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LEADERSHIP PROGRAM IN DISCRETE MATHEMATICS

Revised May, 2006

Instructor's Notes

Week 3,  Day 1 — Paths and Matchings

Materials Needed Allocated Time

Activity #1 — Octagonal Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 minutes

! A large octagonal graph (see next page)  constructed on the floor using centers

of paper plates and masking tape.  Each vertex is connected to five other

vertices, excepting only the vertices which are two vertices away.  Each

exterior edge is about 3’ long, so that opposite sides are about 7.2’ apart.  The

four longest edges, connecting diagonally opposite vertices, should be laid last,

so that they can be easily removed. (This graph will also be used for the

workshop on the following day, so it should not be removed.)

! 24 hanging placards numbered 1 to 8, three for each number.

! 28 cardboard arrows, each 4” wide and 30” long.

Activity #2 — The Art Museum Curator’s Problem . . . . . . . . . . . . . . . . . . . . . 50 minutes

! The octagonal graph, hanging placards, and arrows used for Activity #1.

! Four short (1') pieces of string.

Activity #3 — Vertices of Odd Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 minutes

! no materials needed

Activity #4 — Matching in Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 minutes

! no materials needed

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TOTAL WORKSHOP TIME:  125* minutes

* In addition, 10 minutes are allocated for a break in this 2 ¼ hour workshop.
* Note that it is important that at least 25 minutes be spent on Activity #4.
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Octagonal Graph

The following map should be laid out on the floor — each exterior
edge should be about 3’ long so that opposite edges are about 7.2’
apart. 
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Activity 1:  Octagonal review of Euler circuits, Euler paths, triangular numbers, the

handshake problem, and the Chinese postman problem.
(Allocated time = 35 minutes, 20 for parts A/B and 15 for parts C/D)

A.  Start with a graph on the floor (constructed using masking tape, with

numbered plates — rather, their centers — as vertices) consisting of an octagon in

which every vertex is connected to five other vertices (excluding only those which are

two vertices away).  (Each edge of the octagon is 3', so that opposite sides are about 7.2'

apart.)  Remind them of the definitions of paths and circuits in graphs by walking along

the edges, and then remind them of the definitions of Euler paths and circuits.  Ask

whether this graph has an Euler path or Euler circuit, and elicit the response that the

graph has neither an Euler path nor an Euler circuit, and the reason for that.  Discuss

Euler's theorem and the justification for it.  Delete one of the edges that connects

opposite vertices (these edges were laid last so that they could be removed easily); has

the situation changed?  No.  Delete another edge and repeat the question, and then

delete a third edge and again repeat the question.  Now participants will volunteer that

there must be an Euler path, and that it must start and end at the two vertices of odd

degree.

It is important to remember that most participants are rusty on most of what was

learned last summer — so we are using the octagon graph as an opportunity to

review everything as a prelude to moving ahead.  It is also very important to convey

to participants that we are not expecting them to remember everything that they did

last summer — that we will be reviewing key concepts and will be building on that

review.  For those who forgot all about Euler paths and circuits, this activity has

brought the concepts to the fore wonderfully — so that they were able to proceed as

if they had remembered them all along.

B.  How do we find an Euler path?  Let's use a human graph.  Have two people

stand at each vertex of degree four, one behind the other, and three people at the two

odd vertices — with tags indicating their vertices.  (The tag of the first person at one

odd vertex should also be labeled “start”, and the tag of the third person at the other

odd vertex should also be labeled “end”).  Each person should be holding a cardboard

arrow which is 3’ long.   “Start”points to someone, then that person points to someone

along an unused edge, etc., until the last person points to “end” and there are no more

vertices left; once a person has pointed to someone, he/she should lay down an arrow

pointing to that person along the edge of the graph, and should then join a line that is

forming nearby, with each person joining hands with the person who pointed to

her/him and then with the person to whom s/he pointed.  The result is that they have

formed a human path.  (Note that it is possible that some vertices will be left over, in
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which case backtracking will be needed until the unused edges form a connected

subgraph.)  Verify by looking at their tags that each of the edges on the graph appears

on the path as a pair of joined hands.  How many edges are there are on the graph?

Try to get the participants to suggest that since there are 18 people (2 at each of six

vertices and 3 at each of two vertices) forming a path, there are 17 edges, corresponding

to the 17 pairs of hands being held; they might also be able to suggest that since we

started with a graph each of whose eight vertices have degree 5, the total of the degrees

is 40 which makes for 20 edges, from which we removed 3, leaving 17.  (We will use this

reasoning again in Activity #3.)

Participants  are pleasantly surprised by the outcome.  Although on one level they

understand that the result of the pointing is a path, they are able to understand the

result differently as a result of this activity — by recreating it as a human chain, the

path becomes a real path.  An important part of the process is the verification that

each of the 17 edges on the graph actually appeared on the chain as a pair of joined

hands.  

C.  Holding hands reminds us of the “handshake problem”.  If there are eight

people in a room, and everyone shakes hands with every other person exactly once, how

many handshakes have taken place?  Elicit several different solutions — answers and

explanations — to this problem — for example, eight choose two, 7+6+5+4+3+2+1, and

(eight times seven) divided by two.  Elicit that the numbers obtained in this manner are

the triangular numbers.  Use this opportunity to briefly review some of the counting

techniques from last summer. Demonstrate the triangular numbers by drawing dots in

a triangular pattern on a transparency. Ask the participants how many total edges are

in a complete graph with five vertices. Connect this result o finding 5 choose 2 and to

the BOOBOO problem YYNNN.

Relate the handshake problem to the complete graph on eight vertices — each

handshake corresponds to an edge on the graph — and have eight people stand on the

vertices of the octagon imagining that they are on the vertices of a complete graph.

Now the question — tell them not to answer until we've actually tried it — Is it possible

for all 28 handshakes to take place in sequence, with no handshakes repeated, where

the recipient of each handshake initiates the next handshake.  (Alternative descriptions:

 a. In each handshake there is one person involved in the previous handshake and one

person involved in the next handshake.  b. Each handshake involves someone in the

previous handshake, and no one can be in three handshakes in a row.)  Choose a first

person, and have her/him, and each subsequent person, stride across the graph to shake

hands with someone, laying down an arrow as s/he does so, and then return to her/his

vertex .  After about half a dozen handshakes, stop the activity and elicit that we are
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creating a path in the graph, and that in order to complete the 28 handshakes as

specified, we have to create an Euler circuit.  Why is that impossible here?  Because

that would be an Euler circuit on the complete graph with eight vertices, where each

vertex has odd degree, and an Euler circuit is only possible in a graph which has no

vertices of odd degree.   But it should be possible for an odd number of people to do

this, because in the complete graph on 5 or 7 vertices every vertex has even degree, so

there is an Euler circuit.  Let's try it with five people in a smaller circle — everyone

keep track of whom you've shaken with  — pick a person to initiate the first handshake

(and be involved in the last one) — have the audience count handshakes — we need to

get to 5 choose 2, or 10.  Try it again with 7 people, and have the audience count to 21!

It may be helpful for the initiator of each handshake to lay down an arrow representing

that handshake.   (If they discover on-line the idea of going around the outside, then

skipping one, then skipping two, ask why this wouldn't work with 9 people — it's not

a prime! — although it would work with 11 people.)  

D.  Have the participants return to their tables and, using TSP #1, TSP #2, and

TSP #3, summarize the above activity.  Hand out Hand-out #1 so that participants can

review and take notes on the summary while you are presenting it.

Activity 2.  The Art Museum Curator's Problem.   

(Allocated time = 50 minutes, 25 minutes for part A and 25 minutes for parts B-D)

A.  Show TSP #4 and discuss the Art Museum Curator's Problem; As curator of

a large art museum, it is your job to frequently check along all corridors to make sure

that no painting has been disturbed.  In order to plan a way to do this, you make a

graph whose edges correspond to the corridors of your museum, and you look for an

Euler path or circuit.  (Show the graph on TSP #5 and explain how it corresponds to

the map of the museum.)  Unfortunately, graph theorist that you are, you quickly

discover that this graph has no Euler path (why?).  Undaunted, and confident in your

ability to solve problems, you decide on the following: You will decompose the edges of

the graph into as few paths as possible, with no overlaps.  (The reason for no overlaps

is that guards on overlapping rounds generally stop to gab.)  Then you will pace one

path and hire some assistants to pace the other paths.  The question is: how can you

discover the smallest number of assistants you will need to hire?

Before working on this problem, let’s try some simpler problems.  First use TSP

#6 to demonstrate the idea of decomposing a graph into trails. The shaded and

unshaded edges of the graph form two non-overlapping trails which include each edge

exactly once. Demonstrate a second way to decompose this graph into two non-

overlapping trails. You may want to prepare some simple models of these trails to help
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with this demonstration. Then distribute Hand-out #2 (= TSP #7) and ask participants

to try to determine how many trails are needed for each of the four graphs; you might

express this by saying that you want to create a bunch of paths that together cover all

of the edges.  Introduce the notion of a trail as a path which doesn't repeat any edges,

and explain why this notion is important here; the distinction between trail and path

is difficult for many participants, and will have to be repeated a number of times.  

While they are working on this activity, put back the three edges that had been

removed from the graph on the floor and Eulerize the original octagonal graph by

adding four curved edges, using masking tape, outside of the octagon, joining

adjacent vertices.

Review their answers, using different color transparency markers on a blank overlay

of TSP #7 .  If there is time, ask whether it is possible to arrange it so that all of the

trails have equal length — in the second graph it is possible to have two trails each of

length six, and in the third graph it is possible to have three trails each of length five,

but in the fourth graph the number of edges (22) is not divisible by 4.

[Time for a 5-10 minute break]

B.  Ask them if they can tell how many trails are needed without actually

drawing all the trails.  Elicit that each trail starts and ends at odd degree vertices, and

that no odd degree vertex is used for more than one trail, so that the number of trails

is half the number of odd vertices.  But how do you know that this many trails will

always cover all of the edges?  Back to the graph on the floor.  

C.   The octagonal graph we discussed earlier had eight vertices of degree 5, so

we had reason to believe that we could decompose the graph into four trails.  How can

we actually find four trails?  Let’s remind ourselves of the Chinese Postman Problem.

“Suppose your delivery route requires you to walk on every edge of this graph.  What

is the smallest number of edges you have to repeat?”  To solve this problem we Eulerize

the graph — we have accomplished that here by adding four edges with tape

alternating around the perimeter of the octagon.  Note that the graph now has an Euler

circuit because all vertices have even degree.  Let’s find an Euler circuit, using three

people at each vertex — note that 24 people are needed for this activity!  Repeat the

activity carried out earlier, with the arrows used to mark the edges that have been

traversed and participants forming a path, except that the four extra edges should be

represented by short strings rather than handshakes.   At the end, the last person

connects to the first person, so that everyone is now arranged into one big circuit.  The

instructor then shows how removing te strings leaves the four trails that we were trying
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to find. 

D.  After participants return to their seats, review these conclusions on TSP #8,

TSP #9, and TSP #10; participants should receive their Resource Books at this point so

that they can make notes on the summary.  Return to TSP #5 and ask participants to

determine the number of paths need here; a problem on the homework will ask them

to actually find the paths. Then mention some additional examples (such as fire escape

routes, UPS deliveries, paper routes) of situations in which decomposing a graph into

trails would be helpful.

Activity #3.  The number of vertices of odd degree in a graph.  

(Allocated time = 10 minutes)

It is important that at least 25 minutes be available to complete Activity #4, since

many of the homework problems deal with matchings.  Activity #3 should be

shortened (by eliminating the hand-out and doing this as a group activity) or even

deleted altogether if the workshop is behind schedule at this point. 

A.  By the way, what happens if there are an odd number of vertices of odd

degree?  Have participants do Hand-out #3 (= TSP #11) in which they are asked to add

up the degrees of all vertices of several graphs and compare that with the number of

edges in the graph.  Elicit the response that the total of all the degrees is twice the

number of edges since when you add the total of all the degrees you count each edge

twice.  So the sum of all the degrees of the vertices must be even.  Can it happen that

there are an odd number of vertices of odd degree?  Show  TSP #12 to explain why this

cannot happen.

Activity #4.  Matching in graphs.  

(Allocated time = 30 minutes)

 A.  Make it clear to the participants that you are switching gears here. The topic

to be discussed next (matchings) is different from the topic of trails. Put up “The 5

carpoolers problem” on TSP #13 and tell  the following story: 

The 5 carpoolers.  There were five friends (who owned large cars) who wished to car

pool to work during the week.  Because of the needs of other members of their

families, they could only volunteer their cars on certain days of the week.  Listed are

the five friends and the days that they can have the car.  Can you schedule a car
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pooling assignment where each person drives once a week? 

Ask them to find an assignment of days to drivers, and then, more importantly, ask how

they could model this problem with a graph.  They should be able to come up, with your

guidance, with the idea of creating a graph whose vertices are the days and the drivers,

as on TSP #14.  Work through the idea of a matching with the participants, putting up

TSP #15 to show the terminology.  Tomorrow, we will reflect back on this and the next

example and introduce the idea of a bipartite graph; although they have not yet seen

this concept, we can still draw the graphs as bipartite — with drivers on one side and

days on the other. 

B.  Distribute the “Children and Pets” problem (Hand-out #4 = TSP #16), which

lists each child’s preferred pets, and asks whether it is possible to assign each child a

pet from among those that s/he prefers.  The graph associated with this problem (TSP

#?), which should be reviewed after participants have completed the hand-out, does

indeed have a perfect matching.   One thing they should discover by doing this problem

is the tactic of first making assignments to pets and children of low degree. Note that

in much larger matching problems it can be very difficult to find a best matching. If you

have time, mention some other examples of matching problems such as assigning

medical students to  hospitals for residency. 
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Terminology

Euler path.  An Euler path in a graph is a path
which includes every edge of the graph exactly
once.

Euler circuit.  An Euler circuit in a graph is an
Euler path which ends where it begins.

If a graph has no vertices of odd degree, then
it has an Euler circuit.

If a graph has two vertices of odd degree, then
it has an Euler path, which begins at one of
the two vertices of odd degree and ends at the
other.

If a graph has more than two vertices of odd
degree, then it has neither an Euler circuit nor
an Euler path.
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Activity1: There is no Euler path or circuit in the
first graph.

Activity 2: There is an Euler path in the second
graph, starting with A and ending with B.  

If we start with three people standing at A and B
and two at each other vertex, this Euler path can
be represented as a chain of 18 people holding
hands; the 17 pairs of hands corresponds to the 17
edges of the graph.
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Activity 3:  Handshake Problem (revisited):

If you have 8 people (or any other number), can you have
them complete all their handshakes in such a way that in
the recipient of each handshake initiates the next one?

This is the same as asking for an Euler circuit in a
complete graph, because each handshake corresponds to
walking down one edge of the graph (the previous
handshaker striding across the graph to shake hands with
the next handshaker).

This is impossible if there are an even number of people,
because in that complete graph each vertex has an odd
number of edges (an odd number of people to shake
hands with).

If there are an odd number of people, then it is possible,
and we demonstrated it for 5 people and 7 people. 
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The Art Museum Curator

You want to assign to each museum guard an
inspection route so that every corridor in the
museum is passed through exactly once by exactly
one guard.  What is the smallest number of museum
guards that you need?
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Trails

A trail is a path which has no repeated edges.  

In the graph shown below, the shaded and
unshaded edges form two non-overlapping trails
which cover all of the edges of the graph. 

Can you find a different way to cover all of the
edges of this graph with two non-overlapping
trails? 
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Hand-out #2

A trail is a path which has no repeated edges.  How many non-
overlapping trails does it take to cover all the edges of each of
these graphs?
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Terminology

Trail.  A trail is a path which has no repeated edges.

Using this terminology, an Euler path is a trail which includes
all edges of the graph, and an Euler cycle is an Euler path
which ends where it begins.

Euler number of a graph.  The “Euler number” of
a graph is the least number of trails which will
include each edge exactly once.

A graph with an Euler path or circuit has Euler number 1.
The graph at the right has Euler number 2, since it has no Euler
path or circuit, and since the bold and non-bold edges form
two trails which include each edge exactly once.

Decomposition of a graph.  In a decomposition of a graph, the
edges of the graph are divided into components so that each edge is
assigned to exactly one component.

The Euler number of a graph is the smallest
number of trails which together form a
decomposition of the graph.

For example, the graph at the right can be
decomposed into three trails — the solid trail, the dashed trail,
and the dotted trail — which don't overlap yet
which include all edges on the graph.  Can this
graph be decomposed into two trails?
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Euler Number of a Graph

In a decomposition of a graph into trails, each vertex
of odd degree must be an endpoint of at least one
trail.  Therefore, if a graph is decomposed into trails,
the number of trails must be at least half the number
of odd vertices.

Since the graph above has six vertices of odd
degree, it cannot be decomposed into fewer than
three trails, so the Euler number of the graph is 3.

In fact, if a graph has 2n vertices of odd degree,
then it can always be decomposed into n trails, so
its Euler number is n.  That is, the Euler number
of a graph is equal to half of the number of
vertices of odd degree.
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Here's how you find the n trails:  

C First, Eulerize the graph (make all degrees even
by adding extra edges).  

C Second, find an Euler circuit.  

C Third, drop the extra edges from the Euler
circuit. 

The remaining parts of the path provide a
decomposition of the graph into n trails.

SUMMARY:  The smallest number of trails into
which any graph can be decomposed is half its
number of odd vertices.
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Sums of Degrees

For each of the following graphs, add up the degrees of all its
vertices, and compare the total with the number of edges of the
graph.  Can you explain the pattern?
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G is a graph with n vertices, numbered so that the odd vertices are listed first:

Degree of vertex 1  = odd
Degree of vertex 2  = odd
Degree of vertex 3  = odd add all odd degrees to get A
Degree of vertex 4  = odd
. . . = . . .
. . . = odd
. . . = even
. . . = even
. . . = . . . add all even degrees to get B
. . . = even
Degree of vertex n  = even

Sum of all degrees  A + B  must be even, since it is twice the number of edges.

Since B is even, A must be even also.  But an odd number of vertices of odd degree would
make A odd.

So the number of vertices of odd degree must be even.
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Carpoolers

Jimmy Monday
Wednesday

Gerrie Monday 
Thursday

Bill Tuesday
Friday

Ronnie Tuesday
Friday

Georgina Wednesday
Thursday

Can you assign a day for each driver so that
no one need drive more than one day per

week?
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Can you find a perfect matching in this graph? 
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Matchings in graphs

Matching.  A matching M is a set of edges of the
graph, no two of which share a vertex.  

If one of the edges connects the vertex v to the
vertex w, then we say that the matching M matches
v to w.

Maximum matching.  A maximum matching is
one which matches as many vertices as possible.

Perfect matching.  A perfect matching is one
which matches every vertex; this can happen only
if the number of vertices is even.
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Children and Pets

Val Black cat, Tabby cat, Calico cat

Joe Calico cat

Debbie White Cat, German Shepherd

Bonnie White cat, Calico cat

Stephanie Tabby cat, Irish setter, Beagle

Peter Black cat, Calico cat

Chris Hamster

Sue German shepherd, Irish setter, Gerbil

Joan Irish setter, Poodle, Hamster

Lisa Poodle, Beagle, Gerbil

Can you match pets to children so that each
child gets one of the pets that s/he prefers? 
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Can you find a perfect matching in this graph? 
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Handout #1 Terminology

Euler path.  An Euler path in a graph is a path which includes every edge of the graph exactly once.

Euler circuit.  An Euler circuit in a graph is an Euler path which ends where it begins.

If a graph has no vertices of odd degree, then it has an Euler circuit.

If a graph has two vertices of odd degree, then it has an Euler path, which begins at one of the two
vertices of odd degree and ends at the other.

If a graph has more than two vertices of odd degree, then it has neither an Euler circuit nor an Euler
path.

Activity 1:  There is no Euler path or circuit in the
graph above and to the left.

Activity 2:  There is an Euler path in the second graph, starting with A and ending with B.  

If we start with three people standing at A and B and two at each other vertex, this Euler path can be
represented as a chain of 18 people holding hands; the 17 pairs of hands corresponds to the 17 edges of the
graph.

Activity 3:  Handshake Problem (revisited):

If you have 8 people (or any other number), can you have them complete all their handshakes in such a way
that the recipient of each handshake initiates the next one? This is the same as asking for an Euler circuit in a
complete graph, because each handshake corresponds to walking down one edge of the graph (the previous
handshaker striding across the graph to shake hands with the next handshaker).

This is impossible if there are an even number of people, because in that complete graph each vertex has an
odd number of edges (an odd number of people to shake hands with).

If there are an odd number of people, then it is possible, and we demonstrated it for 5 people and 7 people. 
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Hand-out #2

A trail is a path which has no repeated edges.  How many non-

overlapping trails does it take to cover all the edges of each of these

graphs?
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Hand-out #3

For each of the following graphs, add up the degrees of all its vertices,

and compare the total with the number of edges of the graph.  Can you

explain the pattern?
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Hand-out #4

Children and Pets

Val Black cat, Tabby cat, Calico cat

Joe Calico cat

Debbie White Cat, German Shepherd

Bonnie White cat, Calico cat

Stephanie Tabby cat, Irish setter, Beagle

Peter Black cat, Calico cat

Chris Hamster

Sue German shepherd, Irish setter, Gerbil

Joan Irish setter, Poodle, Hamster

Lisa Poodle, Beagle, Gerbil

Can you match pets to children so that each
child gets one of the pets that s/he prefers?
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Week 3, Session 1 — Paths and Matchings — Exercises

Practice Problems:

1. For each of the graphs to the right,
find a decomposition involving the
smallest number of trails.

2. Find a perfect matching in each of
the graphs above.  Can you find more than one perfect matchings in these graphs?

Study Group Problems:

3. How many trails are needed in the Art Museum Curator’s Problem (see page EX 3)?  Can you
decompose the edges into five trails whose lengths are 8, 8,8, 4, and 7?

4. Sequence the handshakes among seven people (called A,B,C,D,E,F,G) so that each new handshake is
initiated by the person who received the previous handshake. How can you use an Euler circuit on
the complete graph with seven vertices?

5. What is the largest number of edges you can have in a matching in each of the graphs below?

6. What is the largest number of edges you can have in a matching in each the graphs below?

7. The computer center has four files, F, G, H, and I, to be stored.  Each of the possible storage
locations, L, M, N, and O, can hold at most one of the files.  F can be stored in M or O; G can be
stored in L, M, or N; H can be stored in M, N, or O; and I can be stored in M or N.  Decide where the
files could be stored.
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8. Circle one letter in each of the following ten words so that no letter is circled in more than one word: 
AGE, FICHE, BADGE, BAGGAGE, DEJA, EDGE, GAB, HEAD, EDIFICE, JIBE.  Describe how a
graph could be used to solve this problem. Change one word so that it becomes impossible to circle
the letters as required. 

9. a.  Graph C in problem 1 has 10 edges and 4 vertices of odd degree.  Can you decompose it into two
trails each of which has five edges?

b.  Graph E in problem 1 has 16 edges and 8 vertices of odd degree.  Can you decompose it into four
trails each of which has four edges?

c.  The Art Museum Curator’s Problem has 35 edges and 10 vertices of odd degree (see graph at right
of page EX 3).  Can you decompose it into 5 trails each of which has seven edges?  If not, how close
to equal can you get the trails (so that each of the guards routes are close to the same number of
edges)?

10. Do the “School Dance” problem on page EX 4.  If you can’t find a perfect matching, find a maximum
matching.

Extension problems:

11. For each of the graphs in problem 1, count the number of different perfect matchings you can find. 
What sequence do you get?  Can you say why that sequence arises in this situation?

12. For the graphs below, find the number of different perfect matchings in each graph.  Can you see
how and why the pattern continues?

13. How would you find a maximum matching in a graph which has a Hamilton circuit?

14. Try problem 4 again with 9 or 11 people instead of 7.  Can you find a way to describe this process in
general?
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The Art Museum Curator’s Problem

You want to assign to each museum guard an inspection route so that every corridor in the museum is passed
through exactly once by exactly one guard.  What is the smallest number of museum guards that you need? 
Can you make all of their trails contain the same number of edges?
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Mathematical background

Euler path.  An Euler path in a graph is a path which includes every edge of the graph exactly once.

Euler circuit.  An Euler circuit in a graph is an Euler path which ends where it begins.

If a graph has no vertices of odd degree, then it has an Euler circuit.

If a graph has two vertices of odd degree, then it has an Euler path, which begins at one of the two
vertices of odd degree and ends at the other.

If a graph has more than two vertices of odd degree, then it has neither an Euler circuit nor an Euler
path.

Trail.  A trail is a path which has no repeated edges.

Using this terminology, an Euler path is a trail which includes all edges of the graph, and an Euler
circuit is an Euler path which ends where it begins.

Euler number of a graph.  The “Euler number” of a graph is the least number of trails which will include
each edge exactly once.

A graph with an Euler path or circuit has Euler number 1.

The graph at the right has Euler number 2, since it has no Euler path
or circuit, and since the shaded and unshaded edges form two trails
which include each edge exactly once.

Decomposition of a graph.  In a decomposition of a graph, the edges of the graph are divided into
components so that each edge is assigned to exactly one component.

The Euler number of a graph is the smallest number of trails which together form
a decomposition of the graph.

For example, the graph at the right can be decomposed into three trails — the
solid trail, the dashed trail, and the dotted trail — which don't overlap yet which
include all edges on the graph.  
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Mathematical background (continued)

Can the graph on the previous page be decomposed into two trails?
In a decomposition of a graph into trails, each vertex of odd degree must be an endpoint of at least

one trail.  Therefore, if a graph is decomposed into trails, the number of trails must be at least half the
number of odd vertices.

Since the graph above has six vertices of odd degree, it cannot be decomposed into fewer than three
trails, so the Euler number of the graph is 3.

In fact, if a graph has 2n vertices of odd degree, then it can always be decomposed into n trails, so its
Euler number is n.  That is, the Euler number of a graph is equal to half of the number of vertices of odd
degree.

Here's how you find the n trails.  First, Eulerize the graph.  Second, find an Euler path.  Third, drop
the extra edges from the Euler path.  The remaining parts of the path provide a decomposition of the graph
into n trails.

Theorem:  The smallest number of trails into which any graph can be decomposed is half its number
of odd vertices.

Vertices of odd degree.  In any graph, the number of vertices of odd degree must be even.  This is because
the sum of the degrees of all the vertices in the graph equals twice the number of edges (since each edge is
counted twice in the total, once for each endpoint) and if there were an odd number of odd degrees, this total
would be odd rather than even.

Matching.  A matching M is a set of edges of the graph no two of which share a vertex.  If one of the edges
connects the vertex v to the vertex w, then we say that the matching M matches v to w.

Maximum matching.  A maximum matching is one which matches as many vertices as possible.

Perfect matching.  A perfect matching is one which matches every vertex; this can happen only if the
number of vertices is even.
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Activity 1:  There is no Euler path or circuit in the first

graph.

Activity 2:  There is an Euler path in the second graph,

starting with A and ending with B.  

If we start with three people standing at A and B and

two at each other vertex, this Euler path can be

represented as a chain of 18 people holding hands; the 17

pairs of hands corresponds to the 17 edges of the graph.

Activity 3:  Handshake Problem (revisited):

If you have 8 people (or any other number), can you have them complete

all their handshakes in such a way that the recipient of each handshake is

the initiator of the next handshake?

This is the same as asking for an Euler circuit in a complete graph,

because each handshake corresponds to walking down one edge of the

graph (the previous handshaker striding across the graph to shake

hands with the next handshaker).

This is impossible if there are an even number of people, because in that

complete graph each vertex has an odd number of edges (an odd

number of people to shake hands with).

If there are an odd number of people, then it is possible, and we

demonstrated it for 5 people and 7 people. 
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The Art Museum Curator’s Problem

You want to assign to each museum guard an inspection route so that every corridor in the museum is
passed through exactly once by exactly one guard.  What is the smallest number of museum guards
that you need?
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For each of the following graphs, add up the degrees of all its vertices, and compare the

total with the number of edges of the graph.  Can you explain the pattern?

Total of degrees of all vertices =    

Twice the number of edges (which must be even) =

(Total of degrees of all even vertices) + (Total of degrees of all odd vertices) =

(Even + Even + Even + ... + Even)  +  (Odd + Odd) + þ + (Odd + Odd)

                      Even   +     Even      +     +       Even

Adds up to an even number  Each two vertices of odd degree contribute an   

even number to the sum.

Any left over vertex of odd degree would contribute an odd number, making the total

odd.

The total of the degrees of all the vertices in a graph must be even, since it is twice the

number of edges.  If the graph had an odd number of vertices of odd degree, then the

total of the degrees of all the vertices would also be odd, which it can't be, since no

number is both odd and even.  That means that it is impossible to have a graph which

has an odd number of vertices of odd degree!
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Carpoolers

Jimmy Monday
Wednesday

Gerrie Monday 
Thursday

Bill Tuesday
Friday

Ronnie Tuesday
Friday

Georgina Wednesday
Thursday

Can you assign a day for each driver so that no
one need drive more than one day per week?
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Can you find a perfect matching in this graph?
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THE SCHOOL DANCE

Betty Rudolf
Gregory
Fred

Elizabeth Rock
Rudolf
Clark
Gregory
Gene

Natalie Rudolf
Gregory

Greta Rudolf
Gregory
Fred

Doris Rudolf
Gregory

Marilyn Rock
Clark
Gregory
Fred
Gene
Jimmy

Lana Rudolf
Gregory
Fred
Jimmy

Can you match up the women with men that they are willing to dance with?
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Children and Pets

Val Black cat, Tabby cat, Calico cat

Joe Calico cat

Debbie White Cat, German Shepherd

Bonnie White cat, Calico cat

Stephanie Tabby cat, Irish setter, Beagle

Peter Black cat, Calico cat

Chris Hamster

Sue German shepherd, Irish setter, Gerbil

Joan Irish setter, Poodle, Hamster

Lisa Poodle, Beagle, Gerbil

Can you match pets to children so that each
child gets a pet that s/he prefers?
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Can you find a perfect matching in this graph?
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