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LEADERSHIP PROGRAM IN DISCRETE MATHEMATICS

Instructor’s Notes

Revised July 30, 1999 (and, most recently, June 22, 2011)

Workshop 3 — Hamilton Circuits and the Traveling Salesperson Problem

Materials and Pre-Workshop Preparations Allocated Time

Activity #0 — How Much is a Million? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 minutes

Activity #1 — Traffic Light Inspector’s Problem . . . . . . . . . . . . . . . . . . . .  35 minutes

Activity #2 — Going Home from School . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 minutes
! Diagram of a graph with seven vertices and ten edges

made from masking tape and the centers of paper

plates (removing the rim permits the plates to lie

flat); the distance from H to S should be at least 10

feet, large enough so that participants can

comfortably walk along the edges.  Draw the

following buildings, one per plate: a school building,

“your home”, and five different homes where each

“friend” lives.  

! Twelve arrows, each about 20"×2", in fluorescent

colors, if possible.

Activity #3 — Introducing the Traveling Salesperson Problem . . . . . . . . .  35 minutes

Activity #4 — Algorithms for the Traveling Salesperson Problem . . . . . . .  40 minutes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TOTAL WORKSHOP TIME:  125* minutes

* In addition, ten minutes are allocated for a break in this 2 ¼ hour workshop.

Word Wall: Hamilton path, Hamilton circuit, Weighted graph, Tree diagram, Factorial,

Algorithm, Nearest Neighbor Algorithm, Greedy Algorithm, Traveling Salesperson Problem,

Four Point Switch, Multiplication Principle of Counting
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Activity #0 — How Long is a Million Seconds

(Allocated time = 5 minutes)

A.  Put up TSP #1, which displays vertically the words hour, day, week, month,

year, decade, century, and millenium, and ask participants where they think one million

seconds would go within this list — that is, would one million seconds be expressed in

terms of hours, days, ... , or millenia.  Ask for a show of hands for each possibility.

After they guess, have them estimate the answer — an hour is about 60x60 = 3600

seconds, so a day is about 25x3600 or 90,000 seconds, and that goes into a million about

11 times; the actual answer is 11 days and 14 hours.  Then ask the same question for a

billion seconds.  That turns out to be about 31.7 years.  Point out that this is a good way

to help students build their number sense, and it is a calculation which we will need for

later in today’s workshop.

Activity #1 — Traffic Light Inspector’s Problem

(Allocated time = 35 minutes, including 15 minutes for part A, 10 for part B, and

10 for parts C-D.)

A.  Traffic light inspector’s problem:  Provide participants with Hand-out #1

(=TSP #2) and ask them to solve the problems for the three indicated graphs.  

Explain that the traffic inspector problem is different from the letter carrier’s problem

in that the inspector does not have to cover each road, just each intersection.  Discuss

their solutions to these problems — in the first case, there is a solution; in the second

and third cases, there are no solutions that end where they begin (that is, no Hamilton

circuit), but there is a solution which doesn’t (that is, a Hamilton path).  A homework

problem asks for an explanation of why there is no Hamilton circuit in the second

case, so requests for an explanation here should be deferred.

B.  Introduce the ideas of Hamilton circuit and Hamilton path (TSP #3).  How

can you tell whether or not a graph has a Hamilton circuit?  For example, try to

determine whether or not each of the three graphs in Hand-out #2 (=TSP #4) has a

Hamilton circuit.

Because of the constraints in the graph, there is a unique Hamilton circuit in graph

#2, unlike the previous case (where there are many Hamilton circuits), and there is

no Hamilton circuit in graph #3 even though, as you should point out, it is almost

identical to graph #2.  Discuss briefly why graph #3 does not have a Hamilton circuit,

leaving a more thorough discussion for the homework review.  (Any Hamilton circuit
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must include the seven points (excluding top left and bottom right) in one of four

configurations, none of which can be completed to form a Hamilton circuit because

the vertices at the top left and bottom right corners are separated from each other by

these configurations;  the four configurations all start with the two slanted lines not

including the central vertex, and then include the central vertex in four possible

ways.)  This  explanation depends very much on the particular characteristics of this

graph — unlike the general way of telling when a graph has no Euler circuit.

Moreover, graphs #2 and #3 demonstrate that two graphs with the same number and

degrees of vertices may be very different with respect to whether there are Hamilton

circuits; that is, the kind of criterion that was used to determine whether there are

Euler circuits can’t be available for determining whether there are Hamilton circuits.

  

C.  How can you tell whether a graph has a Hamilton circuit, or a Hamilton

path?  There is in fact no efficient way of determining for an arbitrary graph whether

or not it has a Hamilton path.  This fact leads to all sorts of puzzles involving paths

through graphs — what is a puzzle? a problem to which usual methods don't apply —

three of which are in the Resource Book, a bicycle puzzle by Sam Lloyd (TSP #5) (he

was the most famous puzzle-maker of the 19th century), and a GAMES Magazine

puzzle (TSP #6), and another, about a homicidal necrophobe, is in the problem set.  

D.  Discuss Sam Lloyd’s puzzle (TSP #5) filling in edges 14-18-22, and 6-12-E,

and 5-11-16-19-10.  Use this as introduction to the idea that in a Hamilton path or

circuit you can’t have three edges at any vertex.  (If there is interest in continuing the

problem, distribute a copy (Handout #3) and challenge them to complete it later.)

Continuing the solution, we then connect 2-7-13, then 2-9 (otherwise get cycle), then 4-8,

then 3-14 (otherwise 13-3-8 creates a cycle), then 17-13 (since 6-17-21 results in leaving

20 out), then 3-8 and 9-5 and 10-4, Phil-15-22, and finally 17-21-20-6. 

E.  Road inspector’s problem:  Show TSP #7 with the road inspector’s problem,

ask participants how they might solve this problem, and elicit the response that this is

exactly the same as the Euler problems discussed the previous day. 

This is not a handout, but should be used as an opportunity for a quick review of

Euler paths and circuits — that is, all participants should recognize quickly that the

first and second graphs have neither Euler paths nor circuits and the third graph has

an Euler circuit.  

Point out the parallel between the two problems using TSP #8, and the major difference

between the two problems using TSP #9 —  both of which are condensed into Handout

#3 — referring to how easy it was for participants to give a response to the road
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inspector’s problem for the three given graphs; from the solver’s perspective, one

problem allows for instant recognition of the solution, and the other results in definite

puzzlement.

The contrast between the two types of problems should be emphasized; participants

often have difficulty distinguishing between Euler and Hamilton paths, between the

road inspector’s problem and the traffic light inspector’s problem, and where the

letter carrier’s problem fits into the picture.  Activity #2 address the distinction

kinesthetically.

Activity #2 — Going Home from School

(Allocated time = 10 minutes)

A.  Moving to the graph on the floor (that has been

prepared in advance), pose the following question:  “Suppose

you are a fourth grader and school (S) has just ended for the

day.  On your way home (H) you would like to stop by and visit

five of your friends who live at the unlabeled vertices.  What

route would you take?”  Ask for three volunteers, one at a time,

to walk a variety of routes which will satisfy the criteria.  As

each volunteer walks the route, have another participant mark

the appropriate edges using the large arrows.   (At the same

time, one of the lead teachers should record the route on the left side of TSP#10, which

you can use for the subsequent discussion.)   Once the three participants have “walked

their walk” ask the group what was the same about the three walks (e.g., each walk

visited every vertex exactly once) and what was different about the walks (e.g., each

walk used a variety of edges and not every edge was necessarily traveled).  

In the past, participants have found the distinction between Euler paths (and circuits)

and Hamilton paths (and circuits) difficult to understand.  This activity helps

participants understand that Euler paths/circuits focus on travel along the “edges”

and Hamilton paths/circuits focus on visits to the “vertices”.  In this first problem, we

would like participants to recognize that a “visit to each vertex” is necessary, not a

“travel over every edge”.  As a result, we’re looking for a Hamilton path from S

(school) to H (home).  In the second problem (see below), travel over each edge is

necessary.  As a result, we’re looking for an Euler path from school to home.

B.  Then pose the following problem:  “On the way home (H) from school (S),

you want to stop by every house along every block so you can sell as many girl scout
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cookies as possible.   What route would you take?”  Again, ask for three volunteers, one

at a time, to walk a variety of routes which will satisfy the criteria and mark their

routes using the arrows (and on the right side of TSP #10); once all three participants

have  “walked their walk” ask the group what was the same about the walks and what

was different about the walks.  (One thing they should notice is that every vertex,

except for S, is visited twice in each of these walks.) When they return to their seats,

show TSP #10 and review the activity with them; they should see that in the figures at

the right all edges have been colored.

Activity #3 — Introducing the Traveling Salesperson Problem

(Allocated  time = 35 minutes, including 10-15 minutes for each of parts A-C)

A.  Use Hand-out #5 (=TSP #11), with the “Many Errands” problem, as an

introduction to the Traveling Salesperson Problem.  After explaining the problem, and

noting its connection to Hamilton circuits, let them informally (“trial and error”) find

the best solution, and observe that it can be run in the opposite direction as well (but

it’s better to pick up the fish at the end of the trip!).  Introduce the question of how you

might verify that this is actually the best solution, and introduce the idea of a tree-

diagram (left-to-right) to enumerate the possibilities; but only do two levels of the tree-

diagram, just enough so that participants will be able to construct a tree-diagram for

the next activity.  Label the nodes in the tree-diagram, and include the distances on the

tree-diagram, so that they will do the same with theirs.

Participants will later complete the tree-diagram for the “Many Errands” problem

in their study groups and verify that “eighteen miles” is indeed the best answer.  in

the next activity, they will develop a tree diagram for a complete graph, which is

easier.

B.  Use Hand-out #6 (=TSP #12) involving the shortest route covering Chicago,

St. Louis, Minneapolis, and Cleveland.  Explain why this is called the “traveling

salesperson problem”.  Note that TSP #12 introduces the notion of a weighted graph,

and that yesterday’s videotape showed an example of a weighted graph when they

asked the question “Which route for the snowplows involves duplication of the smallest

total distance?”  Have participants use a tree-diagram to enumerate all the possibilities

and find a shortest route.  Review with them their solutions using TSP #13.  Remind

them that each branch of the tree diagram provides a Hamilton circuit in the graph;

here the problem is not to find a Hamilton circuit — there are lots of them — but to

find the cheapest one.    

Remind participants to put the distances on the tree diagram.  If they work together
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with a partner, they can share the addition computations.

Participants will of course find that there are six routes; they should also discover,

because of the repetition of the totals, that each route is repeated (in the reverse

direction) — so that only half of the routes have to be considered in determining

which is the best.

Mention that two reasons for doing tree-diagrams are to convince ourselves that they

give a good conceptual understanding for the situation, and to convince ourselves

that they are not practical as a method of solution (except for small problems).

C.  Using TSP about the various applications of the Traveling Salesman Problem

(see TSP #14).  A few obvious ones are UPS deliveries, ATM machine collections, and

car pooling.  Too less obvious ones are robots in drug warehouses, which are sent to

retrieve a list of drugs and have to figure out (using a Traveling Salesperson Problem

algorithm) in what order to retrieve them; and water sampling (where marine biologists

have to collect samples of ocean water at hundreds of sites and need to know in which

order to collect the samples).  In each case, great savings would result from having an

efficient way of solving the Traveling Salesperson Problem.

[ Time for a 5-10 minute break ]

D.  Review the Multiplication Principle of Counting using TSP #15.  

E.  Observe from the tree diagram (TSP #13) that since there are three choices

for the first stop, two choices for the following stop, and only one choice for the final

stop before returning to Chicago; there are altogether 6 possible routes, corresponding

to 3x2x1.  Use TSP #16 to discuss the case where there are four cities besides Chicago,

in which case, there would initially be four possibilities, then three, then two, then 1, so

that altogether there would be 4x3x2x1 possibilities; in TSP #16 the 24 routes are

partitioned according to first city visited so that they can also see the recursive version

4x6.  When discussing that part of the tree in TSP #16 is actually the tree in TSP #13,

it might be helpful to cover up part of TSP #16, leaving only the branch that looks like

TSP #13 showing.  Continue to generalize, introduce factorial notation, using explicitly

both the explicit definition and recursive definition through 10! = 3,628,800 (see TSP

#17.  Then use TSP #18 to estimate how long it would take a computer to check the total

length of all those routes, recalling the discussion at the beginning of the workshop of

how long is a billion seconds.   Provide them with Hand-out #7, which includes all the

information on TSP #17 and TSP #18, at the beginning of this discussion. 
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This should be sufficient to convince participants that even for the Traveling

Salesperson Problem on a modest number of cities, constructing a tree-diagram is a

hopeless strategy.  Moreover, the information on TSP #17 and TSP #18 should also

convince participants that examining all possibilities is also a hopeless strategy, even

for a computer.  Even if computers became a billion times faster, adding 10 more

cities would cancel out any progress made.     

Activity #4 — Algorithms for the Traveling Salesperson Problem

(Allocated time = 40 minutes)

A.  Show TSP #19 — but don’t hand out Handout #8  yet — and note that

“examining all the possibilities” using a tree-diagram is not an adequate strategy for

the traveling salesperson problem even if there are only 9 cities to visit.  Ask

participants to try to generate some ideas about how we might solve such a problem;

most likely, someone will make a suggestion that you can identify as the Nearest

Neighbor Algorithm.  Introduce the Nearest Neighbor Algorithm and use it to do the

problem on TSP #20.  Pause to explain the idea of an algorithm — a step-by-step

procedure which can be applied to many different problems — and why the term

“algorithm” can be applied to the method used to solving this problem.

B.  Ask them to apply the NN algorithm to the example on Handout #9 (=TSP

#19), the problem that they looked at a few minutes ago.  After they present their

solutions, ask the participants whether they think that the NN algorithm always

provides the best solution to the traveling salesperson problem.  

C.  Return to the example in TSP #12 to show that the NN algorithm doesn’t

always give the best solution.  (Indicate on TSP #12 the three possible routes using three

colors.) 

D.  Review TSP #21 which has the NN solution for TSP #20, and discuss

(overlaying TSPs) what solutions might be better; conclude that Chicago-Pittsburgh-

Philadelphia-Cincinatti-St.Louis-Chicago seems to be the best (see TSP #22).  The total

is 1741 vs. 1846 for NN on TSP #21.  

E.  Discuss the concept of a “greedy algorithm”, where you do what appears to

be the best thing right now without paying any attention to the consequences of that

decision; the Nearest Neighbor Algorithm is an example of a greedy algorithm.  Ask

them to find a better solution than the NN algorithm for the problem on TSP #19, and

discuss their solutions using overlays of TSP #23.  The NN solution is on TSP #24, and

the optimal solution is on TSP #25.    (They will try to apply the four-point switch to
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their NN solution on TSP #21 – five-city problem – on the homework.)

F.  How could we find these better routes?  Show four-point switch on TSP #26

and apply that to the NN solution on TSP #24, using TSP #27 (a copy of TSP #23)

overlaying the solution on TSP #24.  

G.  The four-point switch approach involves finding an initial solution using NN

and then modifying it.  We can also try different methods of finding initial solutions.

H.  One way is to pretend that we’re starting at another vertex and apply the NN

algorithm to that vertex.  Review TSP #28, discuss the Repeated Nearest Neighbor

algorithm, and then distribute HO #9 (=TSP #29) with five copies of the diagram on

TSP #28.  Ask them to apply the NN algorithm to each of the five vertices.  Discuss the

results using an overlay of TSP #23.  

I.  Do these algorithms give the best solution?  Go back to the four-city problem

in TSP #12, and apply both algorithms to that situation.  You’ll find that RNN doesn’t

gives the best solution either, because the best solution is the one that avoids altogether

the cheapest road, and all three pick it as soon as they see it!  In this problem the best

solution does not include the shortest edge, but by forgoing the shortest edge it avoids

the longest edge.  

J.  In fact, no algorithm exists which always provides the best solution to the

Traveling Salesperson Problem!  (Stress the fact that this is a major unsolved problem

in mathematics/computer science  – see TSP #30.)  A brief history of the Traveling

Salesperson Problem is on the last page of the Resource Book.

Supplementary Notes

1. As a review of Hamilton and Euler circuits, consider the following “sewer problem”:

Read the top half of TSP #31 and ask participants to discuss which kind of problem

this is; then read the bottom half of TSP #33 and ask participants to discuss which

kind of problem this is.  Then reinforce the difference between the different kinds of

problems.  (They will complete the problem on TSP #33 for homework.)

2. The shortest route for the 10 city Traveling Salesperson Problem in Exercise #7

appears to be circuit V to D to C to B to NY to A to M to H to LA to SF to V – for a

total of 7847.
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About how long is a million seconds?

Would a million seconds be measured in 

hours?

days?

weeks?

months?

years?

decades?

centuries?

millenia?

And about how long is a billion seconds?
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Hand-out #1:  Traffic Light Inspector’s Problem

Can you inspect every intersection exactly once and
end where you start?  

Can you inspect every intersection exactly once if you
don’t have to end where you start?
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Hamilton path 

A path in a graph which visits each vertex 
exactly once

Hamilton circuit

A Hamilton path which ends at the starting point

Sir William Rowan Hamilton (1805-1865) was a noted

Irish mathematician and physicist who created (and

marketed?) a puzzle that involved finding a Hamilton

circuit for the vertices of a dodecahedron.  
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Hand-out #2:   Looking for a Hamilton circuit

Can you find a Hamilton circuit for the following graphs (two copies of each are
provided)?  If you can't find one, can you explain why there isn’t one?
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Sam Lloyd’s Bicycle Tour
Find a route from Philadelphia to Erie, passing once
through each town.
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Temple of the Three Gods

Welcome, brave mortal, to our sacred temple.  We are the gods Quadratus, Circulus
and Triangulus, fated to watch over the treasures the goddess Geometria has scattered
throughout the temple.  Only the wisest of mortals can steal the treasures by entering
the temple through any of the four staircases, visiting all 17 of our likenesses without
retracing a path, and leaving by a different staircase.  But beware — if you pass two
likenesses of the same god in a row, that god will turn you to stone on the spot.  Do
you dare to enter the temple?  (From GAMES Magazine — used with
permission.)
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Road Inspector’s Problem

Can you inspect every road exactly once and end where you
start?  

Can you inspect every road exactly once if you don’t have
to end where you start?



Copyright 1997 Rutgers Leadership Program in Discrete Mathematics — July 1999 Workshop 3     TSP 8

Two parallel problems.

Road Inspector’s Problem

Can you inspect every road exactly once and
end where you start?

Traffic Light Inspector’s Problem

Can you inspect every intersection exactly once
and end where you start? 

Does a given graph have an Euler circuit?  

... or does it have an Euler path? 

Does a given graph have a Hamilton circuit?

...  or does it have a Hamilton path?
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Parallel problems with different answers

Euler circuits vs. Hamilton circuits

Does a given graph have an Euler circuit?  

T There is a simple and efficient way of telling
whether or not a graph has an Euler circuit

T and, if there is an Euler circuit, it is easy to find

Does a given graph have a Hamilton circuit?

T There is no simple and efficient way of telling
whether or not a graph has a Hamilton circuit

T and, even if you know that there is a Hamilton
circuit, it may be hard to find
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Hand-out #5 Many errands

You have so many errands to run!  Starting from your
house, you have to go to the Fish Store, the Bakery, the
Train Station, the Ice Cream Store, and then back home.
You can go in any order, but you want to make the shortest
trip you can.  How many miles will you go?

Developed by Susan Picker, Leadership Program 1990
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Hand-out #6 Traveling Salesperson Problem —
for Four Cities

Use a tree diagram to enumerate all of the routes
that begin in Chicago, visit the other three cities and
return to Chicago.  Which is the shortest route that
a traveling salesperson should take?

This is an example of a weighted graph, where each
edge is assigned a number, called the weight.  In this
example, the weight of an edge is the mileage
between the two vertices.
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Tree showing all Hamilton CircuitsBeginning and Ending at Chicago
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Applications of the 
Traveling Salesperson Problem

Everyday examples

: UPS deliveries

: ATM machine collections

: car pools

Industrial examples

: automated warehouses

: ocean sampling
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Multiplication Principle of Counting

If a task consists of separate parts that are
completed consecutively and independently, and
the first part can be completed in A ways, the
second part in B ways, the third part in C
ways, etc., then the total number of ways of
completing all parts of the task is AxBxCx…

! The number of possible outcomes when
you toss a die and then toss a second die
is  6x6 = 36.  

! The number of possible outcomes when
you flip a coin four times is 2x2x2x2 =
16.  

! The number of possible outcomes when
you flip a coin and toss a die is 2x6=12.

! The number of possible ways of
answering T/F to 10 questions is 2 . 10
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The 24 Circuits on a Graph with 5 Cities
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Factorials
1!  =  1

2!  =  2×1 = 2 × 1! = 2 × 1 = 2

3!  =  3×2×1 = 3 × 2! = 3 × 2 = 6

4!  =  4×3×2×1 = 4 × 3! = 4 × 6 = 24

5!  =  5×4×3×2×1 = 5 × 4! = 5 × 24 = 120

6!  =  6×5×4×3×2×1 = 6 × 5! = 6 × 120 = 720

7!  =  7×6×5×4×3×2×1 = 7 × 6! = 7 × 720 = 5040

8!  =  8×7×6×5×4×3×2×1 =  8 × 7! = 8 × 5040 = 40,320

9!  =  9×8×7×6×5×4×3×2×1 = 9 × 8! = 
9 × 40,320 = 362,880

10! =  10×9×8×7×6×5×4×3×2×1 = 10 × 9! = 
10 × 362,880 = 3,628,800

...
20! is about 2,000,000,000,000,000,000 

or two billion billion

This is the total number of possible routes for a traveling
salesperson who has to visit 21 cities.
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How long would it take a computer 
to check two billion billion 

possible routes?

... if it checked one billion
routes per second ...

... it would take two billion seconds ...

... and since one billion seconds is about
31.7 years ...

... it would take ...

63.4 years

How about if you had 30 cities?

It would be about a billion times as big as
that!
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Developed by Susan Simon, 
Leadership Program 1989

Hand-out #8 Nearest Neighbor Algorithm

John lives in Gettysburg and wants to visit eight colleges (besides Gettysburg) before

deciding to which ones he should apply.  Use the Nearest Neighbor Algorithm to find

a possible route that he might take.  (Problem by Susan Simon.)

Sc Pi Be Ge La Wi Re Ph Wa

Scranton 272  76 163 123  80  99 130 228

Pittsburgh 272 292 184 237 192 255 304 253

Bethlehem  76 292 127  80 121  49  54 178

Gettysburg 163 184 127  54 124  90 150  82

Lancaster 123 237  80  54 127  31  63 106

Williamsport  80 192 121 124 127 108 166 205

Reading  99 255  49  90  31 108  58 136

Philadelphia 130 304  54 150  63 166  58 136

Washington 228 253 178  82 106 205 136 136

(The colleges John wants to visit in these cities are, respectively, the University of

Scranton, Carnegie-Mellon, Lehigh, Gettysburg, Franklin and Marshall, Lycoming,

Albright, University of Pennsylvania, and American University.)
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Nearest Neighbor Algorithm

Nearest Neighbor Algorithm:  At each step of the way, go
to the nearest neighbor that has not yet been visited.  

Use the Nearest Neighbor Algorithm to find a route for a
traveling salesperson who begins his journey in Chicago
and must visit four other cities before returning to Chicago.

ChicagoSt. LouisCincinnatiPhiladelphiaPittsburgh

Chicago 256 254 669 403

St. Louis 256 308 813 553

Cincinnati 254 308 507 256

Philadelphia 669 813 507 267

Pittsburgh 403 553 256 267
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Solution to the Five Cities Problem
obtained by using the 

Nearest Neighbor Algorithm 

Can you find a better solution?
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Here’s a better solution!

The total here is 1741 vs. 1846 (miles)
for the Nearest Neighbor Solution!
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Visiting eight colleges – 
which route is shortest?
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Nearest Neighbor Algorithm solution
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The optimal solution(?)
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Applying the “Four Point Switch”

After finding an initial solution to the TSP

using the nearest neighbor algorithm, try to

improve on your solution using a four-point

switch.

Four-point switch: 

If A, B, C, and D are four consecutive vertices

in the circuit, switch to A, then C, then B, then

D if the sum of the weights on AC, CB, and BD

is less than the sum of the weights on AB, BC,

and CD.
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... and here’s how it works ...
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Algorithms for the Traveling Salesperson
Problem

Nearest Neighbor Algorithm
At each step along the way, go to the nearest
neighbor which has not yet been visited.

Repeated Nearest Neighbor Algorithm
Repeat the Nearest Neighbor Algorithm, starting
at each city, to obtain a number of different
circuits.  Use the circuit with the smallest total
mileage, but start the tour at the original city.
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Handout #9: Repeated Nearest Neighbor Algorithm

Nearest Neighbor – Start at “HOME”     Nearest Neighbor – Start at “A”

Nearest Neighbor – Start at “B”      Nearest Neighbor – Start at “C”

Nearest Neighbor – Start at “D”
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No efficient algorithm exists which always
provides the best solution to the Traveling

Salesperson Problem!  

We could of course look at all possible
solutions – the brute force method – but as

we have seen that is not an efficient
algorithm.

Not only is there no efficient algorithm, but it
is not known whether such an algorithm is

possible.  But no one has proved that such an
algorithm can’t exist.  

If anyone came up with an efficient algorithm
that always works ... or showed that no such
algorithm exists, they would be eligible for a
$1,000,000 prize from the Clay Mathematics

Institute – see
www.claymath.org/millennium/P_vs_NP/

The “P vs NP” problem is whether problems
like the Traveling Salesperson Problem can

be solved efficiently (P) or not (NP).

http://www.claymath.org/millennium/P_vs_NP/
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It would seem to make more sense to go 
P ÷ G ÷ W ÷ L

than
P ÷ W ÷ G ÷ L.

Indeed, P ÷ G ÷ W ÷ L is a total of 
    184 + 82  + 106 = 372 miles, 

whereas, P ÷ W ÷ G ÷ L is a total of
    253 + 82  + 54 = 389 miles.

Similarly, it would make sense to go 
S ÷ B ÷ Ph ÷ R, which is 188 miles, 

rather than
S ÷ Ph ÷ B ÷ R, which is 233 miles.
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Does this problem involve finding 
an Euler circuit or a Hamilton circuit?

The following figure represents a town where there is a sewer located at
each corner (where two or more streets meet).  After every thunderstorm,
the department of public works wishes to have a truck start at its
headquarters (at vertex H) and make an inspection of sewer drains to be
sure that leaves are not clogging them.  Can a route start and end at H that
visits each corner exactly once?

Assume that at equally spaced intervals along the blocks in this graph
there are storm sewers that must be inspected after each thunderstorm to
see if they are clogged.  Is this a Hamilton circuit problem, an Euler
circuit problem, or a Chinese postman problem?

(This problem is from For All Practical Purposes, published by
COMAP.)
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Hand-out #1:  Traffic Light Inspector's Problem

Can you inspect every intersection exactly once and end where you
start?  

Can you inspect every intersection exactly once if you don't have to
end where you start?
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Hand-out #2:  Looking for a Hamilton circuit

Can you find a Hamilton circuit for the following graphs (two copies of each are provided)?
If you can't find one, can you explain why there isn't one?
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Handout #3 – Sam Lloyd’s Bicycle Tour

Find a route from Philadelphia to Erie, passing once through each town.
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Hand-out #4:  Two Parallel Problems — Traffic Light and Road
Inspector

A.  Road Inspector’s Problem:

Can you inspect every road exactly once and end where you start?

B.  Traffic Light Inspector’s Problem:

Can you inspect every intersection exactly once and end where you

start? 

Question A asks whether a given graph has an Euler circuit?  

Question B asks whether a given graph has a Hamilton circuit?

These are parallel problems with different answers.

Does a given graph have an Euler circuit?  

T There is a simple and efficient way of telling whether or not a graph
has an Euler circuit

T and, if there is an Euler circuit, it is easy to find

Does a given graph have a Hamilton circuit?

T There is no simple and efficient way of telling whether or not a graph
has a Hamilton circuit

T and, even if you know that there is a Hamilton circuit, it may be hard
to find
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Developed by Susan Picker
Leadership Program, 1990

Hand-out #5:  Many errands

You have so many errands to run!  Starting from your house, you have to go to the

Fish Store, the Bakery, the Train Station, the Ice Cream Store, and then back home.

You can go in any order, but you want to make the shortest trip you can.  How many

miles will you go?



Copyright 1997 Rutgers Leadership Program in Discrete Mathematics — July 1999 Workshop 3     HO 6

From For All Practical Purposes,
Freeman, 1988, used with permission

Hand-out #6:  Visiting three cities

Use a tree diagram to enumerate all of the routes that begin in
Chicago, visit the other three cities and return to Chicago.  Which is
the shortest route that a traveling salesperson should take?
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Hand-out #7:  Factorials

1!  =  1
2!  =  2×1 = 2 × 1! = 2 × 1 = 2
3!  =  3×2×1 = 3 × 2! = 3 × 2 = 6
4!  =  4×3×2×1 = 4 × 3! = 4 × 6 = 24
5!  =  5×4×3×2×1 = 5 × 4! = 5 × 24 = 120
6!  =  6×5×4×3×2×1 = 6 × 5! = 6 × 120 = 720
7!  =  7×6×5×4×3×2×1 = 7 × 6! = 7 × 720 = 5040
8!  =  8×7×6×5×4×3×2×1 =  8 × 7! = 8 × 5040 = 40,320
9!  =  9×8×7×6×5×4×3×2×1 = 9 × 8! = 9 × 40,320 = 362,880
10! =  10×9×8×7×6×5×4×3×2×1 = 10 × 9! = 10 × 362,880 = 3,628,800
...

20! is about 2,000,000,000,000,000,000 
or two billion billion

This is the total number of possible routes for a traveling salesperson who has
to visit 20 cities.

How long would it take a computer 
to check two billion billion 

possible routes?

... if it checked one billion
routes per second ...

... it would take two billion seconds ...

... which is about ...

63.4 years!

How about if you had 30 cities?

It would be about a billion times as big as that!
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Developed by Susan Simon, 
Leadership Program 1989

Hand-out #8:  Nearest Neighbor Algorithm

John lives in Gettysburg and wants to visit eight colleges (besides Gettysburg) before

deciding to which ones he should apply.  Use the Nearest Neighbor Algorithm to find

a possible route that he might take.  (Problem by Susan Simon.)

Sc Pi Be Ge La Wi Re Ph Wa

Scranton 272  76 163 123  80  99 130 228

Pittsburgh 272 292 184 237 192 255 304 253

Bethlehem  76 292 127  80 121  49  54 178

Gettysburg 163 184 127  54 124  90 150  82

Lancaster 123 237  80  54 127  31  63 106

Williamsport  80 192 121 124 127 108 166 205

Reading  99 255  49  90  31 108  58 136

Philadelphia 130 304  54 150  63 166  58 136

Washington 228 253 178  82 106 205 136 136

(The colleges John wants to visit in these cities are, respectively, the University of

Scranton, Carnegie-Mellon, Lehigh, Gettysburg, Franklin and Marshall, Lycoming,

Albright, University of Pennsylvania, and American University.)
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Hand-out #9:  The Nearest Neighbor Algorithm, over and over. 

    

Apply the Nearest Algorithm to the given graph, pretending 

in each case that you are starting at the indicated vertex.  Of

course, once you find the best route, you would follow it 

starting from “home”.  The method of trying the Nearest

Neighbor Algorithm over and over is called the “Repeated

Nearest Neighbor Algorithm”, since you repeat the

algorithm starting at each vertex.
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Workshop 3 — Hamilton Circuits and the Traveling Salesperson Problem — Exercises

Practice problems:

1. Find a Hamilton circuit in the grid to the right.
.
Study group problems:

2. Each person at the table picks a different one of the five
vertices A, B, C, D, E.  (See diagram at right.)  Each
person then uses the nearest neighbor algorithm to find
a route starting and ending at his/her vertex and making
stops at the other four vertices.  Which of the Hamilton
circuits is cheapest?  Can you find a Hamilton circuit
that is cheaper than all of the nearest neighbor routes.

3. For each of the following graphs, find a Hamilton circuit or a Hamilton path.  (Number the edges
in the order used so that you can identify the path easily.)  If you cannot find a Hamilton circuit, try
to explain why none exists.

4. Find the best solution to the “Many Errands” problem in Hand-out #4 (at right) by using a tree-
diagram.
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5. Each person at the table chooses a different starting point and uses the nearest neighbor algorithm
to find a good route for a traveling salesperson who must visit the ten cities on the map below,
starting and ending at his/her chosen point.  Which of those routes is shortest?  Starting with each
route, can you find a shorter route by changing the order in which a few cities are visited?

Atlanta Boston ChicagoDenver HoustonLos AngelesMiami New YorkSan FranciscoVancouver

Atlanta 0 946 606 1323 696 1942 597 755 2135 2228

Boston 946 0 851 1770 1606 2597 1256 190 2699 2516

Chicago 606 851 0 921 941 1746 1189 714 1859 1776

Denver 1323 1770 921 0 878 831 1726 1632 950 1052

Houston 696 1606 941 878 0 1374 969 1419 1645 2340

Los Angeles 1942 2597 1746 831 1374 0 2340 2452 347 1071

Miami 597 1256 1189 1726 969 2340 0 1089 2595 2803

New York 755 190 714 1632 1419 2452 1089 0 2572 2433

San Francisco 2135 2699 1859 950 1645 347 2595 2572 0 791

Vancouver 2228 2516 1776 1052 2340 1071 2803 2433 791 0
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6. Explain why there is no Hamilton circuit in the diagram at the
right (which appeared in Hand-out #1).  (Suggestion:  Construct
a vertex coloring of this graph by alternating two colors, red and
blue, and consider the answers to the following questions:  If you
walked along a path in this graph, what colors would you see?
How many steps would there be in a Hamilton path in this
graph?  How many steps would there be in a Hamilton circuit?
If you start at a red vertex and walk along a Hamilton circuit,
what would be the color of the last vertex you reach before you
came back to the start?)

7. The figure at the left represents a town where there is a sewer
located at each corner, that is, where two or more streets meet.
(Note the similarity between this graph and the graph in the
preceding problem.)  After every thunderstorm, the department
of public works wishes to have a truck start at its headquarters
(at vertex H) and make an inspection of sewer drains to be sure
that leaves are not clogging them.  (From For All Practical
Purposes — COMAP.)
a. Can a route start and end at H that visits each corner

exactly once?
b. Can you find two different routes each of which uses

one of the two different diagonal streets?
d. Is there a route that uses both diagonal streets?
e.  Is there a route that uses none of the diagonal streets?

8. A postman has to collect mail from public mailboxes located at each corner in the neighborhood
pictured below.  What is the shortest Hamilton circuit you can find?

9. Construct four different graphs, G, H, I and J, each with five vertices, so that:
a. Graph G has neither a Hamilton circuit nor an Euler circuit
b. Graph H has a Hamilton circuit but not an Euler circuit
c. Graph I has no Hamilton circuit but does have an Euler circuit
d. Graph J has both a Hamilton circuit and an Euler circuit
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10.  Can you explain why the graph at the right has no Hamilton circuit?

Extension problems:

11. For amusement, you might try the following problem of “The Homicidal
Necrophobe”:  Think of a 4x4 grid as a cell-block.  Each cell in the grid contains a prisoner; adjacent
cells are connected by doors.  One night all doors are accidentally left unlocked.  This fact is
discovered by the prisoner in the top left cell who happens to be a homicidal necrophobe, and who
proceeds to kill all of the other prisoners in their own cells.  Since he would never enter a room
which contains a corpse, how can it happen that he ends up huddled in a corner in the bottom right
cell?

12. Hand-out #1 discussed the Traffic Light Inspector’s Problem (TLIP) for the case where the town was
laid out on a grid involving four blocks in one direction and five blocks in the other direction.  Try
solving the TLIP for towns which are laid out on grids of various other sizes, such as 1x2, 2x2, 1x3,
2x3, 3x3, etc.  Can you find a pattern for when the TLIP can be solved?

13. The number 20 has 6 factors:  1, 2, 4, 5, 10
and 20.  If you let these factors be labels on
the vertices of a graph, and draw an edge
between two vertices if (and only if) their
ratio is a prime number, then you get the
graph shown to the right.  As you can see, it
has a Hamilton circuit.  Similarly, if you
draw the factor graph for 30, you get the
other graph on the right, and it too has a
Hamilton circuit.
a. Draw factor graphs for all of the

numbers from 1 (just a single vertex) to 30
b. Which of those graphs turn out to have Hamilton circuits?
c. Can you make a conjecture regarding which factor graphs have Hamilton circuits?

14. Can you come up with a rule based on problem 4b which says that if such-and-such happens in a
graph, then it does not have a Hamilton circuit?

15. Use the four-point switch method to find a better solution to the Traveling Salesman Problem
involving five cities than the solution generated by the Nearest Neighbor Algorithm.  Use the four-
point switch method a second time to find the optimal solution described in class.

Four-point switch: If A, B, C, and D are four consecutive vertices in the circuit, switch to A, C, B,
D if the sum of the weights on AC, CB, and BD is less than the sum of the weights on AB, BC, and
CD.
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Table of Contents 

The Resource Book contains activities that teachers can use in their classes in
addition to those discussed in the institute workshop on the topics of Hamilton circuits and the
Traveling Salesperson Problem.

Pages 1-3, in the section “Mathematical Background”, contains the terminology
introduced in this workshop.  Pages 4-5 contain an outline of the Leadership Program’s workshop on
“Hamilton Circuits and the Traveling Salesperson Problem.”

Pages 6-13 contain a variety of problems dealing with Hamilton paths and circuits,
and a discussion (on page 9) of the parallels and differences between the search for Euler circuits and
the search for Hamilton circuits.

Pages 14-32 focus on the Traveling Salesperson Problem — including a discussion
of factorials on page 18, three activities (pages 26-31) where participants have to measure the
distances between sites in the problem, and an historical account on page 32.  

Mathematical Background

T Traffic Light Inspectors’ Problem:  Is it possible for a traffic light inspector to make an
inspection tour of all intersections on a map, passing through each intersection exactly once,
and ending back at the starting point?

T Hamilton circuit — A “Hamilton circuit” is a path which goes through each vertex exactly
once and returns to the starting point.

T Hamilton path — A “Hamilton path” is a path which goes through each vertex exactly
once but ends at a point other than the starting point.

T Does a given graph have a Hamilton circuit?  There is no simple and efficient way of
telling whether or not a graph has a Hamilton circuit; furthermore, even if you know that
there is a Hamilton circuit, it may be hard to find.

T Contrast with same question for Euler circuit — There is a simple and efficient way of
telling whether or not a graph has an Euler circuit (just check all of the vertices to see if any
has odd degree); furthermore, one you know that the graph has an Euler circuit, it's easy to
find one.

T Road Inspector’s Problem:  Is it possible for a road inspector to make an inspection tour
of all roads on a map, traveling over each road exactly once and ending back at the starting
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point?

Mathematical Background (continued)

T Contrast between Traffic Light Inspector’s Problem and Road Inspector’s Problem:
Although the two problems are started in almost identical ways, one problem is easy to solve
(since it involves Euler circuits) and one is hard to solve (since it involves Hamilton circuits).

T Traveling Salesperson Problem:  A traveling salesperson has to visit a number of cities in
any order and return to the starting location; what route should be used so as to minimize the
total distance (or cost)?  Another way of expressing this problem is:  In a complete graph
where every edge has a cost attached (such as the mileage), find a Hamilton circuit for which
the total cost of the edges is as little as possible.

T Applications of the Traveling Salesperson Problem:  There are many daily situations
which can be modeled by the traveling salesperson problem, ranging from UPS deliveries (in
which order should the packages be delivered?) to ATM machine collections to car pooling
(in which order should the kids be picked up?).  There are also many less apparent
applications, such as robots filling orders in an automated warehouse (in which order should
the items be collected?), preparation of computer chips (in which order should the holes be
drilled?), and collection of samples of ocean water (in which order should they be collected).

Resource:  An interesting computer program which involves finding good solutions to the traveling
salesperson program is the Scavenger Hunt on the Macintosh software Turtle Math, by Douglas H.
Clements and Julie Sarama Meredith, Logo Computer Systems Inc. (LCSI), 1994.

T Algorithm — An algorithm is a mechanical method which can be applied to many problems
of the same type; examples are the standard method for multiplying two numbers, the
instructions for preparing a cake or programming a VCR, and computer programs.

T Nearest Neighbor Algorithm:  The Nearest Neighbor Algorithm for the traveling
salesperson problem determines a route for the salesperson by choosing at each step along
the way to go to the closest city that has not yet been visited.

T Cheapest Link Algorithm:  The Cheapest Link Algorithm for the traveling salesperson
problem determines a route by choosing to travel along those edges which provide the
cheapest links between two cities; more precisely, a path is created by choosing possibly
disconnected edges, at each step adding the shortest edge which neither closes a loop (unless
it includes all cities) nor ends up with three edges meeting at a city.
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Mathematical Background (continued)

T Repeated Nearest Neighbor Algorithm:  The Repeated Nearest Neighbor Algorithm for
the traveling salesperson problem determines a route by first repeating the Nearest Neighbor

Algorithm, starting at each city, to obtain a number of different plausible routes, and
then selects from those the route with the smallest total mileage.  Although the best
route selected by the Repeated Nearest Neighbor Algorithm may be based at a
different city than where the traveling salesperson is based, that is where the
salesperson begins the route.

T Greedy algorithm:  A greedy algorithm is one where you do what seems best at the moment
without paying attention to the consequences of your decisions.  The Nearest Neighbor
Algorithm is an example of a greedy algorithm.  The Cheapest Link Algorithm is less greedy
than the Nearest Neighbor Algorithm because it takes into consideration all edges of the
graph.  The Repeated Nearest Neighbor Algorithm is also less greedy than the Nearest
Neighbor Algorithm because it also takes a more global view.  However, all three are still
relatively greedy because they will likely select a cheapest edge even though that may force
the later selection of a very expensive edge.

T Factorial notation n!:  The notation n! is used to represent the product of all the counting
numbers from 1 to n; for example, 6! = 6x5x4x3x2x1.  This is the explicit rule for factorials.
The observation that 6! = 6 x 5! leads to the recursive rule for factorials, that n! = n x (n-1)!,
where each factorial is described in terms of the previous factorial.

T Number of routes for the traveling salesperson:  If there are n cities, then the first city
visited (after the home city) can be chosen in n-1 ways, the next city in n-2 ways, etc.  The
total number of tours is (n-1)•(n-2)•(n-3)•...•3•2•1 which is (n-1)!.  Another way of saying
this is that the complete graph with n vertices has (n-1)! Hamilton circuits.  Of these, half are
repeats of the other half, traveled backward.  There are thus altogether (n-1)!/2 distinct
Hamilton circuits.
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Workshop Outline

1. Traffic Light Inspector’s Problem
a. Determine whether there is a solution to this problem in several examples.
b. Introduce the ideas of Hamilton path and Hamilton circuit, and determine whether

several graphs have Hamilton paths or circuits.
c. There is no rule for determining whether a graph has a Hamilton circuit or path.  This

is quite different from the problem discussed in the previous workshop where there
was a simple rule for determining whether or not a graph has an Euler path or circuit.

d. Introduce road inspector problem for which, despite the parallel to the traffic light
inspector problem, solutions can be found easily.

2. Traveling Salesperson Problem
a. Use “errand problem” as introduction to the Traveling Salesperson Problem.
b. Discuss possible solution strategies — such as “trial and error” and “list all possible

paths” (tree diagram) — and determine the solution.
c. Solve four-cities Traveling Salesperson Problem using a tree diagram.  Reminder that

these are examples of weighted graphs, a term used in the snow video in the previous
workshop.

3. Exponential growth and combinatorial explosion.
a. Take opportunity to count the number 3! = 6 of possible solutions in four-city

problem, and to note that since each route can be run backwards, there are really only
three distinct possibilities.  

b. Note that if there are five cities, then there would be 4! = 24 possible solutions to
consider and show a tree diagram for those 24 solutions.  If there were six cities,
there would be 5! = 120 possible solutions.  Note that one reason we did several
problems involving tree diagrams was to become convinced that we don't want to
solve larger problems using tree diagrams.

c. Proceed to introduce both the standard and recursive definitions of “factorial” and
to discuss the size of 10! and 20! which is about 2 billion billion.

d. If a computer could review a billion possible solutions each second and determine
the cost of each of those paths, then it would still take two billion seconds for it to
find the best path.

e. How long is a billion seconds?  A simpler problem — how long is a million seconds?
Elicit the answer that a million seconds is about 12 days, so that two billion seconds
is about 12x2000 days, or about 70 years.  Even if computers were a thousand times
faster, they would be stymied by a problem involving a few additional cities.  There
must be another way to deal with Traveling Salesperson Problems!
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4. Algorithms for the Traveling Salesperson Problem
a. Introduce “nearest neighbor algorithm (NNA)”.  Place this in the context of the idea

of an “algorithm” — a mechanical method which can be applied to many different
but similar problems.  Apply the NNA to the four cities problem.  

b. Show by example that the NNA does not always give the best solution.  Discuss the
notion of a “greedy algorithm” and explain why such an algorithm often fails. 

c. Apply the “cheapest link algorithm” and the “repeated nearest neighbor algorithm”
to the eight colleges problem.

d. No algorithm exists which always provides the best solution to the Traveling
Salesperson Problem.

5. Applications of the Traveling Salesperson Problem
a. Common applications are to UPS deliveries, ATM collections, and car pools
b. Industrial applications are to automated warehouses (where robots use a Traveling

Salesperson Problem algorithm to determine in which order to retrieve the drugs on
a list), drilling of computer chips (in which the drills have to be tole the order in
which to drill the thousands of holes they need to make), and water sampling (where
marine biologists have to decide in which order to collect water samples from
hundreds of sites).
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Traffic Light Inspector's Problem and Road Inspector’s Problem

A.  Traffic Light Inspector’s Problem:

Can you inspect every intersection exactly once and end where you start?  

Can you inspect every intersection exactly once if you don’t have to end where you start?

B.  Road Inspector’s Problem:

Can you inspect every road exactly once and end where you start?  

Can you inspect every road exactly once if you don’t have to end where you start?
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Hand-out #2:   Looking for a Hamilton circuit
Can you find a Hamilton circuit for the following graphs (two copies of
each are provided)?  If you can’t find one, can you explain why there isn’t
one?
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A.  Road Inspector’s Problem:

Can you inspect every road exactly once and end where you start?

Can you inspect every road exactly once if you don’t have to end where you start?

A. Traffic Light Inspector’s Problem:

Can you inspect every intersection exactly once and end where you start?

Can you inspect every intersection exactly once if you don’t have to end where you
star
t? 
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Two Parallel Problems — Traffic Light and Road Inspector

A.  Road Inspector’s Problem:

Can you inspect every road exactly once and end where you start?

A.  Traffic Light Inspector’s Problem:

Can you inspect every intersection exactly once and end where you start? 

Question A asks whether a given graph has an Euler circuit?  

Question B asks whether a given graph has a Hamilton circuit?

These are parallel problems with different answers.

Does a given graph have an Euler circuit?  

T There is a simple and efficient way of telling whether or not a graph has an Euler
circuit

T and, if there is an Euler circuit, it is easy to find

Does a given graph have a Hamilton circuit?

T There is no simple and efficient way of telling whether or not a graph has a
Hamilton circuit

T and, even if you know that there is a Hamilton circuit, it may be hard to find
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Does this problem involve finding an Euler circuit or a Hamilton circuit?

The following figure represents a town where there is a sewer located at each corner (where two or
more streets meet).  After every thunderstorm, the department of public works wishes to have a truck
start at its headquarters (at vertex H) and make an inspection of sewer drains to be sure that leaves
are not clogging them.  Can a route start and end at H that visits each corner exactly once?

Assume that at equally spaced intervals along the blocks in this graph there are storm sewers that
must be inspected after each thunderstorm to see if they are clogged.  Is this a Hamilton circuit
problem, an Euler circuit problem, or a Chinese postman problem?

(This problem is from For All Practical Purposes, published by COMAP.)
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Sam Lloyd's Bicycle Tour
Find a route from Philadelphia to Erie, passing once through each town.
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Developed by Susan Picker
Leadership Program, 1990

Many errands

You have so many errands to run!  Starting from your house, you have to go to the Fish

Store, the Bakery, the Train Station, the Ice Cream Store, and then back home.  You

can go in any order, but you want to make the shortest trip you can.  How many miles

will you go?
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Visiting three cities

Use a tree diagram to enumerate all of the routes that begin in Chicago, visit the other three
cities and return to Chicago.  Which is the shortest route that a traveling salesperson should
take?

From For All Practical Purposes,
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Freeman, 1988, used with permission
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Factorials
1!  =  1
2!  =  2×1 = 2 × 1! = 2 × 1 = 2
3!  =  3×2×1 = 3 × 2! = 3 × 2 = 6
4!  =  4×3×2×1 = 4 × 3! = 4 × 6 = 24
5!  =  5×4×3×2×1 = 5 × 4! = 5 × 24 = 120
6!  =  6×5×4×3×2×1 = 6 × 5! = 6 × 120 = 720
7!  =  7×6×5×4×3×2×1 = 7 × 6! = 7 × 720 = 5040
8!  =  8×7×6×5×4×3×2×1 =  8 × 7! = 8 × 5040 = 40,320
9!  =  9×8×7×6×5×4×3×2×1 = 9 × 8! = 9 × 40,320 = 362,880
10! =  10×9×8×7×6×5×4×3×2×1 = 10 × 9! = 10 × 362,880 = 3,628,800
...
20! is about 2,000,000,000,000,000,000 

or two billion billion

This is the total number of possible routes for a traveling salesperson who has to visit 20
cities.

How long would it take a computer 
to check two billion billion 

possible routes?

... if it checked one billion
routes per second ...

1 Million seconds About 11 days, 14 hours

2 Billion seconds 63.4 years

How about if you had 30 cities?

It would be about a billion times as big as that!
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Nearest Neighbor Algorithm

John lives in Gettysburg and wants to visit eight colleges (besides Gettysburg) before deciding to
which ones he should apply.  Use the Nearest Neighbor Algorithm to find a possible route that he
might take.  (Problem by Susan Simon.)

Sc Pi Be Ge La Wi Re Ph

Wa

Scranton 272  76 163 123  80  99130

228

Pittsburgh 272 292 184 237 192 255304

253

Bethlehem  76 292 127  80 121  49  54

178

Gettysburg 163 184 127  54 124  90150

 82

Lancaster 123 237  80  54 127  31  63

106

Williamsport  80 192 121 124 127 108166

205

Reading  99 255  49  90  31 108  58

136

Philadelphia 130 304  54 150  63 166  58

136

Washington 228 253 178  82 106 205 136136

(The colleges John wants to visit in these cities are, respectively, the University of Scranton,
Carnegie-Mellon, Lehigh, Gettysburg, Franklin and Marshall, Lycoming, Albright, University of
Pennsylvania, and American University.)
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Developed by Susan Simon, 
Leadership Program 1989
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A Ten City Problem
Use the nearest neighbor algorithm and the cheapest link algorithm to find good routes for a traveling
salesperson who must visit the ten cities on the map below, one of which is both start and end of the

trip.

Atlanta Boston ChicagoDenver HoustonLos AngelesMiami New YorkSan FranciscoVancouver

Atlanta 0 946 606 1323 696 1942 597 755 2135 2228

Boston 946 0 851 1770 1606 2597 1256 190 2699 2516

Chicago 606 851 0 921 941 1746 1189 714 1859 1776

Denver 1323 1770 921 0 878 831 1726 1632 950 1052

Houston 696 1606 941 878 0 1374 969 1419 1645 2340

Los
Angeles

1942 2597 1746 831 1374 0 2340 2452 347 1071

Miami 597 1256 1189 1726 969 2340 0 1089 2595 2803

New
York

755 190 714 1632 1419 2452 1089 0 2572 2433
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San
Francisc

o

2135 2699 1859 950 1645 347 2595 2572 0 791

Vancou
ver

2228 2516 1776 1052 2340 1071 2803 2433 791 0
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A Brief History of the Traveling Salesman Problem (TSP)

“The origins of the TSP are obscure.”  That's what it says in Finding Cuts in the TSP, a
Technical Report of the Center for Discrete Mathematics and Theoretical Computer Science
(DIMACS), which sponsors the Leadership Program in Discrete Mathematics.  This technical report,
by David Applegate, Robert Bixby, Vasek Chvatal, and William Cook, begins with a historical
introduction to the TSP (on which this page is based), which notes that although the problem was
discussed in the 1920s, again in the 1930s, and in the 1940s, not much happened until the 1950s.

: A breakthrough came in 1954, when George Dantzig, Ray Fulkerson, and Selmer Johnson
published a method for solving the TSP (based on linear programming) and illustrated the
power of this method by solving an instance with 49 cities, an impressive size at that time.
The 49 cities consisted of one city from each of the then 48 states, together with Washington,
D.C.

It is important to distinguish between “finding a good solution for a TSP” and “solving a TSP”, that
is, finding the best solution.  In most applied situations, a good solution may very well be adequate,
even if it not the best solution.  The method of Dantzig, Fulkerson, and Johnson actually finds the best
solution, but only works in certain kinds of TSP; for other problems, it does not work at all.

: In 1972, Brian Kernahan and Shen Lin at AT&T Bell Labs, Murray Hill (NJ) devised a
method for providing a solution to any TSP which is within 2% of the best solution;
subsequent researchers have continued to refine their methods, so that finding nearly optimal
routes even in fairly large TSP problems is a relatively easy task with the aid of computers.

: Two notable examples of TSP problems where the optimal solution was actually obtained
were an example of 532 cities (based on data from AT&T) and an example involving 2392
cities (solved in 1986 and 1988 respectively) by Manfred Padberg (Courant Institute of
Mathematical Sciences of New York University) and Giovanni Rinaldi (Institute for Systems
Analysis in Rome). 

: In 1991, Gerhard Reinelt collected together into a library called TSPLIB about 100 difficult
examples of TSP arising from both industrial sources and artificially-defined-but-natural-
examples like the 49-city example mentioned above. TSPLIB includes problems that have
been solved, like the two problems (involving 532 and 2392 cities) mentioned above, and
about 30 problems that had not been solved.

: During the following four years, David Applegate (AT&T Bell Labs), Robert Bixby (Rice
University), Vasek Chvatal (Rutgers University), and William Cook (Bellcore), using a
network of over 50 workstations, and refining the methods of Dantzig’s group, found optimal
routes for 20 of the 30 unsolved problems in TSPLIB, including problems that involved 3038
cities (in 1992), 4461 cities (in 1993), and 7397 cities (in 1994).  

It should be noted, however, that the number of cities alone is not what makes a problem difficult;
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anyone can solve a TSP with 10,000 cities that are arranged on the circumference of a circle.
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