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 LEADERSHIP PROGRAM IN DISCRETE MATHEMATICS 
 
Instructor's Notes 
 
November 22, 1999 
 
Follow-up: Variations on Coloring 
 
 
Activity #1 — Refresher on vertex coloring of graphs 
 (Allocated time = ??????? minutes) 
 
 A.  Show TSP # 1, which contains a map of a portion of the United States.  Ask the 
participants to imagine that they are mapmakers, responsible for coloring this map.  What 
can they say about coloring this map? 
 

What you are looking for here is that adjacent regions must not get the same color, and 
that this map requires 4 colors.  They should also be able to prove to you that this map 
takes 4 colors, since when a first color is chosen for Nevada, three additional colors must 
be used for the 5 states around it. 

 
 Ask the participants how we modeled such coloring activities.  They should be able 
to tell you that a graph was used to model the map, with vertices representing regions and 
edges representing adjacencies.  You can then put up TSP#2, overlaying it on TSP # 1, 
showing this graph.  Redo the coloring activity just completed on the graph, with the map 
removed, to remind them that the model contains all the information from the map that we 
needed to do the coloring.  Show TSP#3 To remind them of the rules of graph coloring and 
the definition of “chromatic number.” 
 
 Also take this time to remind the participants of other conflict resolution problems 
which we solved by graph coloring.  TSP#4 Shows several of these, taken from the first 
day’s workshop.  Explain, for each of the two problems, what the vertices and edges of the 
associated graphs would correspond to. 
 
 
Activity #2 — Edge coloring of graphs 
 (Allocated time = ??????? minutes) 
 
 A.  Put up the word problem shown on TSP#5, and read it with the participants.  
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The point of this slide here is not to actually solve the problem, but to discuss how we 
might model the problem.  Take some time to discuss with the participants whether the 
people or meetings might represent the vertices, or edges.  The next slide shows the 
corresponding “meeting graph.” 

 
 When the time is right, put up the meeting graph on TSP#6.  Continue the 
discussion with this visual aid, filling in “the blanks” on the slide.  Now that they can see 
the model of the problem, try to lead them to discover the proper model for the solution, 
which is edge-coloring.  This done, you can show TSP#7 which defines the notion of edge 
coloring and gives some terminology.  
 
 B.  When they understand the goal of edge coloring, distribute HO #2, which asks 
them to find the chromatic indices of some classes of graphs with which they are already 
familiar — cycles, complete graphs and grids.  These graphs can be 
found on TSPs #8 and 9.  
 

The cycles and grids should be fairly easy, but the complete 
graphs will present a more significant challenge.  For complete 
graphs with an even (for example, 8) number of vertices, you can 
show that the matching shown to the right can be one color class, 
and the rotates of those edges can form the other 6 color classes, 
yielding a legal 7-edge coloring of K8.  (This generalizes to all 
even n, showing that the chromatic index of Kn. is n – 1, for even n.)  For odd complete 
graphs, the vertex in the center is a sort of “dummy vertex” which is “connected” to an 
unmatched vertex.  This shows that the chromatic index of odd complete graphs is n.   

 
It may not necessarily be prudent to actually show this construction to the participants, 
but if the instructor thinks it will be well-received, then go for it! 

 
 Mention to the participants that edge-coloring a complete graph corresponds to 
scheduling a round-robin tournament among some number of players. 
 

It is probable that this is the application of edge-coloring that they are most likely to use 
in their classes, so it is important not to skip mentioning this. 

 
 C.  Put up TSP #10 which has another word problem involving parent-teacher 
meetings.   

This problem is intentionally difficult, and is there to show another application of edge 
coloring to scheduling, and to motivate the next slide which shows how to get the answer 
very quickly to this problem.  During the first day of week 1, the participants were shown 
Brooks theorem about vertex colorings of graphs.  The analogous theorem for edge 
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colorings is Vizing’s theorem; both of these are shown on TSP #11, together with a 
bipartite version of Vizing’s theorem.  The interesting thing about the bipartite case is 
that it actually shows equality, and not just inequality.  This makes the parent-teacher 
problem very easy! 

 
 Finally, show TSP #11 with the three theorems mentioned above.  If time permits, 
you may wish to note how the bipartite case of the theorem covers the grid graphs, which 
are bipartite.  How do you know they are bipartite?  Well, as they should have seen in the 
second summer of the program, 2-vertex-colorability implies bipartiteness. 
 
 
Activity #3 — List Coloring of Graphs 
 (Allocated time = ??????? minutes) 
 
 A. The three graphs shown in this activity should all be laid out on 
the floor or on a tarp, made large enough so that participants can stand at the vertices 
without crowding one another.  At each vertex should be two linker cubes — one red one 
and one blue one. 
 
 Have 6 participants stand at the vertices of the 6-cycle.  Ask them to pick up the two 
linker cubes at their vertex.  On the count of three, you want them to lay down one of the 
cubes on their vertex so that a legal coloring of the graph results.  One - Two - Three!  
When they lay down their cubes, and finish adjusting, make sure that they have achieved a 
legal coloring.  This shouldn’t take too long. 
 

They will probably have to discuss among themselves a little bit the idea that the colors 
have to alternate around the cycle, and this has to be coordinated.  If such discussion 
doesn’t seem to be taking place, you may wish to precipitate it by asking if there is a 
different coloring that will work. 

 
 That done, have the participants put their two cubes aside (perhaps you can quickly 
collect them) and then walk around the cycle with a bucket of separated linker cubes, and 
allow each participant to select two of them at random from the bucket.  The only 
restriction is that no one should select two cubes of the same color.  Now repeat the above 
activity:   On the count of three, you want them to lay down one of the cubes on their vertex 
so that a legal coloring of the graph results.  One - Two - Three!  When they lay down their 
cubes, and finish adjusting, make sure that they have achieved a legal coloring.  Ask them 
if this was easier or harder than the previous case.   
 

It is likely that they will say it was easier because there was more freedom because the 
same colors didn’t appear at each vertex.  This, of course, is not always true, as they will 
see in the case of the grid below.  After the grid activity, we will return to this and the 7-
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cycle, and ask the participants if they think it is possible to assign lists of 
colors to the vertices so that there is no legal coloring possible. 

 
 B.  Repeat activity A. on the 7-cycle.  There should again be two blocks 
sitting on each vertex, the same two colors at each vertex.  Participants this time, on the 
count of three, will fail to find a legal coloring.  Discuss it a bit, and ask them what they 
think would happen if you let them all pick randomly from the bucket again.   
 
 Collect their blocks and let them select two again from the 
bucket.  Then see if they can, on the count of three, color the vertices 
of the graph. 
 

Most likely they will be able to.  See!  It is easier!   
 
 C.  Repeat the activity on the grid graph shown here.  Since 
this graph is bipartite, they will have little trouble 2-coloring it.  
Collect their cubes, and again “randomly” hand out colors to the 
participants.  This time, however, you will hand them their “random” colors from the 
bucket so that the people at the various vertices get assigned the lists shown in the figure.  
This will work best if you make it look random.    
 

From these lists a legal coloring is not possible.  For if the left center vertex is colored 
“A”, then the vertex above must be “C,” which forces the vertex on the top right to be 
“B,” which forces the right center vertex to also be “A.”  But it’s adjacent to our first 
“A” vertex.  And if the left center vertex is colored “B,” then the contradiction arises by 
chasing the colors around the bottom. 

 
 
 The participants will realize that this is not possible, but you should have them 
prove it, along the lines given above.  But what about our earlier belief that “spreading 
out” the colors will make the problem of coloring easier?  As they can see, this is not always 
the case. 
 
 D.  Return to the 6-cycle, and ask the participants if they think that “spreading out” 
the colors can make it impossible to color this graph, if each vertex is given two colors to 
choose from.  Give them a few minutes to try this, and in the end, they will conclude that it 
is not possible.  Probably. 
 

In fact, if the lists (of size two) on the vertices of any cycle, odd or even, are not all the 
same, then there will always be a legal coloring.  The proof that it is always possible 
goes like this:  Select a vertex v which has a different list than an adjacent vertex w.  
Color v with a color that is not on w’s list, and then move around the cycle, in the 

AB

AC

BC

AB

BC

AC
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direction away from w, coloring each vertex with a color on its list different from the 
color used on the previous vertex.  When you go all the way around the cycle, back to w, 
you will have no problem, because v is colored with a color not even on w’s list. 

 
It is not clear that the participants will be able to come up with this proof.  If not, you can 
leave it for the handout, which follows, or you can show it to them now. 

 
 You can show TSP #12 which shows these graphs and the terminology of list 
coloring. 
 E.  Distribute HO #3 = TSP #13 which contains several graphs.  These 
graphs are all bipartite, and so are all 2-colorable.  Their job on the top 
three graphs is to decide if they are colorable from the given list assignments.  
On the bottom graph, their job is to assign lists of size 2 to the graph so that 
there is no legal coloring.  (12, 13, 23 on each side does it.) 
 

The first graph has a good coloring, the second one does not (for the same “chasing 
colors” reason as the grid graph above), and the third one does not (because, for each of 
the 4 ways to color the two vertices on the left and right, there is a vertex in the middle 
column whose list has only those two colors, and thus can’t be colored). 

 
The bottom one contains the grid graph above as a proper subgraph, so you can already 
use those lists.  Another way is that shown in the bold text above. 

 
 F.  Finally, you may wish to show them that bipartite graphs, which are 2-colorable, 
can sometimes not be colored even if you have 20 colors available at each vertex!  To do 
this, show TSPs #14 and 15, containing the complete bipartite graph K3 , 27 , and a list 
assignment of same.  You can mention how this can generalize to having k vertices on one 
side, and k k vertices on the other side, with lists of size k on each vertex, without admitting 
a coloring.  It’s a good counting problem. 
 
 
Activity #3 — On-Line Coloring of Graphs 
 (Allocated time = ??????? minutes) 
 
 A. The t 
 
 
1. On-line coloring 

a. Examples 
i. P(4) has chromatic number 2, but on-line, it can require 3 colors 
ii. Pair of graphs which need 2 colors each, but on-line they require 3. 
iii. However, as a pair, those two graphs can require 4 colors if the colorer 
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does not know which graph he is coloring! 
b. Bipartite graphs can be arbitrarily high 
c. Even trees can! 

2. Coloring with an uncooperative partner 
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A Portion of the United States Map 
 
 
 
 
 
 
 
 

NV

OR ID

UT

AZ

CA
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The Graph Corresponding to the Map 

NV

OR ID

UT

AZ

CA
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Rule for Graph Coloring 
 
 
 

 Adjacent vertices must get different colors. 
 
 Recall that two vertices are adjacent if they are 

connected by an edge. 
 
 
 

Chromatic Number of a Graph 
 
The "chromatic number of a graph" is the smallest 
number of colors that can be used for a coloring of the 
graph.  If the graph is called G, then the chromatic 
number of G is often written as (G), read "chi (kye) of 
G". 
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For the graph shown above, (G) =  _____ 
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Some Scheduling Problems Solved by Vertex 
Coloring 

 

1. In the zoo problem, the 
initial solution (at right) 
involved four habitats, 
labeled A, B, C, D.  Can 
you find a solution which 
requires only three 
habitats? 

 
 
2. Find a schedule for the class projects shown below. 
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Projects Students
Day

 Assigned

Dinosaurs:
Spain:
Bicycles:
Muscles:
Fairy Tales:
Hockey:

Sarita, Barbara, Ravi
Sarita, Roberto
Roberto, Maimuna
Maimuna, Boris, Christie
Barbara, Boris, Jason
Ravi, Christie, Jason
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Morning Meetings 

 
Art, Bob, Carol, Dee, Egbert, Fran and Geza are writers 
for a newspaper.  Each morning, before doing any other 
work, they get together for one-on-one meetings to 
discuss assignments for the day.  Below is a chart 
showing who needs to meet with whom on Monday 
morning: 
 
Art  Fran 

Bob Art, Carol 

Carol Bob 

Dee Carol, Egbert, Fran 

Egbert Art, Dee 

Fran Art, Dan 

Geza Bob, Fran 
 
The meetings last 15 minutes each, and several meetings 
may take place in each 15 minute block. 
 
What schedule for these meetings will require the 
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fewest blocks? 
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A E

D

C

GB

F

 

The Meeting Graph 
 
How can this graph be used to schedule the meetings? 
 
The people correspond to ________ in this graph 
 
The meetings correspond to ________ in this graph 
 
What should we color? 
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What is the coloring restriction? 
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Edge Colorings of Graphs 

 
 
 We color the edges of the graph, not the vertices 

 
 Edges which meet at a vertex (incident edges) must 

get different colors 
 
 The least number of colors needed to edge color a 

graph is called the chromatic index of the graph 
 
 The chromatic index of G is denoted ’(G),  

 “chi-prime of G “ 
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Chromatic Index of some Graphs 
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Chromatic Index of some Graphs 
 

 
 
 

The chromatic index of a cycle on n vertices is  ______ 
 
The chromatic index of a complete graph  
 on n vertices is  _______ 
 
The chromatic index of a grid graph is  _______ 
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Parent-Teacher Meetings 

 
 
Tonight is parent-teacher night.  
The graph to the right shows 
which parents (shaded) need to 
meet with the various teachers 
(unshaded).  
 
 If the meetings take place in 10-
minute blocks, what is the fewest 
number of blocks needed to 
complete all the meetings? 
 
 
 
 
 
Don’t Panic! 
 
We have a theorem... 
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Brooks’ Theorem 

 
If D is the largest degree in a graph G, then  
 

(G)  D  
 
(unless G is an odd cycle or a complete graph). 
  
 

Vizing’s Theorem 
 
If D is the largest degree in a graph G, then  
 

(G)  D + 1 
  
 

For Bipartite Graphs 
 
If D is the largest degree in a bipartite graph G, then  
 

(G) = D 
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Note that this applies to grid graphs. 
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List Coloring 

 
 The sets of colors at each vertex are called lists. 

 
 Coloring the vertices from given lists at each vertex 

is called list coloring. 
 
 A graph is called 2-choosable if it can always be 

colored from lists of size 2 at each vertex, no matter 
how “bad” the lists are.  Same for 3-choosable, etc... 

 
 The smallest list size that always yields a coloring is 

called the choice number of the graph. 
 
 The choice number can be the same as the chromatic 
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number, or it may be bigger, but it can never be 
smaller. 
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AC
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BC

BC
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AC

CD

AB

BC

BC BE

EB

DE
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AB CD

AC

AD

BC

BD

Handout #3 — List Colorings of Graphs 
 
1. Which of the following graphs can be vertex-

colored from the given list assignments? 
 
1. The following graph has a list assignment which 

does not yield a good coloring.  Can you find it? 
 (Four copies of the graph are provided.) 
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A Bipartite Graph which is not 3-Choosable 
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A Bipartite Graph which is not 3-Choosable 

ABC
 
 
 
 
DEF
 
 
 
 
GHI

ADG
ADH
ADI
AEG
AEH
AEI
AFG
AFH
AFI
BDG
BDH
BDI
BEG
BEH
BEI
BFG
BFH
BFI
CDG
CDH
CDI
CEG
CEH
CEI
CFG
CFH
CFI
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Some Facts about List Coloring 
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D
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D
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F

A E

D

C
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F

A E

D

C

GB

F

Handout #1 — Scheduling the Meetings 
 
What is the fewest number of colors needed to edge-color this graph (4 copies are provided) so that incident 

edges get different colors? 
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Handout #2 — Chromatic Index 
 

Find 
the 
chrom
atic 
index 
of each 
of the 
followi
ng 
graphs.  
(Two 
copies 
of each 
are 
provid
ed.) 
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Handout #3 — List Colorings of Graphs 
 
1. Which of the following graphs can be vertex-colored from the given list assignments? 

 
 
 
 
 
2. The following graph has a list assignment which does not yield a good coloring.  Can you find it? 
 (Four copies of the graph are provided.) 
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Handout #4 — Crossing Number of 
Graphs? 

 
What is the minimum number of crossings with which each of these 
graphs can be drawn in the plane? 
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Drawing Graphs 
 
 
 
 
 
  

 
 
 
 

Follow-up session 
 
 
 
 

Winter/Spring 1999 
 



 

 

 
One of these things is not like the other 

 
 



 

 

 
Are These Graphs all Different? 

 
A B C

D E F

G H I

J K L



 

 

Proving that Two Graphs are Isomorphic 
(In Case Someone Does Not Believe You) 

 



 

 

Is it possible to connect each house with each utility 
without crossing “lines?” 



 

 

A B

C D

 
Graph Isomorphism 
 
Two graphs are isomorphic to one another if, speaking loosely, they 
are actually the same graph, just drawn differently.   
 
More precisely, suppose you number the vertices in one graph 1, 2, 3, 
..., (up to the number of vertices in that graph) and then number the 
vertices in another graph 1, 2, 3, ..., (up to the same number of 
vertices).  And suppose also that for every edge in the first graph 
there is an edge connecting the corresponding vertices in the second 
graph, and that for every edge in the second graph there is an edge 
connecting the corresponding vertices in the first graph.  Then these 
graphs are isomorphic.   
 
In particular, if two graphs are isomorphic, then: 
 They must have the same number of vertices 
 They must have the same number of edges 
 They must have the same number of vertices of degree1 
 They must have the same number of vertices of degree 2 
 etc... 
 If one graph has a triangle in it (a 3-cycle) then the other must also have a triangle 
 In general, any structure which is found in one graph must also be present in any graph which is 

isomorphic to it 
 
Thus, if you wish to prove that two graphs are not isomorphic to one another, all you need to do is find some 
structure or property which is present in one of the graphs, but is not present in the other graph.  This 
property must not depend on the way the graphs are drawn, but only on the structural properties of the 
graphs. 
 
 
 
 
Planar Graphs 
 
A graph which can be drawn in the plane without any crossing edges is called planar. 
 
Some examples of planar graphs are shown to the right: 
 
Note that a graph is called planar if it can be drawn in the plane without crossings.  Thus even though some 
of the graphs to the right are drawn with crossings, they can be drawn without crossings. 



 

 

 

Crossing Numbers of Complete Graphs 
 

This table shows all that is currently known about the 
crossing numbers of complete graphs: 

 

# Vertices Predicted 
Value 

Known 
Value 

Straight 
edges only 

1 0 0 0 

2 0 0 0 



 

 

3 0 0 0 

4 0 0 0 

5 1 1 1 

6 3 3 3 

7 9 9 9 



 

 

8 18 18 19 

9 36 36 36 

10 60 60 61 or 62 

11 100   

12 150   



 

 

13 225   



 

 

Handout #? — Same or Different? 
 
For each of the following pairs of graphs, classify them as either the same or different and provide a reason 
why. 
 

Why?                                                                                   

 

SAME 
 

or 
 

DIFFERENT 
 
? 

 
 
 
 
 
 
Why?                                                                                     

 

SAME 
 

or 
 

DIFFERENT 
 
? 



 

 

 
 
 
 
 
 
 
Why?                                                                                     
 

SAME 
 

or 
 

DIFFERENT 
 
? 
 

 



 

 

Handout #2 — Connect the Dots — Without Crossing! 
 
Connect each dot in the top row with each dot in the bottom row.   
For each case, three copies are provided. 
 
 



 

 

Handout #3 — Which graphs are planar? 
 
Determine which of the following graphs are planar, and which are not. 



 

 

Handout #4 — Crossing Number of 
Graphs? 

 
What is the minimum number of crossings with which each of these 
graphs can be drawn in the plane? 


