation Function (UDAF) facility of
the Gigascope DSMS, a highly optimized system for mon-
itoring very high speed data streams [3]. Gigascope has a
two-level query architecture: at the low level, data is taken
from the Network Interface Card (NIC) and is placed in
a ring buffer; queries at the high level then run over the
data from the ring buffer. Gigascope creates queries from
an SQL-like language (called GSQL) by generating C and
C++ code, which is compiled and linked into executable
queries. To integrate a UDAF into Gigascope, the UDAF
functions are added to the Gigascope library and query
generation is augmented to properly handle references to
UDAFs; for more details, see [4].

For performance testing, we used two data sources. The
first data source is an Agilent Technologies RouterTester
5.0 traffic generator [17]. Using it, one can generate 1
Gbps of traffic (GigEth speed). The traffic generator is
not a sophisticated source of randomness; we could only
vary the packet length and payload, both independently and
uniformly random. The average packet length is always
782 bytes, which is equivalent to about 160,000 packets
per second at GigEth speed. Queries were run over the
generated stream using a 2.8 Ghz Pentium processor and 4

GBs of RAM. The second data source is real IP traffic data
obtained by monitoring the span port8 of the router which
connects AT&T Labs–Research to the Internet via a 100
Mbit/sec link. Queries were run over this stream using a
733 Mhz Pentium with 128 Mbytes of RAM.

Biased quantile queries were run over a single attribute
from these data sources and output at 1-minute intervals
over a total duration of 30 minutes; the parameter ε was set
to 0.01 and k was set to 4, unless indicated otherwise below.
As a baseline, we also compared against the performance
of a “null” UDAF which computes the max aggregate, to
isolate out the processing overhead for UDAFs.

Table 1 reports the results from using the traffic gener-
ator at OC-3 speed (155.5 Mbps). The algorithms were
run over the packet length field of IPv4 packet head-
ers (which were randomly generated). All methods were
able to keep up with this rate without incurring packet loss,
but were taxed at different levels. The Batch and Cur-
sor methods operated at ten times slower than the “null”
UDAF, with Cursor showing slightly better performance.
The Tree method was yet four times slower than these, and

8A span port mirrors all traffic for monitoring purposes.
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Figure 4: Comparison of GK and proposed approach on random input: (a) with k = 4; (b) with k = 6. Here ε = 0.001.
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Figure 5: Space usage (at time step n = 106) versus k on random input with ε = 0.01 for (a) GK and proposed algorithms;
and (b) just the proposed algorithm.

Algorithm CPU user time (µs)
Implementation utilization per packet
null 0.05% 0.481
Batch 11.99% 5.302
Cursor 11.88% 5.093
Tree 67.61% 21.969

Table 1: Per-packet processing time (µs) for the different
implementations, over traffic generated at OC-3 speed.

had a very high CPU utilization.

At GigEth speed (1 Gbps), the Tree method has reached
its limit and incurs so much packet loss that no useful statis-
tics could be reported (see Table 2). Batch incurs more traf-
fic loss than Cursor due to the periodic batch-sorting and
merge that is required after every 1/2ε items. Presumably,
the lower average CPU time for Batch compared to Cursor
is due to not processing the packets that get dropped. To

get a frame of reference, we also compared against uni-
form quantiles based on the GK algorithm run with er-
rors ε and εφk (denoted “GK1” and “GK2”, respectively).
GK2 dropped so many packets that we could not compute
a meaningful statistic. Note that GK1 does not achieve the
desired error bound; it is presented merely as a baseline.
To use the GK algorithm properly would require the finer
error bound of GK2.

Table 3 reports the results on real IP network data,
summarized by average CPU utilization and user time
(in microseconds) per packet; we were unable to mea-
sure packet loss. The algorithms were run over the
header checksum field of the packet headers. Al-
though the overall traffic load, averaging 50-75 Mbps, was
much less than that of the traffic generator, it is very bursty.

In summary, the choice of UDAF implementation is
crucial to the performance of the quantile algorithm,
confirming observations in [4]. Whereas the Batch and
Cursor approaches were able to process at GigEth speed,
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Figure 7: Comparison of GK and targeted approach with different φ-values: (a) for “hard” input; and (b) for random input.
Here ε = 0.001.

Algorithm CPU user time (µs) packet
Implementation utilization per packet loss
null 6% 0.5 0%
Batch 75% 5.522 1.82%
Cursor 81% 5.613 0.26%
Tree — — —
GK1 18% 1.32 0%
GK2 — — —

Table 2: Per-packet processing time (µs) for the different
implementations, over traffic generated at GigEth speed.

the Tree approach was not able to keep up, and even pushes
its limit at OC-3 speed. Although keeping the quantile
summary in a tree is good for maintaining sort order, it
incurs a lot of overhead during Compress operations.
Hence, approaches with the more lightweight list-based

Algorithm CPU user time (µs)
Implementation utilization per packet
null 3% 1.167
Batch 27% 11.514
Cursor 26% 11.164
Tree 33% 14.059

Table 3: Per-packet processing time (µs) for the different
implementations, over real IP network traffic data.

quantile summaries perform better. Batch is the simplest
of these, but the blocking due to sorting results in more
packet loss compared to Cursor. Therefore, Cursor seems
to strike the right balance between simplicity and non-
blocking behavior.



7 Conclusions and Future Work
We introduced the notion of biased and targeted quantiles
and presented one-pass deterministic algorithms that ap-
proximate these values within user-specified accuracy. Our
experimental work has shown that these algorithms are ex-
tremely effective in practice: the space needed is very small
and is smaller than that needed by existing algorithms that
give the same guarantees. We have shown they can be
implemented within a database management system that
processes high speed data streams resulting from IP net-
work traffic. We also observed that in these high speed
scenarios, implementation details can make significant dif-
ferences in practicality and amortizing computation cost to
avoid blocking but staying lightweight is vitally important.

We briefly discuss the feasibility of various exten-
sions. Previous work has extended the work on finding
ε-approximate quantiles (uniform error) to the sliding win-
dow model [1]. We claim that similar techniques based
on keeping summaries for previously seen subsequences
of items of various lengths can be applied to our algo-
rithms. Other work has studied the problem of approximat-
ing quantiles when items can depart as well as arrive [8].
In this model, we claim that no algorithm can guarantee to
find all biased-quantiles without keeping Ω(n) items. This
is because the problem insists that we must be able to re-
cover the minimum or maximum value exactly. If deletions
are allowed, after processing n insertions we could repeat-
edly request and delete the minimum or maximum value,
thus recovering the whole set of inserted values. Likewise,
solving the k biased quantiles problems requires Ω(2k/ε)
space, by a similar argument. Meanwhile, it remains open
to formally characterize the space usage of the algorithms
we have described for biased and targeted quantiles to the
tightest possible estimate.

More generally, our work was motivated by developing
appropriate statistics for summarizing skewed data. Data
skew is highly prevalent in many applications. We believe
that it is of interest to study further problems that do not
treat all input uniformly, but rather require non-uniform
guarantees dependent on the skew of the data.
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