Secure Linear Regression on Vertically Partitioned Datasets

Adria Gascon Phillipp Schoppmann Borja Balle **Mariana Raykova** Samee Zahur Jack Doerner David Evans

Predictive Model

Patient	Blood Count			Heart Conditions			Digestive Track			•••	Medicine Effectiveness
	RBC	WBC		Murmur	Arrhyt hmia	•••	Inflamm ation	Dyspha gia	•••		
A	3.9	10.0		0	0		0	1			1
В	5.0	4.5		1	0		1	2			1.5
С	2.5	11		0	1		1	0			2
D	4.3	5.3		2	1		0	1			1
•	•	•	•	•	•	• •	• •	•	•	•	• •

- Given samples (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) o $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$
- Learn a function f such that $f(x_i) = y_i$

Linear Regression

Patient	Blood Count			Heart Conditions			Digestive Track			•	Medicine Effectiveness
	RBC	WBC	•••	Murmur	Arrhyt hmia	•••	Inflamm ation	Dyspha gia	•••		
A	3.9	10.0		0	0		0	1			1
В	5.0	4.5		1	0		1	2			1.5
С	2.5	11		0	1		1	0			2
D	4.3	5.3		2	1		0	1			1
•	•	•	•	•	•	• •	• •	• •	•	•	• • •

- Given samples (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) $\circ x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$
- Learn a function f such that $f(x_i) = y_i$

f is well approximated by a linear map $y_i \approx \theta^T x_i$

Secure Computation

Patient	Blood Count			Heart Conditions			Digestive Track			•	Medicine Effectiveness
	RBC	WBC	•••	Murmur	Arrhyt hmia	•••	Inflamm ation	Dyspha gia	•••		
A	3.9	10.0		0	0		0	1			1
В	5.0	4.5		1	0		1	2			1.5
С	2.5	11		0	1		1	0			2
D	4.3	5.3		2	1		0	1			1
• •	•	•	•	•	• •	•	•	• •	•	•	• • •

- Shared database (x₁, y₁), (x₂, y₂), ..., (x_n, y_n) do not belong to the same party
- Compute θ securely $(y_i \approx \theta^T x_i)$

Horizontally Partitioned Database

Patient	Blood Count			Heart Conditions			Digestiv	ve Track	• • •	Medicine Effectiveness	
	RBC	WBC	•••	Murmur	Arrhyt hmia	•••	Inflamm ation	Dyspha gia	•••		
А	3.9	10.0		0	0		0	1			1
В	5.0	4.5		1	0		1	2			1.5
C	2.5	11		0	1		1	0			2
D	4.3	5.3		2	1		0	1			1
•	• •	•	• •	•	•	•	•	•	•	• •	•

- Different rows belong to different parties
 - E.g., each patient has their own information

Vertically Partitioned Database

Patient	Blood Count			Heart Conditions			Digestiv	ve Track	•••	Medicine Effectiveness	
	RBC	WBC	•••	Murmur	Arrhyt hmia	•••	Inflamm ation	Dyspha gia	•••		
A	3.9	10.0		0	0		0	1			1
В	5.0	4.5		1	0		1	2			1.5
С	2.5	11		0	1		1	0			2
D	4.3	5.3		2	1		0	1			1
•	•	•	•	•	• •	• •	• •	•	•	•	•

- Different columns belong to different parties
 - E.g., different specialized hospitals have different parts of the information for all patients

Cryptography in the RAM • Computation Model

Ridge Regression

- Computing linear model on inputs (x₁, y₁),..., (x_n, y_n)
 ∞ x_i∈ℝ^d, y_i∈ℝ
- Optimization formulation

• Loss Regularization
• Linear System Formulation
$$X = \begin{bmatrix} \cdots & x^1 & \cdots \\ & \vdots & \\ & \cdots & x^n & \cdots \end{bmatrix}$$
 $Y = \begin{bmatrix} y^1 \\ \vdots \\ y^n \end{bmatrix}$
 $\begin{pmatrix} 1 \\ y^T \\ y^T \end{pmatrix} = x^T y$

Positive definite

 $\min_{\boldsymbol{\theta}} \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y}^{i} - \langle \boldsymbol{\theta}, \mathbf{x}^{i} \rangle)^{2} + \lambda \|\boldsymbol{\theta}\|^{2}$

$$\left(\frac{1}{n}\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda\mathbf{I}\right)\mathbf{\theta} = \mathbf{X}^{\mathsf{T}}\mathbf{Y}$$

Cryptography in the RAM • Computation Model

Contributions

- Secure computation for ridge regression for vertically partitioned database
 - Two phase protocol:
 - **Phase1** compute $A = \frac{1}{n} X^T X + \lambda I$ $b = X^T Y$
 - Output is additively shared between two parties
 - **Phase2** solve $A\theta = b$ where A and b are shared between two parties
- Two party and multiparty protocol for Phase1
 - Two party inner product computation
- Three algorithms for Phase2:
 - Cholesky, LDLT, Conjugate Gradient Descent (CGD)
- Implementation and evaluation

• Compute
$$A = \frac{1}{n} X^{\mathsf{T}} X + \lambda I$$
 $b = X^{\mathsf{T}} Y$

• The output is additively shared between two parties

$$X^{T} = \underbrace{\begin{array}{ccc} (X_{A}^{1})^{T} & (X_{A}^{2})^{T} \\ (X_{B}^{1})^{T} & (X_{B}^{2})^{T} \\ n \end{array}}_{n} d X = \underbrace{\begin{array}{ccc} X_{A}^{1} & X_{B}^{1} \\ X_{A}^{1} & X_{B}^{1} \\ X_{A}^{2} & X_{B}^{2} \end{array}}_{n} n X^{T}X = \underbrace{\begin{array}{ccc} (X_{A})^{T}X_{A} & (X_{B})^{T}X_{A} \\ (X_{A})^{T}X_{B} & (X_{B})^{T}X_{B} \\ (X_{A})^{T}X_{B} & (X_{B})^{T}X_{B} \\ d \end{array}}_{d} d$$

- Each entry of A is a dot product of the vectors held by two different parties
 - In the multi-party case too
- Two party computation of dot product

- Architecture inspired by [NWIJBT13]
 - Two additional **semi-honest**, **non-colluding** parties:
 - Crypto Service Provider (CSP) generates parameters
 - Evaluator helps for the evaluation of the protocols, has no inputs
- Our setting

Computation Model

- Two party protocol
 - Inputs: additive shares of matrix A and vector b
 - Outputs: additive shares of **0** such that

 $A\theta = b$

- Gabled circuits computation
- Solutions algorithms
 - Two exact algorithms: Cholesky, LDLT
 - One approximation algorithm: Conjugate Gradient Descent (CGD)
- [NWIJBT13] implements Cholesky

Cholesky

- Cholesky decomposition for positive definite matrices
 - \circ A = LL^T
 - L: d×d lower triangular matrix
- Idea: solve $\mathbf{LL}^{\mathsf{T}}\boldsymbol{\theta} = \boldsymbol{b}$
 - $\circ \ \mathbf{L}\boldsymbol{\theta}'=\boldsymbol{b}$
 - $\circ \mathbf{L}^{\mathsf{T}}\boldsymbol{\theta} = \boldsymbol{\theta}'$
- Complexity: O(d³) floating point operations
- Two properties:
 - **Data-agnostic** no pivoting
 - Numerically robust suitable for finite precision implementations

Algorithm 1: Cholesky

Input : A, b Output: Solution θ to $A\theta = b$

for
$$j = 1 \dots d$$
 do

$$\begin{vmatrix} L_{jj} = \sqrt{A_{jj} - \sum_{k=1}^{j-1} L_{jk}^2} \\ \text{for } i = j + 1 \dots d$$
 do

$$\begin{vmatrix} L_{ij} = (A_{ij} - \sum_{k=1}^{j-1} L_{ik} L_{jk})/L_{jj} \\ \text{end} \end{vmatrix}$$
end

$$\theta'_1 = b_1/L_{11} \quad \text{forward substitution} \\ \text{for } i = 2 \dots d \text{ do} \\ \theta'_i = (b_i - \sum_{j=1}^{i-1} L_{ij} \theta'_j)/L_{ii} \\ \text{end} \end{vmatrix}$$

$$\theta_d = \theta'_d/L_{dd} \quad \text{backward substitution} \\ \text{for } i = d - 1 \dots 1 \text{ do} \\ \theta_i = (\theta'_i - \sum_{j=i+1}^{d} L_{ji} \theta_j)/L_{ii} \\ \text{end} \end{vmatrix}$$

LDLT

- Variant of Cholesky decomposition
 - \circ A = LDL^T
 - L lower triangular
 - D diagonal, non-negative entries
- Idea: solve $LDL^{T}\theta = b$
 - $\circ \mathbf{L}\boldsymbol{\theta}'' = \boldsymbol{b}$
 - $\circ \mathbf{D}\boldsymbol{\theta}' = \boldsymbol{\theta}''$
 - $\circ \mathbf{L}^{\mathsf{T}}\boldsymbol{\theta} = \boldsymbol{\theta}'$
- Complexity: O(d³)
 - No square root
 - Additional substitution phase
- Same properties

Algorithm 2: LDLT

Input : A, b**Output:** Solution θ to $A\theta = b$

for
$$j = 1 \dots d$$
 do
 $\begin{vmatrix} D_j = A_{jj} - \sum_{k=1}^{j-1} L_{jk}^2 D_k \\ \text{for } i = j + 1 \dots d$ do
 $\begin{vmatrix} L_{ij} = (A_{ij} - \sum_{k=1}^{j-1} L_{ik} L_{jk} D_k) / D_j \\ \text{end} \end{vmatrix}$
end

$$\theta'_1 = b_1$$

for $i = 2 \dots d$ do
 $| \theta'_i = b_i - \sum_{j=1}^{i-1} L_{ij} \theta'_j$
end

$$\begin{aligned} \theta_d &= \theta'_d / D_d \\ \text{for } i &= d - 1 \dots 1 \text{ do} \\ & \left| \begin{array}{c} \theta_i &= \theta'_i / D_i - \sum_{j=i+1}^d L_{ji} \theta_j \\ \text{end} \end{array} \right. \end{aligned}$$

CGD

- Approximate solution
- Solving $A\theta = b$ by solving the optimization $\operatorname{argmin}_{\theta} ||A\theta - b||^2$
- Iterative solutions approach based on conjugate gradients
- Complexity
 - \circ Until convergence O(d³)
 - Early termination O(d²) per iteration
- Error: ϵ after $O(\sqrt{\kappa} \log 1/\epsilon)$ iterations
 - ο **κ** condition number

Cryptography in the RAM • Computation Model Algorithm 3: Conjugate Gradient Descent Input : A, b, number of iterations k Output: Approximate solution θ_k to $A\theta = b$

Let
$$heta_0 = 0$$
 and $p_0 = r_0 = A heta_0 - b$
for $t = 0 \dots k$ do
 $heta_{t+1} = heta_t - rac{(r_t, r_t)}{p_t^\top A p_t} p_t$
 $r_{t+1} = A heta_{t+1} - b$
 $p_{t+1} = r_{t+1} + rac{(r_{t+1}, r_{t+1})}{\langle r_t, r_t \rangle} p_t$

 \mathbf{end}

Fixed-Point Arithmetic

$$\mathbb{R} \stackrel{\phi_{\delta}}{\underset{\tilde{\phi}_{\delta}}{\rightleftharpoons}} \mathbb{Z} \stackrel{\varphi_{q}}{\underset{\tilde{\varphi}_{q}}{\leftrightarrow}} \mathbb{Z}_{q}$$

- $\phi_{\delta}(r) = [r/\delta]; \ \tilde{\phi}_{\delta}(z) = z\delta, |r \tilde{\phi}_{\delta}(\phi_{\delta}(r))| \le \delta$
- $\varphi(z) = z$ if $z \ge 0$; $\varphi(z) = z + q$ if z < 0
- $\tilde{\varphi}(u) = u$ if $0 \le u \le q/2$; $\tilde{\varphi}(u) = u q$ if $q/2 < u \le q 1$
- Phase1: n-dim vectors with entries of size R
 - Error: $n(2R\delta + \delta^2)$
 - Normalize $R \le 1/\sqrt{n} \Rightarrow$ error ϵ with $\delta = \epsilon / 2\sqrt{n}$ and $q = 8n / \epsilon^2$
 - $O(\log(n/\epsilon))$ bit representation
- Phase2 experiments
 - o q = 2^{32} (4 bits integer part, 1 bit sign) $\Rightarrow \delta = 2^{-27}$
 - o q = 2^{64} (4 bits integer part, 1 bit sign) $\Rightarrow \delta = 2^{-59}$

Cryptography in the RAM • Computation Model

Implementation and Evaluation

Obliv-C

- Most recent optimizations: Free XOR, Garbled Row Reduction, Fixed Key Block Ciphers, Half Gates
- Fixed point arithmetic on top of Obliv-C
 - Algorithms: multiplication (Karatsuba-Comba), division (Knuth's algorithm D), square root(Newton's method)
 - 32 bits: 4 bits (integral part) + 28 bit (fractional part)
- Synthetic datasets (vs real datasets)
 - $\circ\,$ Generated with correct λ parameter sample from d-dimensional Gaussian distribution
 - $\circ\,$ Tuning λ privately is hard question incorrect λ makes the optimization too easy or too difficult
- Amazon EC2 C4 (15GB RAM, 8 CPU cores)

Convergence of CGD

Fixed vs Floating Point

Cryptography in the RAM • Computation Model

Conclusions

- Machine learning algorithms target for MPC
- Ridge regression

 Vertically partitioned datasets
- Tailored protocol for Phase1
- Two party computation for solving systems of linear equations for Phase2
 - Exact (Cholesky, LDLT) and approximation (CGD) algorithms
 - Approximation: more efficient with sufficient precision
- Next steps classification (logistic regression)

Thank You!