
Searchable Symmetric Encryption:
Optimal Locality in Linear Space via

Two-Dimensional Balanced
Allocations

Gilad Asharov IBM Research
Moni Naor Weizmann
Gil Segev Hebrew University
Ido Shahaf Hebrew University

STOC 2016

Cloud Storage
• We are outsourcing more and more of our data to clouds

• We trust these clouds less and less
• Confidentially of the data from the service provider

itself
• Protect the data from service provider security

breaches

Solution: Encrypt your Data!

• But…
• Keyword search is now the primary way we

access our data
• By encrypting the data - this simple operation

becomes extremely expensive

• How to search on encrypted data??

Possible Solutions
• Generic tools: Expensive, great security

• Functional encryption
• Fully Homomorphic Encryption

• Oblivious RAM*

• More tailored solutions: practical, security(?)
• Property-preserving encryption  

(encryption schemes that supports public tests)
• Deterministic encryption [Bellare-Boldyreva-O’Neill06]
• Oder-preserving encryption [Agrawal-Kiernan-Srikant-Xu04]
• Orthogonality preserving encryption [Pandey-Rouselakis04]

• Searchable Symmetric Encryption [Song-Wagner-Perrig01]

Searchable Symmetric
Encryption (SSE)

Searchable Symmetric
Encryption (SSE)

• Data: the database DB consists of:
• Keywords: W={w1,…,wn} (possible keywords)
• Documents: D1,…,Dm (list of documents)
• DB(wi)={id1,…,idni}  

(for every keyword wi, list of documents / identifiers in which wi appears)

• Syntax of SSE:
• K←KeyGen(1k) (generation of a private key)
• EDB←EDBSetup(K,DB) (encrypting the database)
• (DB(wi),λ)←Search((K,wi),EDB) (interactive protocol)

EDBSetup
Keyword Records

Searchable 5,14
Symmetric 5,14,22,45,67
Encryption 1,2,3,4,5,6,7,8,9,10

Schemes 22,14

Keyword Records
05de23ng 5,14
91mdik289 5,14,22,45,67
91sjwimg 1,2,3,4,5,6,7,8,9,10

,oswspl25ma 22,14

inverted index

encrypted index

Replace each keyword w
with some PRFK(w)

Keyword Records
05de23ng 5,14
91mdik289 5,14,22,45,67
91sjwimg 1,2,3,4,5,6,7,8,9,10

,oswspl25ma 22,14

The Challenge…

Keyword Records
05de23ng 5,14
91mdik289 5,14,22,45,67
91sjwimg 1,2,3,4,5,6,7,8,9,10

,oswspl25ma 22,14

No leakage on the structure of the lists!

How to map the lists into memory?

Functionality - Search  
(Allow some Leakage…)

Security Requirement:  
The server should not learn anything  

about the structure of lists that were not queried

Encryption
Search for keyword:

PRFK(Encryption)

Keyword Records
05de23ng 5,14
91mdik289 5,14,22,45,67
91sjwimg 1,2,3,4,5,6,7,8,9,10

,oswspl25ma 22,14

(K,w)

Security
•Good news: Semantic security for data; no deterministic or
order preserving encryption

•But.. for reasonable performance -> leakage for server
•Leakage in the form of access patterns to retrieved data and
queries

•Data is encrypted but server can see intersections b/w query
results  
(e.g. identify popular document)

•Additional specific leakage:
•E.g. we leak |DB(w1)|
•E.g. the server learns if two documents have the same keyword

•Leads to statistical inference based on side information on data  
(effect depends on application)

Mapping Lists into Memory

Keyword Records
05de23ng 5,14
91mdik289 5,14,22,45,67
91sjwimg 1,2,3,4,5,6,7,8,9,10

,oswspl25ma 22,14

Maybe shuffle the lists?

Hiding the Structure of the
Lists

Maybe shuffle the lists?

Previous Constructions:
Maximal Padding [CK10]

Keyword Records
05de23ng 5,14
91mdik289 5,14,22,45,67
91sjwimg 1,2,3,4,5,6,7,8,9,10

,oswspl25ma 22,14

Keyword Records
05de23ng 5,14
91mdik289 5,14,22,45,67
91sjwimg 1,2,3,4,5,6,7,8,9,10

,oswspl25ma 22,14

1) Pad each list to maximal size (N?)
2) Store lists in random order
3) Pad with extra lists to hide the number of lists

Size of encrypted DB: O(N2)

Previous Constructions 
Linked List[CGK+06]

1

3

1

5

3

1

2

20

a b c dw

a

b

c

d

Efficiency Measures
• A variant was implemented in [CJJ+13]

• Poor performance due to… locality!

•Space: The overall size of the encrypted database 
(Want: O(N))

•Locality: number of non-continuous memory locations the
server accesses with each query (Want: O(1))

•Read efficiency: The ratio between the number of bits the
server reads with each query, and the actual size of the
answer (Want: O(1))

SSE and Locality [CT14]

• Lower bound: any scheme must be sub-optimal in either its
space overhead, locality or read efficiency

• Impossible to construct scheme with O(N) space, O(1)
locality and O(1) read efficiency

Can we construct an SSE scheme that is optimal in
space, locality and read efficiency?

Our Question:  
can we construct a scheme that is nearly optimal?

NO!

Related Work
• A single keyword search

• Related work [SWP00,Goh03,CGKO06,ChaKam10]

• Beyond single keyword search
• Conjunctions, range queries, general boolean expression,

wildcards [CJJKRS13,JJKRS13,CJJJKRS14,FJKNRS15]
• Schemes that are not based on inverted index

[PKVKMCGKB14, FVKKKMB15]

• Locality in searchable symmetric encryption [CT14]

• Dynamic searchable symmetric encryption [….]

Our Work

Our Results
Scheme Space Locality Read Efficiency

[CGK+06,KPR12,CJJ+13] O(N) O(nw) O(1)

[CK10] O(N2) O(1) O(1)

[CT14] O(NlogN) O(logN) O(1)

This work I O(N) O(1) Õ(logN)

This work II* O(N) O(1) Õ(loglogN)

This work III O(NlogN) O(1) O(1)

Õ(f(N))=O(f(n) log f(n))
*assumes no keyword appears in more than N1-1/loglogN documents

Our Approach
• We put forward a two-dimensional generalization

of the classic  
balanced allocation problem (“balls and bins”),
considering lists of various lengths instead of
“balls” (=lists of fixed length)

(1) We construct efficient 2D balanced allocation
schemes

(2) Then, we use cryptographic techniques to
transform any such scheme into an SSE scheme

Balls and Bins

m

?

x n

Balls and Bins  
(Random Allocation)

• n balls, m bins
• Choose for each ball one bin uniformly at random
• m=n: with high probability - there is no bin with

more than  

• m=n/log n: with overwhelming probability, there
is no bin with load greater than Õ(log n)

logn
log logn

⋅(1+ o(1))

Two-Dimensional Allocation

Two-Dimensional Allocation

Two-Dimensional Allocation

Place the whole list according to  
a single probabilistic choice!

Two-Dimensional Allocation

Two-Dimensional Allocation

Two-Dimensional Allocation

Two-Dimensional Allocation

Two-Dimensional Allocation

Two-Dimensional Allocation

Two-Dimensional Allocation

Two-Dimensional Allocation

What is the maximal load?

How Do We Search?
Search()

Our First Scheme:  
2D Random Allocation

• Main Challenge (compared to 1D case): 
Heavy dependencies between the elements of the
same list

• This yields an SSE scheme with:
• Space: #Bins x BinSize = O(N)
• Locality: O(1)
• Read efficiency: Õ(log n)

• Theorem: Set #Bins=N/O(logN loglogN). Then, with an
overwhelming probability, the maximal load is 3logN loglogN

The Power of Two Choices
• In the classic “balls and bins” [ABKU99]:

• If we choose one random bin for each ball, then
the maximal load is O(log N/ loglogN)

• If we choose two random bins for each ball, and
place the ball in the least loaded one, then the
maximal load is O(loglogN)
• Exponential improvement!

• Can we adapt the two-choice paradigm to the  
2D case?

2D Two-Choice Allocation

2D Two-Choice Allocation

2D Two-Choice Allocation

2D Two-Choice Allocation

2D Two-Choice Allocation
Theorem: Assume all lists are of length at most N1-1/loglogN,

and set #Bins=N/(loglogN (logloglogN)2).  
Then, with an overwhelming probability, the maximal load is

O(loglogN (logloglogN)2)

• Main Challenge: (compared to 1D case):
• Manny challenges…

• This yields an SSE scheme with:
• Space: #Bins x BinSize = O(N)
• Read efficiency: 2BinSize = Õ(loglogN)
• Locality: Õ(1)

Summary

Scheme Space Locality Read Efficiency

This work I O(N) O(1) Õ(logN)

This work II* O(N) O(1) Õ(loglogN)

This work III O(NlogN) O(1) O(1)

• Our approach: SSE via two-dimensional balanced
allocations

Thank You!

Nice combination between DS and Cryptography

