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Workshop 9 — Patterns in Geometry

Materials Needed Allocated Time

ATV R — ROVIEW. o ciis 2 500 555 5 000 25 00000 05 19 65 & 500 55 ok Saw e - s 10 minutes

Activity #2 — Introduction to Geometric Patterns in Nature . . ............ 10 minutes
° Queen Anne’s Lace or fern to place on overhead projector

ACUVITYH3 — GEOMEIER TUETHIION . v o« v v n om0 5 5w wiraie s im0 i o s o 35 minutes
[ Large equilateral triangle paper for each participant

Activity #4 — The Sierpinski Triangle ...............ccciviiiiiiinn.. 70 minutes

® 27 triangular sheets of paper (9”x 9”x 9") for building
a stage 4 Sierpinski triangle

° 729 triangular pattern blocks (or 1”x 1”x 1" triangles cut from
green card stock)
® For each two person team: a ruler, a die, a penny, an erasable

?
transparency marker, and a@:ially prem'@g,ﬂ 1‘-7“' #

................................... TOTAL WORKSHOP TIME: 125* minutes

* In addition, ten minutes are allocated for a break in this 2 ¥ hour workshop.
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i, Activity #1 — Review
o (Allocated time = 10 minutes.)

Before beginning the day’s activities, take a few minutes to review homework
from the previous day. Be sure to review the outcome of the “spirolateral” activity of
the previous day. Also, if you didn’t get a chance to do this at the end of yesterday’s
class, take a few minutes to demonstrate spirolaterals on the triangular dot paper. Do
examples of both 60 degree and 120 degree spirolaterals, as described on the previous
day’s instructor’s notes. (You might do the sequences (4,2), (4,2,6), (4,2,6,2), and _
(4,2,6,2,1) for each angle; interesting patterns emerge for all of the 60 degree figures ,MQ*" g
and particularly for the final 120 degree figure.) blﬂ‘gw_ 0%"9
Some points in particular that you may wish to make are that the 3n+1 problem ‘\f:fjv
(Odds and Evens) is still open, in the sense that no one has proven that every starting
point eventually results in the 1-4-2-1 cycle. Computers have verified that this is @

case for thousands of small numbers, but it is still unsolved in general.

For some of the recursive procedures that they saw on yesterday’s homework, it was
impossible to tell from most positions where you had come from on the previous step.

For example, with the “write the number in words” procedure, if you are at '6°, you
might have come from ‘11’ or 127 or ‘80.° There’s just no way to tell. Another, gﬂ?l’{
interesting thing about this "write the number in words” procedure is that every
number in the English language ends up at ‘4.” But this is not the case in other
languages. For example, in French you have the 4-6-3-5-4 cycle (quatre-six-trois-
cing-quatre), and in Hungarian you have 5-2-5 (6t-kett6-6t).

Activity #2 — Introduction to Geometric Patterns in Nature
(Allocated time = 10 minutes)

A. On the overhead projector, display an example of a fractal-like structure
from nature, fo ,‘fwe e.-some Queen Anne’s Lace or a fern. Broccoli and cauliflower
also have somegg¢ yi/but they don’t show up so well on an overhead projector.
Show how small Pre fe figure look like reduced copies of the whole — not exactly

like the whole, butr

e
T

This is calle ; “self-similarity] p
/i

itself. We hjjve-obse

o &

ecause a portion of the whole is similar to the whole
) iural phenomenon — and like we ve done with so many
other observations of Adilire, we can abstract what we've observed to make a
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mathematical model. That is the motivation behind the following activities.

B. Show the color fractal slides (TSP# 1 and TSP #2) of the computer-generated
fern and green tree. Point out features of self-similarity, how parts look like reduced
(and in the case of the fern, stretched or compressed in a skew direction) copies of the
whole.

What we will be doing in this and the next workshops is trying ,\’, imitate what ' saw
in nature via mathematical constructions—We-will-tgke as ourTaotivati self-
similarity and try to ZWMEWEWBM since our models will be
greatly simplified (compared to the complexities of nature) our figures will not look
exactly like those found in nature. Conversely, we shouldn’t feel bad if nature does
not exhibit the mathematical exactness found in our fractals. This is not nature’s
shortcoming, but her beauty.

To summarize these ruminations, define “fractal” as found on TSP #3. Note that
the square on the bottom of that TSP is self-similar (there are reduced copies at every
scale) but we don’t wish to call it a fractal because it isn’t infinitely complex. The other
figure (the sequence of circles) is ever-diminishing and endlessly repeating, but it also
isn’t infinitely complex, so we don’t want to call it a fractal.

w‘bé wv»é-‘—
Activity #3 — Geometric Iteration M% ~ ot
(Allocated time = 35 minutes, 15 for part A and 20 minutes for B) S
@’

Note that activities A and B introduce ideas (self-similarity and geometric iteration)
which the participants may wish to discuss at length. Put off detailed discussion
because these ideas will be discussed in much more interesting contexts in the
subsequent activities.

A. Take an equilateral triangle of paper and show TSP #4. Note that this activity
involves a starting point and an iterating rule. Distribute equilateral triangle paper to
each of the participants so they can model this also. Fold the top corner down to the
center of the bottom, crease, and unfold. (TSP #5 gives an idea of what we’re aiming for

to the middle of the opposite side, and then crease and unfold.” Put up TSP \\
ey have completed a few iterations. Ask them how long they think this YA
\sequence cah continue. Help them understand that this procedure can continue
indefinitely,\ ¢

i~

o

here.) Your iterating rule here is “every time you see an empty triangle, fold the top S}(‘
»
Vi

en though you can’t draw it. Show TSP #6 with the “end stage” of this\m g
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of the whole at every scale, no matt
limited, however, (it could be called/
figure is ever-diminishing, we would-ng
infinitely complex.

| so that even though this
be'a fractal, because it isn’t

Saying that this is not a fractal because it isn’t infinitely complex is a rather
subjective comment. You should emphasize that there is no universal agreeme
among mathematicians (or artists) as to what constitutes a fractal. In fact, if isather
subjective.

As a review of the choose numbers, ask how many trapezoids there are in each figure,
and elicit the answer that if the triangle has n horizontal lines, there are “n choose 2"
trapezoids; point out, if no one mentions it, that this is the same as a homework
problem which asks for the number of rectangles in a Ixn grid.

B. Distribute HO #1 (= TSP #7) and model the activity with the participants.
Explain that what is shown is the first stage in the generation of a fractal tree,
according to the rule shown on the page. Ask them what they would do next. If it
seems they have it, let them try the next stage by themselves, and regroup to review it
as a class. If that went well, let the participants finish, drawing as many stages as they
can.

Distribute HO #2 (= TSP #8) and have the participants ;o’ items 2 to 4, which
include some numerical activities related to the figure just generated. Create a chart
that gives for each length of a branch the number of branches of that length and their
total length.

When this is successfully completed, take some time to discuss the self-similarity
of the figure, how you can find reduced copies of the whole. Note that the figure is
considered to be infinitely complex since there are more and more copies of the original
at reduced sizes. Tomorrow, you may wish to come back to this figure and review it in

terms of reduce, replicate and rebuild. \ .fp-
\1{ }‘r

[Time for a 5 -10 minute break]
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Activity #4 — The Sierpinski Triangle
(Allocated time = 65 minutes; 15 minutes for parts A an
C; 5 minutes for part D and 30 minutes for parts E, F, G, a

A. Building on old themes, put up TSP #9 (with th¢ triangulated triangles) and,’ ' 34
to make a quick connection with earlier work, remind them how the square numbers ‘ _
and triangular numbers are contained in the figures. (Have them see that there is an —
explicit rule for generating the nth figure: Figure n is generated by breaking the
equilateral triangle into » pieces along each side and drawing the appropriate lines.

But there is also an iferative procedure for generating these figures, namely
adding a new bottom row which has one more triangle than the existing bottom row.
This rule works at every stage. Try to elicit such a rule from them that will work at
every stage, forcing them to be precise. Take the time to take some of their rules and
follow them literally on the overhead, exposing deficiencies in their precision and
encouraging them to revise them. This can take a while, but it is worth it. Very soon
they will be seeing (and finding) simpler rules for generating much more complex
figures.

B. Repeat all the discussion of the previous activity with the figure on TSP #10;
at last the famous Sierpinski triangle. Ask them to suggest rules to generate the figure
(remove the middle quarter of each shaded triangle?), and again, be critical. Discuss
for a few minutes the beautiful properties of Sierpinski’s triangle. P \,,L,!

Stage 7 in the generation of the Sierpinski Triangle is shown on TSP #11. Tell
how in any part of the figure that includes some shaded portion you can find a reduced
copy of the entire figure. Also mention how each stage in the development of
Sierpinski’s Triangle looks like three reduced copies of the previous figure.

A nice way to emphasize the self-similarity of this figure is to take a piece of paper
with a hole punched out and place it over the figure. When the hole reveals a filled-in
part of the triangle, you can see a solid triangle through the key-hole, i.e., a triangle
which is solid in stage 7. You can then ask what would happen to that solid triangle
in subsequent stages, noting that in that triangle, Sierpinski’s Triangle will ultimately
appear. That is, if what we were looking originally were actually the end stage, i.e.,
the real Sierpinski Triangle, then instead of that little solid triangle we would have
actually seen a full Sierpinski Triangle. In other words, the Sierpinski Triangle
contains a reduced copy of itself no matter where you look!
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C. Now put up the “Tree” picture by Scott Kim (TSP #12). Spend a few minutes
discussing with them a precise way to generate this figure, using transparencies which
contain the initial stages of this tree. (That is, prepare ahead of time four extra copies
of the transparency and cut out each of the first four stages of the tree, so that
participants can see more clearly the rule for generating the tree.)

Initially, they will be nervous and uncomfortable since the figure seems hopelessly
complex. But as you guide them into discovering more and various self-similarities,
and show how portions here and there contain the whole figure, just shrunk, rotated,
perhaps flipped and translated, they will be pleasantly surprised that they can
comprehend this picture in its entirety.

Although you shouldn’t dwell on this topic, if there is extra time you might encourage
them to point out some properties of this figure (for examples, there are lots of
spirals, some copies of the figure are flipped, most are rotated, etc.) Ask them to tell
various ways in which they can see parts which look like the whole. Perhaps they can
even draw their ideas on a blank transparency overlaid on the Scott Kim picture. This
helps in the very important task of visualization.

D. Distribute Handout #3, the hexagonal grid paper (TSP #13). Instruct them
to create about ten rows of Pascal’s triangle in the grid in pencil@tarting at the top
of the page. This done, have participants use markers (or colored pencils) to color
every cell containing an even number red and every cell containing an odd number

=5 F > feact #4

At this point, they may recognize a bit of Sierpinski’s triangle developing. If they
don’t, don’t give it away.

Invite them to continue Pascal’s triangle, together with the coloring, to the
bottom of the page. However, since the entries rapidly become unwieldy, you can
suggest they try to find an easier way. All they need to use is the rule for adding odd
and even numbers together — this way they can drop the numbers altogether and
simply add colors — red + red = red; blue + blue = red; red + blue = blue; and
blue + red = blue.

E. On the overhead projector, put up a single triangular pattern block and call
it stage 0 in the process of making the Sierpinski triangle. Next take 2 more triangles
and, together with the first triangle, form stage 1 in the process of making Sierpinski’s
triangle. To form stage 2 of the process, take 2 more configurations like the one you

Copyright 1997 Rutgers Leadership Program in Discrete Mathematics Workshop 9 IN 6




/4
just made (9 triangles altogether) and ar 4 nge them in a triangle. This should be
sufficient for them to get the idea of how /to build a Sierpinski triangle from scratch.
F. Give each of 27 people 29"x 9"x 9" ¢ iangular sheet of paper. Ask them to
come up one at a time and place their trianﬁ{as on the floor so that when they are
finished, the 27 triangles will form a stage 4 Sierpinski triangle. You will need to guide
them through the process.

G. Give each person 27 triangular pattern blocks (or 1”x 1”x 1” triangles cut
from green card stock) and ask them to place the pattern blocks inside their paper
triangle to create a stage 4 Sierpinski triangle. If there are enough triangular pattern
blocks to go around (you’ll need 729), then the result will be a stage 7 Sierpinski
triangle.

If there won't be enough time for Activity #4H, then suggest that they complete this
Activity #4G later.

Mention that the participants may want to cut out the Pascal triangles they made
earlier, now transformed into stage 4 Sierpinski triangles, and put 27 of them together
on the wall to create a stage 7 Sierpinski triangle. That they can do later if they wish.

H. The Chaos Game. Provide each pair of participants with a copy of TSP #14,
which has on it the playing board for the Chaos Game. Each team will also need a
ruler, a die, and an erasable transparency marker. Show the instructions on TSP #15
and, after explaining them, ask each pair to repeat the procedure ten times (or more if
they work quickly). Note that they should not draw the lines, only the dots! Once all
the teams have completed this, ask them whether any patterns have emerged. Probably
nothing will be noticeable. Collect all the transparencies, superimpose them (by lining
up every “T” on top of every other “T”, every “R” on top of every other “R”, and every
“L” on top of every other “L”), and place them on the overhead projector. Lo and
behold, what appears should bear a close resemblance to the Sierpinski triangle. If they
are skeptical, rotate some of the triangles and reverse some of the others, and then
superimpose them. Ask for explanations of why this happens.

These activities are all appropriate across the K-8 curriculum. Teachers at every
grade level can find something instructive for their students. Tomorrow, the
participants will rephrase many of today’s concepts in terms of “reduce, replicate and
rebuild.” In this activity they are replicating and rebuilding, but not reducing.
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Substitute this page with the blue fern
tfransparency page.
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Substitute this page with the green tree
transparency page
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A Fractal Is... } )

 Endlessly Repeating — meaning that you

can find an endless number of copies of the

whole figure within the figure, at a reduced

scale, and possibly rotated or stretched.
This is also called self-similarity.

e Ever Diminishing — meaning that you can
find copies of the whole figure at every
scale, no matter how small.

e Infinitely Complex — meaning that the
figure should have detail and delicateness as
well as self-similarity. You can find copies
of the whole figure throughout the figure.
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Paper Folding and Iteration

Triangle Pattern

1. Start with an equilateral triangle-shaped
piece of paper.

2. Every time you see an empty triangle, fold
the top corner down to the middle of the
opposite side, and then crease and unfold.

Clarification: At each stage, fold the top of the
smallest triangle down to the center of its
bottom side, make a crease along the fold line,
and then unfold so that you now have the
original triangle, but with one more crease.
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The End Stage
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Handout #1 Generating Trees

1.5 TREES 1.5A

As trees grow, they branch out. From big branches grow smaller ones. From these
grow smaller ones still, and so on.  Use this dot paper to draw a mathematical tree
with some of the same properies as the live ones.

Construction From the endpaint of each branch, draw two new branches
half as long growing off at 600 in opposite direction.

1, Stage 1 of the tree has already been drawn. Draw the four new branches for stage
2 by connecting endpoints to the appropriate dots on the grid. Draw the eight new
branches for stage 3. Repeat again for stage 4. Endpoints should stiil be on the
dots of the grid. Continua the growing process unti! the branches become too
smali to draw.

-
[ - -
.
» * P T S } -
-

-
e s & . «. + s . - a

.

.
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Handout #2: Generating Trees (cont.)

1.5B

Suppose the tree starts with an initial vertical segment of 1 unit as the trunk. Imagine
further that the tree continues growing branches, over and over by the process given,
until fully grown. Visualize this completed tree.

2.

How many branches have lengths of 1/4?7 of 1/167 What is the sum of the lengths
of ali branches 1/4 long? 1/16 long?

What is the total length of all branches of the completed tree?

Are there parts of the completed tree that look like the entire tree?  Using the tree
just drawn as a model of a fully grown tree, draw a hexagon around a part that
would be an exact image of the tree itself. Draw another using a hexagon of a
different size.

One interesting shape found on the completed tree is a spira/. Start at the base of
the tree and turn right at each and every junction point. Note how these particular
branches trace out a spiral.

Find another spiral that is a reflection of the one just described. What is the length
of this spiral?

Find four spirals with half the length of the one just described. How many spirals
in the tree have one-quarter the length of the original?

Consider all such spirals of ali sizes that can be found on the tree. They all do not
have the same length. Are they all exact replicas of each other except for size?
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Can you give an iterative rule for generating
these figures?

VN
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These are the first 5
sfages in the
construction of
Sierpinski's Triangle.
Can you describe the
Iferative process here?
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Stage 7 of Sierpinski’s Triangle
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Can you give an iterative rule for generating
this figure?

TREE (Recursion), A tree made of trees. Where do the
branches end and the leaves begin? As in all recursive
structures, the parts here are the same as the whole. E (with
a long crossbar) turned sideways becomes T-—the seed of a
new tree, But ¥ is bilaterally symmetrical, so we can choose

.,.',.i" 3 to branch either to the left or to the right. The one letter not
Fidd involved in the branching, R, firmly roots the orlentation of
;1*31[ LTJ 'Lm each subtree, since R is totally asymmetrical.
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SOME HEXAGONAL GRID PAPER
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Game Board for The Chaos Game

@ -
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Rules for “The Chaos Game”

1. Start with the point located in the interior of
triangle labeled “TRL.”

2. Toss the die.

3. A. If theresultis “1” or “2”, measure halfway
from the current point to the vertex marked
“T” and create a new point.

B. Ifthe resultis “3” or “4”, measure halfway
from the current point to the vertex marked
“R” and create a new point.

C. Iftheresultis “5” or “6”, measure halfway
from the current point to the vertex marked
“L” and create a new point.

4. Cover the previous point with a penny so that
you will remember which point is now the current

point.

5. Repeat steps 2 to 4 another ten times.
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Handout #1 — Generating Trees

1.5 TREES : . 1.5A

As trees grow, they branch out. From big branches grow smaller ones. From these
grow smaller ones still, and so on.  Use this dot paper to draw a mathematical tree
with some of the same propenties as the live ones.

Construction From the endpoint of each branch, draw two new branches
half as long growing off at 600 in opposite direction.

1. Stage 1 of the tree has already been drawn. Draw the four new branches for stage
2 by connecting endpoints to the appropriate dots on the grid. Draw the eight new
branches for stage 3. Repeat again for stage 4. Endpoints should still be on the
dots of the grid. Continue the growing process until the branches become too
small to draw.
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Handout #2 — Generating Trees (continued)

1.5B

Suppose the tree starts with an initial vertical segment of 1 unit as the trunk. Imagine
further that the tree continues growing branches, over and over by the process given,
until fully grown. Visualize this completed tree.

2. How many branches have lengths of 1/4? of 1/167 What is the sum of the lengths
of ail branches 1/4 long? 1/16 long?

3. What is the total length of all branches of the completed tree?

4. Are there parts of the completed tree that ook like the entire tree?  Using the tree
just drawn as a model of a fully grown tree, draw a hexagon around a part that
would be an exact image of the tree itself. Draw another using a hexagon of a

different size.
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Handout #3 — Odds and Evens in

Pascal’s Triangle

- SOME HEXAGONAL GRID PAPER

Day 9 HO3

Mathematics
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Session 9 - Patterns in Geometry — Exercises

Practice Problems:

How many shaded triangular regions are in stage 5 of the developing Sierpinski triangle? Use the idea
of recursion to describe how to find the number at stage 6 from the nuniber at stage 5.

How much of the area of the original triangle remains at stage 57 Use the idea of recursion to describe
how to find the shaded area at stage 6 from the shaded area at stage 5.

Use recursion to describe how to find the perimeter around all the shaded triangular regions at stage 6
from the corresponding perimeter at stage 5.

Study Group Problems:

4.

10.

List the number of shaded triangular regions in the first 8 stages of the developing Sierpinski triangle.
Take first, second, and third differences. What patterns can you find in these differences? Look
carefully!

Complete parts 1-3 on the worksheet on exercise page 3, taken from Fractals for the Classroom. At
what stage will there be enough small shaded triangular regions so that one could be given to every
person living in New Jersey? in the United States? in the world? (The population of NJ is about 20
million, the population of the US is about 280 million, and the population of the world is about 5.5
billion.)

Start with an equilateral triangle with 4-inch sides, and generate the first five stages of the Sierpinski
triangle (as on exercise page 3). Make a chart which gives the perimeter around all the shaded
triangular parts at each stage. From this pattern, can you tell what this total perimeter will be at each
successive stage of the construction? At what stage will the perimeter around all the shaded triangular
parts first be greater than the distance around the earth at the equator, which is about 25,000 miles?

Complete parts 4-6 on the worksheet on exercise page 3. At what stage will the shaded area become
less than one square millimeter, assuming that the area of the initial triangle is one square meter?

Complete the dot-paper drawing titled Triangle Variation, found on exercise page 4, and complete
questions 1-6, found on exercise page 5.

Consider the four figures on exercise page 5. Stage 0 has three corners, stage | has 10 corners, and if
you count carefully, you’ll find that stage 2 has 52 corners.

a. How many corners do stages 3 and 4 have?

b.  What is the recursive rule for generating this "number of corners” sequence?

On a piece of paper draw § dots in any chaotic fashion, number them 1 to 8 and
connect the dots in order — 1 t0 2, 2 to 3, etc..., 7 to 8§ and 8 to 1, to create an
octagon. (It will work best if you start with a large figure.) Then iterate the
following procedure: Draw a dot at the midpoint of each edge of the most recent
octagon, and connect the dots on adjacent edges to create a new octagon. One
iteration is shown to the right, where the dotted figure is the most recent octagon,
What do you notice happening as you iterate this procedure? Try this with more
complex examples and see if it still works.
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Il. Read and then complete the page titled Cellular Automata on exercise page 6.
Extension Problems:

12. Use dot paper to draw the figure referred to in question 2 of Triangle Variation from exercise page 4
introduced on'Day 10.” Describe the number patterns générated by counting triangles and by counting
holes at each stage. Dot paper is provided on exercise page 7.

13. Think of the Triangle Variation activity from exercise page 4 yet again. Give a geometric and
numerical analysis of the stages of a similar fractal generation where only the three corners were used
repeatedly in the building process. How will the results compare to the Sierpinski triangle? More dot
paper is provided on exercise page 8.
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1.2 NUMBER PATTERNS WITH VARIATIONS 1.2A

This activity explores some of the number patterns found in the Sierpinski triangle.

- DIRECTIONS...The first four stages of.the construction of.the Sierpinski triangle are

shown below. In subsequent stages, the subdivision continues into smailer and
smaller tiangles. Use these figures to explore number patterns that emerge as the
Sierpinski triangle is developed through successive iterations.

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

NUMBER OF TRIANGLES
1. Count the number of shaded triangles at each stage 0 through 4.

STAGE 0 1 2 3 4 5 ... n
NUMBER 1

2. Extend the pattern to predict the number of triangles at stage 5.
What constant multiplier can be used to go from one stage to the next?

3. Generalize to find the number of triangles for level n.
As n bescomas large without bound, what happens to the number of triangles?

AREA OF TRIANGLES
4. Letthe area at stage 0 be 1. Find the total shaded areas at stages 1 through 4.

STAGE 01 2 3 4 5 ... n
AREA 1

5. Extend the pattern to predict the total area at stage 5.
What constant multiplier can be used to go from one stage to the next?

6. Generalize to find the total area at stage n.
As n becomes large without bound, what happens to the shaded area?

Fractals for the Classroom 13 Strategic Activities
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TRIANGLE VARIATION 1.1B
When repeated over and over, this construct variation generates another fractal.

. } ~
Construction - -— Connect trisection points on the sides as shown,,geg@'mg SL\MW\j
only the six border subtriangles. 2

In this variation, the sides of the triangle are divided into thirds. Repeat the process
through a second iteration using exactly the same procedure in each of the six border
subtriangles shown in this first stage. Count dots carefully. Each vertex of each of the
36 congruent subtriangles that emerge at the second stage are on dots of the grid
paper. Shade in these triangles.

L] - - - - - - - - - L] L] - - - - (3 - . - - -

1. Imagine repeating the process over and over. At each stage, each triangle is
transformed into six new subtriangles with sides ons-third as long. Describe what
you would see of the original triangle if the process were continued on without end.

h }\Wi‘ f’\!}\aj\l'
2. Change the algorithm from Eespu@ the six border subtriangles toiaep;xég the
three inner ones. What kind of figure would emerge after two iterations?

Fractals for the Classroom 12 Strategic Activities
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NUMBER PATTERNS FROM TRISECTION 1.2B

Varying the construction algorithm varies not only the figures but the number patterns
produced as well.

DIRECTIONS The first three stages of the triangle construction using the
trisection algorithm are shown below. In subsequent levels, smaller and smaller
subtriangles are formed. Use these figures to explore the number patterns that
emerge as more and more iterations are performed on the figure.

Stage 0 Stage 1 Stage 2

NUMBER OF TRIANGLES
1. Count the number of shaded triangles at each stage 0 through 3.

STAGE 0 1 2 3 4 5 ... n
NUMBER 1

2. Extend the pattern to predict the number of shaded triangles at stages 4 and 5.
What constant multiplier can be used to go from cne stage to the next? Asn
becomes large without bound, what happens to the number of shaded triangles?

3. Compare this number pattern to that for the number of shaded triangles for stages
in the Sierpinski triangle. In which case are the numbers increasing more rapidly?

AREA OF TRIANGLES
4, Letthe area at stage 0 be 1. Find the total shaded area at stages 1 through 3.

STAGE 0O 1 2 3 4 5 ... n
AREA 1

5. Extend the pattern to predict the total area at stages 4 and 5. What constant
multiplier can be used to go from one stage to the next? As n becomes large
without bound, what happens to the shaded area?

6. Compare this number pattern to that for the areas for stages in the Sierpinski
triangle. In which case are the areas decreasing more rapidly?

Fractals for the Ciassroom i4 Strategic Activities

Summer 1997  Prepared for use in the Rutgers Leadership Program in Discrete Mathematics Day9 EX5




CELLULAR AUTOMATA

A coloring look-up table supplies a visual definition of all the rules needed to color
any particular-cell based upon the colors of the cells immediately dbove it.

In the exercise below, the top row has been colored---all white except for one black
cell. Once a row has been colored, you can determine the color of each cell in the
next row by looking at the colors of the 4 cells immediately above it, looking for that
pattern in the look-up table that you defined in part 1, and coloring the cell
accordingly. Different ways of defining the look-up table will yield different final
patterns.

I. Complete the coloﬂngq;jélggp table by making your own choices for each of the@
16 bottom cells in this table.

0O 850 O g0 Crge w00 eRO ecse
WO 00 P +980 o0 Pe Chee sqge

2. Apply the rules from your completed coloring look-up table to the cellutar array
given below. Do any geometric patterns or structures emerge?

0g8e8e9e0%,
Sifasteses
HHHHHE
090209094249
220%0%6%: %
g"o'o"o'o'o
22028
2088
e2ele
HHH
22e% %
e2e%
CHHHD

BRI

e
e2e%
HHH4
e2e%
o2e%% o:
0202 %
CHHHH
020209 %
0262 %%
020%20% %
026020%: %
43503
CH-HIEHS
8g8
o2
020%0%:%
o202
- H R
egegedele
CHH

3. Why are there 16 patterns to be accounted for in question 1? How many
different ways could you have completed this coloring look-up table?
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Resource Book

Workshop 9: Patterns in Geometry

Table of Contents

2. Mathematical Background.

3. Workshop outline.
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6-7. These pages are taken from Fractals for the Classroom: Strategic Activities, Volume one,
published by NCTM and Springer-Verlag. They show the generation of another tree-like
fractal. The questions are very interesting, and can be adapted to many grade levels.

8-10.  These pages, also from Fractals for the Classroom, are copies of ones used for the
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Eddies, and Frenzies: Basic Families of Peano Curves on the Square Grid by Douglas M.
McKenna, in the book The Lighter Side of Mathematics, edited by Richard K. Guy and
Robert E. Woodrow, published by the Mathematical Association of America.

19. A description of The Chaos Game,

Copyright 1997 Rutgers Leadership Program in Discrete Mathematics Day9 RESI
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Workshop 9: Patterns in Geometry

Mathematical Background
»  Congruency: Geometric figures are congruent if they have the same shape and the same size.

*  Similarity: Geometric figures are similar if they have the same shape but not necessarily the same
size.

*  Self-similarity: A geometric figure is self-similar if it contains reduced, repeated images of itself at
all scales. For example, the Sierpinski triangle is self-similar,

*  Fractals: Fractals emerge from certain iterative, geometric procedures. The single most
characteristic property of most fractals is self-similarity.

Visual characteristics inciuded in the structure of a fractal are that it is
Endliessly repeating,
Ever diminishing, and
Infinitely complex.

The complexity of a fractal is reported as its dimension, the precise definition of which is rather
complicated. Fractal dimensions are not the familiar Euclidean dimensions of 1,2 and 3.

This series of figures shows the initial stages in the generation of the Sierpinski Triangle. The
actual fractal itself is the final state. Its fracial dimension is about 1.58.

Stage 3

Copyright 1997 Rutgers Leadership Program in Discrete Mathematics Day9 RES2
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Workshop 9: Patterns in Geometry

Workshop Outline

1. Geometric Patterns in Nature

a.

b.

We saw some examples of fractal-like structures in nature.

i. Queen Anne’s Lace was circular in structure, and we saw that it was composed of many
smaller circles, which each looked like small Queen Anne’s Laces.

ii. A fern branch had many small branches which al} looked like smaller versions of the
whole branch

iti. A computer-generated tree consisted of a trunk with two branches, each of which had
two branches, and each of those had two branches, and so-on. The result was rather
like a real tree.

We called this notion of “parts looking like reduced copies of the whole” self-similarity, Our

ideas from here on were attempts to model mathematically what we saw happening in nature.

We defined a fractal to be an object or figure which was endlessly repeating, ever

diminishing and infinitely complex.

Geometric Yteration
a.

We folded a triangular piece of paper, always folding the top of the newest, smallest triangle
down to the center of the opposite side, creating a crease, and then unfolding. This resulted
in a figure which was self-similar only at the top; moreover, it could be considered self-
similar only if we consider the “end stage” of the figure. The end stage, which can’t be drawn
or folded, is what we imagine if we had done infinitely many stages.

We created fractal trees by starting with a 16-unit-long trunk and adding two branches, 60
degrees apart in opposite directions, half as long as the trunk. Then we iterated this
procedure, adding to each branch, two branches, 60 degrees apart in oppesite directions, half
as long. The result looked rather like a tree,

The Sierpinski Triangle, and friends
a.

We saw a sequence of triangulated triangles with the up-pointing triangles shaded.

Participants were asked to find a rule for generating this sequence of figures.

Then we generated the Sierpinski Triangle

i We considered a sequence of figures generated by starting with a solid equilateral
triangle, and at each stage removed the middle quarter from each solid triangle we saw

ii.  The figure that results from continuing this process indefinitely is called the Sierpinski
Triangle. This is a fractal, and has self-similarity at every point.

iii.  Asyou construct later and later stages of the Sierpinski Triangle, the area decreases to
zero, but the perimeter increases without bound.

The TREE picture by Scott Kim (http://www.scottkim.com) was made up of many rotated

and flipped copies of the word “TREE,” and the resulting figure looked like a tree. This

fractal exhibited a great deal of self-similarity,

We colored the odds and evens of Pascal’s triangle, and discovered the Sierpinski Triangle!

We modeled the Sierpinski Triangle with pattern blocks, and with large paper triangles, and

then we put pattern blocks inside the triangles to get a stage 7 version of Sierpinski Triangle.

Finally, we played the Chaos Game, and out came ... The Sierpinski Triangle!

Copyright 1997 Rutgers Leadership Program in Discrete Mathematics Day9 RES3
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Some iterative paper-folding procedures together with their “end stages.”
Triangle Pattern: Start with an equilateral triangle-shaped piece of paper. When you see an
empty triangle, fold the top corner down to the middle of the opposite side, crease, and unfold.

> 2>

Square Pattern: Start with a square sheet of paper with the center identified by light folds. At
each stage, consider the smallest empty square and fold its corners down to the center of that

square. Then make crease lines along the folds, but only within that smallest square, and then
unfold.

@ <
o

c
=
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Resource Book

Section 9: Patterns in Geometry

1.5 TREES 1.5A

As trees grow, they branch out. From big branches grow smaller ones. From these
grow smaller ones still, and so on.  Use this dot paper to draw a mathematical tree
with some of the same properties as the live ones.

Construction From the endpoint of each branch, draw two new branches
half as long growing off at 600 in opposite direction.

1. Stage 1 of the tree has already been drawn. Draw the four new branches for stage
2 by connacting endpoints to the appropriate dots on the grid. Draw the eight new
branches for stage 3. Repeat again for stage 4. Endpoints should still be on the
dots of the grid. Continue the growing process until the branches become too
small to draw,

[ Reprinted with permission from “Fractals for the Classroom: Strategic Activities, Volume 1,* by the National Council of Teackers of Mathematics
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Section 9: Patterns in Geometry

1.5B

Suppose the tree starts with an initial vertical segment of 1 unit as the trunk. Imagine
further that the tree continues growing branches, over and over by the process given,
until fully grown. Visualize this compleisd tree.

2. How many branches have lengths of 1747 of 1167 What is the sum of the lengths
of all branches 1/4 long? 1/16 long?

3. What is the total length of all branches of the complsted trea?

4. Are there parts of the completed tree that look like the entire tree?  Using the tree
just drawn as a modef of a fully grown tree, draw a hexagon around a part that
would be an exact image of the tree itself. Draw another using a hexagon of a
different size,

One interesting shaps found on ths completed tres is a spiral.  Start at the bass of
the tree and turn right at each and every junction point.  Note how these particular
branches trace out a spiral.

5. Find another spiral that is a reflection of the one just described. What is the length
of this spiral?

6. Find four spirals with half the length of the one just described. How many spirais
in the tree have one-quarter the length of the original?

7. Consider alt such spirals of all sizes that can be found on the tree. They all do not
have the same length. Are they all exact replicas of each other axcept for siza?

L Reprinted with permission from “Fractals for the Classroom: Siralegic Activities, Volume 1." by the Nationat Council of Teachers of Mathematics
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1.2 NUMBER PATTERNS WITH VARIATIONS 1.2A
This activity explores some of the number patterns found in the Sierpinski triangle.

DIRECTIONS The first four stages of the construction of the Sierpinski triangle are
shown below. In subsaquent stages, the subdivision continues inte smaller and
smaller triangles. Use these figures to explore number pattarns that emerge as the
Sterpinski triangle is developed through successive iterations.

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

NUMBER OF TRIANGLES
1. Count the number of shaded triangles at each stage O through 4.

STAGE 0_ 1 2 3 4 5 ... n
NUMBER 1

2. Extend the pattern to predict the number of tiangles at stage 5.
What constant muitiplier can be used to go from one stage to the next?

3. Generalize to find the number of triangles for level n, .
As nn becomes large without bound, what happens to the number of triangies?

AREA OF TRIANGLES
4. Letthe area at stage 0 be 1. Find the total shaded areas at stages 1 through 4.

STAGE 01 2 3 4 5 ... n
AREA 1

5. Extend the pattern to predict the total area at stage 5.
What constant multiplier can be used to go from one stage to the next?

6. Generalize to find the total area at stage n.
As n becomes large without bound, what happens to the shaded area?

l_ Reprinted with permission from "Fractals for the Classcoor: Strategic Activitics, Volume 1,* by the National Council of Teachers of Mathematics
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NUMBER PATTERNS FROM TRISECTION 1.28B

Varying the construction algorithm varies not only the figures but the number patterns
producad as well,

DIRECTIONS The first three stages of the triangle construction using the
trisection algorithm are shown below. In subsequent levels, smaller and smaller
subtriangles are formed. Use thess figures to explore the number patterns that
emerge as more and more iterations are performed on the figure.

Stage 0 Stage 2

NUMBER OF TRIANGLES
1. Count the number of shaded triangles at each stage O through 3.

STAGE 0 1 2 3 4 5 ... n
NUMBER 1

2. Extend the pattern to predict the number of shaded tiangles at stages 4 and 5.
What constant multiplier can be used to go from one stage to the next? Asn
becomes large without bound, what happens to the number of shaded triangles?

3. Compara this number pattern to that for the number of shaded triangles for stages
in the Sierpinski triangle. In which case are the numbers increasing more rapidly?

AREA OF TRIANGLES
4. Letthe area at stage O be 1. Find the total shaded area at stages 1 through 3.

STAGE 0 1 2 3_ 4 5 e f
AREA 1

5. Extend the pattemn to predict the total area at stages 4 and 5. What constant
multiplier can be used to go from one stage to the next? As n becomes large
without bound, what happens to the shaded area?

6. Compars this number pattern to that for the areas for stages in the Sierpinski
triangle. In which case are the areas decreasing more rapidly?

L

Reprinted with permission from “Fractals for the Classroam Strategic Activities, Volume 1,* by the National Council of Teachers of Mathematics

-
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TRIANGLE VARIATION 1.1B
When repeated over and over, this conétruct variation generates another fractal.

Construction Connect trisection points on the sides as shown, keeping
only the six border subtriangles.

[n this variation, the sides of the triangle are divided into thirds. Repeat the process
through a second iteration using exactly the same procedure in each of the six bordar
subtriangles shown in this first stage. Count dots carefully. Each vertex of each of the
36 congruent subtriangles that emarge at the second stage are on dots of the grid
paper. Shade in these triangles.

1. imagine repeating the process over and over. At each stage, each triangle is
transformed into six new subtriangles with sidas onse-third as long. Describe what
you would see of the original triangle if the process ware continued on without end.

2, Change the algorithm from keeping the six border subtriangles to keeping the
thres inner ones. What kind of figure would emerge after two iterations?

[ Reprinted with permission frem “Fractals for the Classtoom: Strategic Activities, Volume 1,* by the National Council of Teachers of Mathematics
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CELLULAR AUTOMATA

A coloring look-up table supplies a visual definition of all the rules needed to color
any particular cell based upon the colors of the cells immediately above it.

In the exercise below, the top row has been colored---all white except for one black
cell. Once a row has been colored, you can determine the color of each cell in the
next row by looking at the colors of the 4 cells immediately above it, looking for that
pattern in the look-up table that you defined in part 1, and coloring the cell
accordingly. Different ways of defining the look-up table will yield different final

patterns.

1. Complete the coloring look-up table by making your own choices for each of the
16 bottom cells in this table.

OO KI0 00 g0 T 6450 4090 e
RO OB 0P 0990 e40e aTpe Ogge egpe

2. Apply the rules from your completed coloring look-up table to the cellular array
given below. Do any geometric patterns or structures emerge?

3. Why are there 16 patterns to be accounted for in question 1?7 How many
different ways could you have completed this coloring look-up table?

f Reprinted with permission fram “Fractals for the Classroom: Strategic Activities, Yolume £, ©199( by the Natienal Council of Teachers of Mathemalics l
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TREE (Recursion). A tree made of trees. Where do the
branches end and the leaves begin? As in all recursive

structures, the parts here are the same as the whole. E (with
a long crossbar) turned sideways becormes T—the seed of a
new tree. But T is bilaterzlly symmetrical, so we can choose

._[,lN-

A H to branch either to the left or to the right. The one letter not
P g involved in the branching, R, firmly roots the orientation of
"3":{1{ Lb ‘Lm each subtree, since R is totally asyemmetrical.
.'1. ‘Lﬂ.i H8$ H- LLIKE'E"
L * "[‘ul b
reonds e E‘E" ““"f‘
e»auLL —WI' I | )54 E‘
TN gy
= 'TH* H w'“. H d,tu
.,.3 H | | | T rPRE—E—~ g LLKE-E—-
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.a.a}hL : ‘T':H-

na=1" 1 i
P Tk

AT
‘.""‘g : s ] R |
; ¥l AT o}
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©1989 Scott Kim, http://www.scottkim.com, used with permission
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I Section 9: Patterns in Geometry
NATIONAL COUNCIL OF TEACHERS OF MATHEMATICS November 1991
Fracturing Our Ideas
M‘” about Dimension -
Maost of the mathematical objects you have studied have
dimensions that are whole numbers., For exampie, such solids
as cubes and icosahedrons have dimension three. Squares, triangles,
= and many other planar figures are two-dimensional. Lines are
- one-dimensional, and points have dimension zero.
Consider a square with side of length one. Gather several of these squares by cutting
them out or using patterning blocks.
1. What Is the least number of these squares that can be put together edge to edge to b1 =]
form a larger square? square
The size of a figure is calculated by counting the number of replicas {small
pieces} that make it up. Here, a repiica is the original square with edges of
length one. The original squars is made up of one small square, 50 its size
is one.
2. What is the size of the new square?
3. What is the length of each edge of the new square?
T Similar figures have the same shape but ara not necessarily the same size. The scale factor between
f two similar figures can be found by calculating the ratio of corresponding edges:
new length
old length

4. What is the scale factor between the targe square and the small square?
S. Find the ratio
new size
old size
for the two squares.
6. Form an even larger square that is three units long on each edge. Compare this square to the small

square. What is the scale factor between the two squares? ________ What is the ratio of new size
lo old size?

7. Form an even larger square that is four units long on each edge. Compare this square to the small
square, What is the scale factor between the two squares? _______  What is the ratio of the new
size to the old size? '

8. Complete the table for squares. 8, How are the two rows in the table related?
Scale factor 213]14{5i61}10
Ratio of new sizae
to old size

The editors wish to thank Tami Martin, School of Education, Boston University, Bouton, MA 02215,
for writing this Issuo of NCTM Student Math Notes.
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Fracturing Our Ideas about Dimension—Continued

Consider an equilateral triangle. The length of an edge of the triangke s one unit.
The size of this triangle is one.

10. What is the least number of equilateral triangles that can be put fogether edge

to edge to form a similar larger triangle? f— 1 =
Equitateral triangte
11. Complete the table for triangles. 12. How does the relationship between the two rows

in this table compare with the one you found in the
table for squares?

Scale factor 213141516110
Ratio of new size
to cld size

One way to define the dimension, d, of a figure relates the scale factor, the new size, and the old size:

new size

oid size

Using a scale factor of two for squares or equilateral triangles, we can see that 2° = 4/1, that is, 2° = 4. Sirce
27 = 4, the dimension, d, must be two. This definition of dimension confirms what we already know—that squares
and equilateral triangles are two-dimensional figures.

(scale factor)® =

13. Use this definition of dimension and your completed tables to confirm that the square and the equilateral
triangle are two-dimensional figures for scale factors other than two.

Consider a cube, with edges of length one. Let the size of the cube be one.
14. What is the least number of these cubes that can be put together face to face to form
alargercube? . S~

15. What is the scale factor batween these two cubes? What is the ratio of \(1
the rew size to the old size forthe twocubes? . cube

16. Complete the table for cubes, 17. How are the two rows in the table related?

Scale facior 213 4 151 6|10

Ratio of new size
to old size

18. Use the definition of dimension and a scale factor of two to verily that a cube is a three-dimensional object.

We have explored scale factors and sizes associated with two- and three-dimensicnal figures. Is it possible for
mathematical objects to have fractional dimensions? Consider the foflowing figure formad by replacing the middie
third of a line segment of length one by an upside-down V, each of whose two sides are equal in length to tha
segment removed. The first four stages in the development of this figure are shown.

/\

Stage 0 Stage 1
Stage 2 Stage 3

| Reprinted with permission from NCTM Student Math Notes, November 1991, by the National Council of Teachers of Mathematics l
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Finding the Scale Factor

Finding the scale factor for this sequence of figures is difficult because the overall length of the figure remains the

same while the number of pieces increases. To simplify the procedure, follow these steps,

« Start with any stage (e.g., stage 1).

= Draw the next stage {e.g., stage 2) of the sequence and "blow it up” so that it contains an exact capy of the
preceding stage (in this example, stage 1).

Notice that stage 2 contains four copies. or replicas, of staga 1 and is three times as long as stage 1,

Stage 1 Stage 2
Length = 1, sfze = 1 (1 replica) Length = 3, size = 4 (4 replicas)
18. The scale factor is equal to the ratio
naw length
old length

between any two consecutive stages. The scale factor between stage 1 and stage 2 is
20. The size can be determined by counting the number of replicas aof stage 1 found in stage 2,
Old size = I, newsize = _____ .
Use the definition of dimension to compute the dimension, d, of the figure formed by this process: 39 = 411, that
is, 37 = 4. Since 3' = 3and 3% = 9, for 3° = 4 the dimension of the figure must be greater than one but less
thantwo: 1 < d < 2,
21. Use your calculator to estimate o, Remember, that o is the exponent that makes 37 equal 4. For
example, since o must be between 1 and 2, tryd = 1.5. But 3** = 5196.. ., which is greater than 4; thus
d must be smaller than 1.5. Continue until you approximate ¢ {0 three decimal places. (Use logarithms for an
exact determination.)
The original figure was a one-dimensional line segment. By iteratively adding to tha line segment, an object of
dimension greater than one but iess than two was generated. Objects with fractional dimension are known as
fractals. Fractals are infinitely seli-similar abjects formed by repeated additians to, or removals from, a figure, The

object attained at the limit of the rapeated procedure is the fractal.

Next consider a two-dimensional object with sections removed iterativaly. In each stage of the fractal's development,
& triangle is removed from the center of each triangular region,

Stage 0 A Stage 1 & Stage 2 & Stage 3 &

Use the process from the iast example to help answer the following questions:

22. What is the scale factor of the fractal? ______ 23. Old size = 1, new size =
24. The dimension of the fractal is between what two values? <d<
25. Uss the definition of dimension and your calculator to approximate the dimension of this fractal,

26. Find the dimension of the fractal formed by adding a cube to the center of each square region.

o

i ofgk

Stage 0 Stage 1 Stage 2 2 Ho

A fractal with dimension between one and two can be formed in one of two ways: (1) add to a one-dimensional
line and {2) remove from a two-dimensional figure,

27. How can an object of dimension betwesen two and thres be formed?
28, How can an object of dimension less than one be formad?

Reprinted with permission from NCTM Student Math Notes, November 1991, by the National Council of Teachers of Mathematics
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Canyou..,

+ determine the least number of hypercubes (the four-
dimensional figure analogous to a square) needed to
make a larger hypercube?

* use each of the following patterning blacks to make
larger repiicas of themselves?

o g 9

Trapezoid Rhombus Regular hexagon

develop a theory about which two-dimensianal fig-
ures can be usad to make larger replicas of them-
selves? Develop an analogous theory for three-
dimensional figures?

Did you know that, ..

+ form a fractal of dimension one-hatf?

* find the area under a cne-unit-long fractal formed by
adding three sides of a square over the centrat third
of each line segrment? Compare this area to the area
of the circumscribed triangle? (Hint: first find the
height of the triangle.}

M & 5

Stage 0 Stage 1 Stage 2
« find the volume under the fractal described in ques-
tion 267 Compara this volume to the volurme of the
circumscribed square pyramid? (Hint: first find the
height of the square pyramid.)

+ with its mountains, valleys, and oceans, the surface of the earth is a {ractal of dimension approximately 2.27

* Bencit Mandelbrot coined the word fractal in 1975 as a label for self-similar shapes with fractional dimension?

* W. Bolyai shawed, in 1832, that one of two polygons of equal area could be decomposed into a finite sat of
polygons that could be reassembled into the other figure?

* M. Dane showed, in 1900, thal the answer to Hilbert's third problem—whether an analogcus result exists for
decomposing two polyhedra of equal volume into a finite set of tetrahedra that could be reassembled into either
figure—was “no™? In fact, an infinite number of tetrahadra would be required to do the job.

Mathematical Content
Integral and fractional dimension
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Figure 2: As base angle changes, fractal dimension varies from 1.0 (line) to 2.0 (area).
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Game Board for The Chaos Game

T
@

Rules for “The Chaos Game"

1. Start with the point located in the interior of triangle labeled “TRL."

2. Toss the die.

3. A. Iftheresultis “1" or “2", measure halfway from the current point to the vertex marked “T” and
create a new point,

B.  If the result is “3” or “4”, measure halfway from the current point to the vertex marked “R” and
create a new point.

C. Iftheresultis “5" or “6", measure halfway from the current point to the vertex marked “L" and

create a new point.

4. Cover the previous point with a penny so that you will remember which point is now the current point.

5. Repeat steps 2 to 4 another ten times.
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