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Alphabetizing and Sorting

Activity #1 — Introduction:  Sorting test papers 
(Allocated time = 30 min)

A.  The participants should be seated in groups of 5.  Each participant is given a set
of 20 quarter-sheets representing test papers.  Ask the participants to put their packets of
20 test papers in alphabetical order.  

Note that sorting tests or quizzes like this is a real-life activity that teachers are familiar
with...and they will each likely have opinions about the best way to sort.  This is good
material to build on.

When they are done, ask the participants to share within their groups the methods they
used to sort and the advantages or disadvantages of the methods.  Also, encourage them
to brainstorm to come up with the best sorting method they can find.

B.  Regroup and poll the groups on the methods they discussed and found favorable. 
On the board or on the overhead, write down a description of their methods and elicit
names for the different algorithms.

The algorithms that we will be doing formally with the participants include Straight
Selection Sort, Insertion Sort, Bubble Sort and Merge Sort.  If any of these methods come
up, try to have the appropriate name naturally assigned to the method.  

As the discussion proceeds, stress the qualities “speed” and “ease of implementation”
just to make everyone aware that these are the characteristics that can make one method
better than another.

C.  Ask the participants to turn their test papers over (() and combine the piles into
one large stack showing numbered papers.  Ask them to consider the sorting algorithms
that have been presented and to discuss which one or ones they think would be best to use
to sort this large stack of 80 or 100 papers.  Then ask them to try those  methods. 

Note that when the individual participant stacks are sorted by last name, then the
numbers on the reverse sides are unsorted.  So there is no need to have them shuffle the
large stack that they form.

D.  Regroup and poll the room on which methods they thought worked best.  Try to
have the participants verbalize why some of the earlier methods were no longer desirable,
and if any new methods were mentioned, ask how they think those methods would perform
with a smaller stack of papers to sort.

When all the tables have contributed, go over the list and indicate the methods that we
will “officially” discuss during the rest of the workshop.  These include, if they have
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come up, straight selection sort, bubble sort and merge sort.

Note that when this workshop was given in May of 1997, several different groups
discovered some sort of “bucket sort” in which ranges were pre-specified (such as A-H,
I-R, S-Z), and test papers were placed in the appropriate buckets, to be sorted later. 
Variants included sorting the tests as they were placed into the buckets via insertion sort. 

Activity #2 — Four Sorting Algorithms 
(Allocated time = 40 min [10 min each])

A.  Straight Selection Sort

Go over this method with them using TSP#1.  For reference, this is the way a bridge hand
is typically sorted.  

Note:  you may need to emphasize that all of our sorting will result in lists that go from
smallest at the left to largest at the right.  Another point that you can ask participants to
deal with is what to do when you encounter two equal elements.  It differs for the various
algorithms.  As you review this algorithm with them, try to get across the point that
picking the smallest element is not a single step, but takes as many steps as there are
elements remaining in the unsorted list.  This will be important later when we compare
the speed of various algorithms.

B.  Insertion Sort.

This method is sort of the “dual” of Straight Selection.  With this method, you’re just
taking the next element in the unsorted list, and then going through the sorted list to find
the first element of the sorted list that is larger than your number, and inserting it into the
sorted list immediately before that larger number.  You can refer to TSP#2 for these
directions and TSP#3 for an example.

What may not be obvious here is that it takes time to move the elements of the sorted list
that come after the position of the new element, so that the new element can be inserted. 
If you mention this now, then it makes it easier to analyze later.

You may wish to show TSP#4 which shows a bucket sort, and TSP#5 which illustrates
insertion sort within a bucket sort.  We have prepared these slides because many teachers
came up with the bucket sort method in May.

C.  Bubble Sort

Have 12 volunteers come to the front of the room, handing them the placards as they come
up.  Ask each participant with a placard to use one of the markers you provide to write a
randomly chosen whole number from 1 to 100 on the placard in neat, large digits, keeping
their numbers secret for a moment.  Then ask them to line themselves up at the front of the
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room in some random order.  This done, they should hold up their placards so that
everyone can see their numbers.  Then work through bubble sort, swapping the
participants lined up at the front of the room as necessary.

You can put up TSPs#6 and 7 to illustrate this algorithm.

The algorithm is explained on TSP#6.

D.  Merge Sort
Have 12 new volunteers line up at the front of the room with the placards (already
numbered) randomly placed on them.  Then perform a merge sort on them. 

You can put up TSPs# 8 and 9 (illustrating the algorithm with an example).

The algorithm is explained on TSP#8.

A question that should occur to the participants is what algorithm to use in order to do
the sorts on the half-lists.  Of course, for merge sort, the idea is that these lists will also
be sorted using merge sort.  When the list gets down to having size 1 or 2, then you just
sort it directly.  You can have a discussion about how this would run on a very large
example, for example, sorting a list of students in a school.  You might divide the list in
half until you get lists of size 5 or less, then use another algorithm to sort this short list,
such as straight selection.  It may even be the case that participants use this method to
sort their tests already.

Note that at least one group discovered merge sort (with 5 piles instead of two) when we
did this in May of ‘97.  

When you have them perform this algorithm live, it is best not to do merge sort on the
half-lists, at least not the first time through.  Rather, do ad-hoc sort or insertion sort. 
When this was tried in May, the point got a little bit obfuscated when we did merge sort
recursively. 

Break (Alloted time = 10 min, announce 5 min)

Activity #3 — Analyzing Sorting Algorithms 
(Allocated time = 45 min)

A.  Turn the class’s attention  to the discussion of the efficiency of the various
sorting algorithms.  Ask them to discuss in their groups for a few minutes the issue of
which algorithm is best.  They should decide what “best” means.  Then regroup and ask
them for their ideas.
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In what follows, the participants will compare the“average case” running times of the
various algorithms.  Of course, this will be done in an informal way.  They will not
discuss the “ease of implementation” in any formal way, so the instructor can deal with
that in any way he wishes.  It is indicated in these notes how each of the three algorithms
performs on a list which is already sorted.  If the instructor feels it won’t be too
confusing, and if time allows, he may discuss this with the participants.  

B.  Straight Selection Sort
Analyze, with the participants, the behavior of this algorithm. 

As the participants have probably mentioned by now, there is not a big difference
between the algorithms when you are sorting a small list.  So ask them to imagine that
they have to sort a list of 1000 items for our analyses of these algorithms.  

The discussion will have to be fairly informal, so we will try to count the number of
“steps” it takes to sort an “average” list using the different algorithms. 

For an average list, straight selection has to go through the entire remaining unsorted
list each time you wish to find the smallest.  So, that’s 1000 steps for the first pass, 999
for the second pass, 998 for the third, etc...  So the total number of passes is
1+2+3+...+1000, which they should recognize as the 1000  triangular number, equal toth

1000*1001/2, or 500,500.  That’s a lot of steps.

You can refer to TSP#10 for a summary of the analysis of straight selection.  

The algorithm takes the same amount of time to run on an already-sorted list.

C.  Insertion Sort
Analyze, with the participants, the behavior of this algorithm.

It’s not worth it to dwell on the analysis of this algorithm.  It turns out to be roughly the
same as the algorithm above.  Unfortunately, there is a little ambiguity as to whether the i’th
step takes i or i+1 steps.  So it’s best to just say it’s roughly the same, and move on.

D. Bubble Sort
Analyze, with the participants, the behavior of this algorithm.

Here, it takes 999 steps to make one pass through the list, but the number of passes
depends greatly on how mixed-up the list is to begin with.  For example, a sorted list
requires just a single pass, but a reversed list requires 999 passes.  A random list will
tend to require close to N passes, in this case, about 960.  Thus a bubble sort is good
when your list is already nearly sorted.  A summary can be found on TSP#11  

E. Merge Sort
Analyze, with the participants, the behavior of this algorithm.
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This sort, like the straight selection sort, doesn’t take more or fewer steps if the data is
more or less sorted.  The analysis of the number of steps is a little bit involved, because it
is a new concept...but should be graspable.  An outline can be found on TSP#12  The idea
is that, to determine the number of steps it takes to do mergesort on N elements, you split
the list into two half-lists of N/2 elements each, sort them, merge the sorted half-lists, and
you’re done.  Thus, the number of steps is equal to twice the number of steps required to
sort each half-list (because there are two of them) plus the number of steps required to
merge them (which is just N, because each element must be added to the merged list).  

Thus, to analyze a list of size 1000, we recursively analyze lists half the size, as shown on
TSP#14.  Note that TSP#13 shows a table which can the instructor can start filling in
from the bottom up.  The completion of this task is shown on TSP#14.  This turns out to
be the fastest sort of all, in the average case.  What is interesting is that bubble sort,
which is the slowest in the average case, does the best, by FAR, if the list is nearly sorted
to begin with.

F.  Comparison and analysis

On TSP # 15 you can find a comparison of these four algorithms for 1000 items, and ont
TSP#16 you can find a comparison of the four sorting algorithms for up to a million
items to be sorted.  It is clear that Merge wins.

You can follow this with a discussion of how in different situations, different sorts may be
optimal.

Activity #4 — Sorting Networks
(Allocated time = 15 min)

A.  Acting it out
Have a new group of 9 volunteers come to the front of the room and wear any 9 of the
placards.  Explain to the participants that they will be seeing a very different type of
sorting algorithm now.  Then proceed out to where the tarp with the sorting network has
been prepared and instruct the participants about how to navigate the network.

It is good to establish right at the outset which way the larger and smaller numbers
should proceed at each node.  “Larger Left” is a rule which is easily memorized.  The
sorting network on the tarp is shown on TSP#17.

One of the points which you can make is that this sort of parallel-processing algorithm is
very quick.  The parallel processing comes in here because many decisions are being
made independently at the same time by different “processors.”

Some interesting questions can arise when the participants get the idea of the network. 
These may include “will it work the other way?”  or “what if larger goes right?” or
“how many nodes are there?”  The answers are “no”, “it will still sort, but from larger
to smaller” and “25.”  The question about it working the other way has become a topic
of ongoing research in CS.  Interestingly, research questions like these are posed by very
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young children who are just naturally curious.  As for the 25, noone knows if that is the
smallest number of intermediate nodes that suffice to build a network to sort 9 items! 

B.  Analyze, with the participants, the speed of sorting networks.

It turns out that sorting networks operate in O(log n) time.  This is shown numerically,
without saying “log,” on TSP#18, which is the same as TSP#16 but with Sorting
Netowrks included.  Thus, to sort a thousand item list, as we are doing in the other
examples, you can expect it to be do-able in less than (and I’m mostly making this up) 50
steps, assuming time roughly 5log(n), base 2.    

F.  Show the part of the video “Sorting out Sorting” at the end which shows the
entire first part of the video in fast-motion.  You may wish to point out where the
algorithms discussed appear in the analysis phase.  These are bolded in the chart below. 
(Allocated time = 5 min)

Insertion Sort Bubble Sort Straight Selection

Binary Insertion Sort Shaker Sort Tree Selection Sort

Shell Sort QuickSort (a kind of
recursive Bucket

Sort)

Heap Sort
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Straight Selection Sort

1. Begin with an unsorted list, with a marker (Ú)
to the left of the list.

2. Go left to right through the unsorted list (right of
the marker), find the smallest element, and add
it to the end of the sorted list, to the left of the
marker.

3. Repeat step 2 until every element has been
moved to the left of the marker.  The result is
your sorted list.

.

Unsorted List Comments

Ú 3 6 9 5 8 Start with list and marker

3 Ú 6 9 5 8 3=smallest, add to list on left

3 5 Ú 6 9 8 5=smallest, add to list on left

3 5 6 Ú 9 8 6=smallest, add to list on left

3 5 6 8 Ú 9 8=smallest, add to list on left

3 5 6 8 9 Ú 9=smallest, add to list on left

3 5 6 8 9 Sorted List
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Tree Sort

1. Begin with an unsorted list.

2. Build a binary tree in front of the list, adding
enough “blank spaces” to your list so that you have
a power of 2.

3. Each number (student) tries to move to the next
node, toward the top, subject to the following rules:

a. If the node above them is occupied, then
they have to wait

b. If the node is unoccupied, and you are not
competing (with a sister node) for that node,
then you can move up

c. If the node is unoccupied, and you are
competing with a sister node, then the
smaller number gets to move up

4. When a number reaches the top, it “plucks”
itself off and moves to the end of the sorted list
(the first number to reach the top begins the
sorted list.)

5. When all numbers have moved, then the sorting
is done!
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A tree diagram with 16 nodes on the end.  Note that if you have to sort some number of objects
which is not 2, 4, 8, 16, 32, etc..., then you just use the next largest size tree, and leave as many

nodes blank as you need to.  Also, if you have to leave some nodes blank, it doesn’t matter where
you leave the blank spaces, the tree will still sort the students!
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 Insertion Sort

1. Begin with an unsorted list, with a marker
(Ú) to the left of the list. 

2. Pick the next element from the unsorted list
(right of the marker) and call it “It.”

3. Go left to right through the sorted list (left of
the marker) until you find an element greater
than It, or until you reach the end.

4. Insert It into the sorted list, and, if It is not
being inserted at the end, move the rest of
the list to the right to make room for It.

5. Repeat steps 2-4 until every element  has
been moved to the left of the marker.  The
result is your sorted list.
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Insertion Sort Example

Unsorted List Comments

Ú 3 6 9 5 8 Start with unsorted list

3 Ú 6 9 5 8 Move first key to the left,
and insert

3 6 Ú 9 5 8 Move second key to the
left, and insert

3 6 9 Ú 5 8 Move third key to the left,
and insert

3 5 6 9 Ú 8 Move fourth key to the left,
and insert

3 5 6 8 9Ú Move fifth key to the left,
and insert

3 5 6 8 9 Sorted list
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Bucket Sort
The next step would be to sort within the
buckets, resulting in a sorted list.
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Bucket Sort mixed with Insertion Sort
Here it took a little longer to place into the
buckets, because we sorted as we went along. 

But in the end, we have no further sorting to do.
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Bubble Sort

1. Begin with an unsorted list.
2. Go left to right through the unsorted list,

swapping adjacent pairs of numbers when
you see a bigger number come before a
smaller number.

3. Repeat step 2 until you have a pass with no
swaps.  You now have a sorted list.  

Unsorted List Comments

3 6 9 5 8 Start with List

3 6 9 5 8 Okay

3 6 9 5 8 Okay

3 6 9 5 8 Swap

3 6 5 9 8 Swap

3 6 5 8 9 This ends
pass 1
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Unsorted List   Comments 
 

3 6 5 8 9 Okay

3 6 5 8 9 Swap

3 5 6 8 9 Okay

3 5 6 8 9 Okay

3 5 6 8 9 This ends
pass 2

3 5 6 8 9 Okay

3 5 6 8 9 Okay

3 5 6 8 9 Okay

3 5 6 8 9 Okay

3 5 6 8 9 This ends
Pass 3

3 5 6 8 9 No swaps, so
we’re done.
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Merge Sort

1. Begin with an unsorted list
2. Divide the unsorted list into two roughly

equal lists
3. Sort the two half-lists (*)
4. Merge the sorted sub-lists as follows:

C Look at the leftmost (smallest) element
on each list

C Put the smaller of the two at the end of
the merged list we are creating

C Repeat until one half-list is empty, then
put the remainder of the other list at the
end of our sorted list

(*)  It is customary to use Merge Sort to sort
each of the smaller lists.  This recursive nature
makes Merge Sort very easy to program on a
computer.
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A Merge Sort Example

1.  Unsorted List:  9 3 1 6 5 4 7 2
2.  Divide:  9 3 1 6          5 4 7 2
3.  Sort:      1 3 6 9      2 4 5 7
4.  Merge:      
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Straight Selection Sort takes
500,500 steps to sort 1000 items

Analysis of Straight Selection Sort

First pass, find smallest: 1000 steps
Second pass, find smallest: 999 steps
Third pass, find smallest: 998 steps
Etc...

Total number of steps:  

1000 + 999 + 998 + þ + 2 +  1 = 500,500

(Note, this is the 1000  triangular number)th

The number of steps required to sort n items by
straight selection is n(n+1)/2.
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Bubble sort takes an average of
959,040 steps to sort 1000 items 

Bubble sort can take more or fewer
steps on special lists, though:
Sorted list        999 steps
Reversed List 998,001 steps

Analysis of Bubble Sort

First pass: 999 steps
Second pass: 999 steps
Every pass: 999 steps

The total number of steps is 999 times the
number of passes: 
The number of passes depends on how badly
out of order the initial list is:  
Average list: About 960 passes 

Sorted list: Just one pass
Reversed list: 999 passes
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Analysis of Merge Sort

To do merge sort on 1000 objects, we split the list in
half, do merge sort on each of the half-lists, and
merge them.

So, to find the number of steps for 1000 objects, we
find the number of steps for 500 objects (for a half-
list), double it (there are 2 half-lists), and add 1000
(the number of steps it takes to merge the lists).  

But to find the number of steps for 500 objects, we
find the number of steps for 250 objects (for a half-
list), double it (there are 2 half-lists), and add 500
(the number of steps it takes to merge the lists).  

But to find the number of steps for 250, we need the
number of steps for 125, and 63, and 32 and 16 and
8 and 4 and 2 and 1.

So, let’s make a chart!
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Analysis for Merge Sort

Number of
elements

Expression for
number of steps

Number of
steps

1,000

500

250

125

63

32

16

8

4

2

1
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Merge Sort takes 
11,152 steps to sort 1000 items

Analysis for Merge Sort

Number of
elements

Expression for
number of steps

Number of
steps

1,000 2×5,076+1,000 11,152

500 2×2,288+500 5,076

250 2×1,019+250 2,288

125 2×447+125 1,019

63 2×192+63 447

32 2×80+32 192

16 2×32+16 80

8 2×12+8 32

4 2×4+4 12

2 2×1+2 4

1 1 1
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Comparison of our algorithms
(in the average case)

Sorting Algorithm Number of steps for
1000 items

Straight Selection 500,500

Insertion Sort 500,500

Bubble Sort 959,040

Merge Sort 11,152
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Comparison of our algorithms
(in the average case)

Number
of items

Selection/
insertion

Bubble
Sort

Merge
Sort

10 55 81 37

50 1,275 2,401 316

100 5,050 9,801 743

500 125,250 249,001 5,016

1,000 500,500 998,001 11,152

5,000 12,502,500 24,990,001 68,750

10,000 50,005,000 99,980,001 148,690

50,000 1,250,025,000 2,499,900,001 873,359

100,000 5,000,050,000 9,999,800,001 1,858,619

500,000 125,000,250,000 249,999,000,001 10,592,213

1,000,000 500,000,500,000 999,998,000,001 22,303,425

Merge tends to be best.
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Analysis of Sorting Networks

For the network shown above, any sort can be
accomplished in eight steps.

If we had a sorting network which would sort
1000 objects, we would see that you don’t need
more than 50 steps!  

Let us compare the efficiency of our sorts,
taking into account sorting networks:
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Comparison of our algorithms
(in the average case)

Number
of items

Selection/
insertion

Bubble
Sort

Merge
Sort

Sorting
Network

10 55 81 37 8

50 1,275 2,401 316 23

100 5,050 9,801 743 29

500 125,250 249,001 5,016 44

1,000 500,500 998,001 11,152 50

5,000 12,502,500 24,990,001 68,750 65

10,000 50,005,000 99,980,001 148,690 71

50,000 1,250,025,000 2,499,900,001 873,359 86

100,000 5,000,050,000 9,999,800,001 1,858,619 92

500,000 125,000,250,000 249,999,000,001 10,592,213 107

1,000,000 500,000,500,000 999,998,000,001 22,303,425 113

This gives an idea of how well parallel
computation can improve the speed of certain
tasks.
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