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Outsourced storage and searching

Browser only 
downloads documents 
matching query.

Avoids downloading  
all 6 GB.
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cloud provider
???

End-to-end encryption and searching

give me all records 
containing “meeting”

‣ Searching incompatible with privacy goals of traditional encryption

‣ server compromise 

‣ government surveillance 

‣ insider access

possible threats:

encrypted by client 
(browser, app, etc)  
or proxy with key 
unknown to cloud
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End-to-end encryption for outsourced storage



cloud provider

Search with encryption: possible solution #1

, ,

‣ unencrypted auxiliary info reveals words in document 

‣ document recovery sometimes possible  [Fillmore-Goldberg-Zhu].

keyword documents

meeting 4, 9,37

rutgers 9,37,93,94,95

committee 8,37,89,90

accept 4,37,62,75

give me all records 
containing “meeting”

encrypted records unencrypted auxiliary info
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client cloud provider

Search with encryption: possible solution #2

give me records #4,9,37

, ,

want all docs 
containing 
“meeting”

keyword documents

meeting 4, 9,37

rutgers 9,37,93,94,95

committee 8,37,89,90

accept 4,37,62,75

local auxiliary info

‣ large state precludes advantages of outsourcing 

‣ even this is not perfect: still leaks “access pattern”
6



client cloud provider

Searchable encryption:  3 parts
‣ special protocols to enable provider to “search without decrypting” 

‣ all searching in this talk is for single keywords

upload encrypted records 
+ extra helper info

[Song-Wagner-Perrig] , [Curtmola-Garay-Kamara-Ostrovsky], …

1 Encrypted index generation
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client cloud provider

Searchable encryption:  3 parts

want all docs 
containing 
“california”

, ,

…

1 Encrypted index generation 2 Search protocol

Decrypt locally:

‣ special protocols to enable provider to “search without decrypting” 

‣ all searching in this talk is for single keywords

[Song-Wagner-Perrig] , [Curtmola-Garay-Kamara-Ostrovsky], …
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client cloud provider

Searchable encryption:  3 parts

1 Encrypted index generation 2 Search protocol 3 Update protocol

need to add 
new record

…

updated records + helper info

‣ searches should still “work” on added record

‣ special protocols to enable provider to “search without decrypting” 

‣ all searching in this talk is for single keywords

[Song-Wagner-Perrig] , [Curtmola-Garay-Kamara-Ostrovsky], …
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keyword records

sunnyvale 4, 9,37

rutgers 9,37,93,94,95

committee 8,37,89,90

accept 4,37,62,75

Inverted index:

processing
keyword records

45e8a 4, 9,37

092ff 9,37,93,94,95

f61b5 8,37,89,90

cc562 4,37,62,75

Encrypted index:

1 Encrypted index generation

1. Replace each keyword with “keyed hash” (i.e., PRF) of keyword: H(K,w) 

2. Client saves key K

2 Search protocol

1. Client sends: H(K,w) 

2. Server retrieves proper row

3 Update protocol
‣ To add new record, client 

identifies which rows to 
add new identifier to

Example searchable encryption



keyword records

45e8a 4, 9,37

092ff 9,37,93,94,95

f61b5 8,37,89,90

cc562 4,37,62,75

Example of searchable encryption (strengthened)

keyword records

45e8a 4, 9,37

092ff 9,37,93,94,95

f61b5 8,37,89,90

cc562 4,37,62,75

‣ additionally encrypt rows under different keys 

‣ requires modification of server, but more secure
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In this talk: Also hide lengths and number of rows

keyword records

45e8a 4, 9,37

092ff 9,37,93,94,95

f61b5 8,37,89,90

cc562 4,37,62,75

a845c

b8423

ab067

63fa2

54db1

b7696

ed15b

nCeUKlK7GO5ew6mwpIra 
ODusbskYvBj9GX0F0bNv 
puxtwXKuEdbHVuYAd4mE 
ULgyJmzHV03ar8RDpUE1 
6TfEqihoa8WzcEol8U8b 
Q1BzLK368qufbMMHlGvN 
sOVqt2xtfZhDUpDig8I0 
jyWyuOedYOvYq6XPqZc2 
5tDHNCLv2DFJdcD9o4FD

‣ Searches reveal intended results but leak 
no other information 

‣ Formal definition omitted 

‣ Simple construction later

12

[Curtmola-Garay-Kamara-Ostrovsky], …
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systems collaborators and others have complained:

➡ Runtime bottleneck: disk latency, not crypto processing.

Fine, the asymptotics are optimal, but this 
stuff is unusably slow for large indexes.“

Performance Bottleneck



client
nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud provider

w

w = “Committee”
w

8,76,89,90
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nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

➡ constructions access one random part of memory per posting 

- one disk seek per posting (≈ only a few bytes, wasteful) 
➡ plaintext search can use one contiguous access for entire 

postings list

Memory access during encrypted search
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‣ count only # of blocks moved to/from disk  [Aggarwal-Vitter] 

- idea: i/o time overwhelms time for computation 

‣ numerous versions of theory i/o models (see [Vitter] text) 

‣ optimal results (matching upper/lower bounds) for many 
problems like sorting, dictionary look-up, …

I/O theory (not IO theory)



16

➡Study I/O efficiency and security 

➡Unconditional I/O lower bounds for searchable encryption"

‣ new proof technique  

➡Construction improving I/O efficiency of prior work

[C., Tessaro’14]
Our results:  I/O efficiency and searchable encryption



“Theorem”: Secure searchable encryption must either: 
(1) Have a very large encrypted index, 

or 
(2) Read memory in a highly “non-local” fashion,"

or"
(3) Read more memory than a plaintext search.
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➡ unconditional (no complexity assumptions) 
➡ applies to any scheme (no assumption about how it works) 
➡ different type of i/o lower bound:  security vs. correctness

Our results:  I/O efficiency lower bound
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nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

w

8,76,89,90

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

Any construction can be seen as “touching” contiguous regions of 
memory during search processing:

Memory utilization in searching
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We use three (very coarse) measures: 

1.encrypted index size: measured relative to #-postings 

2. locality: number of contiguous regions touched 

3. read overlaps: amount of touched memory common between  
searches

term postings
“Rutgers” 4,9,37

“Admissions” 9,37,93,94,95,96
“Committee” 8,37,93,94

“Accept” 2,37,62,75

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

N postings total f(N) bits

Memory utilization in searching
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We use three (very coarse) measures: 

1.encrypted index size: measured relative to #-postings 

2. locality: number of contiguous regions touched 

3. read overlaps: amount of touched memory common between  
searches

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

w

8,76,89,90

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

search for R postings

touch g(N,R) contiguous regions

Memory utilization in searching
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We use three (very coarse) measures: 

1.encrypted index size: measured relative to #-postings 

2. locality: number of contiguous regions touched 

3. read overlaps: amount of touched memory common between  
searches

Memory utilization in searching



search for w3
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search for w1 search for w2

Overlap of search for w3 = size of orange regions

➡ h-overlap ⟹ any search touches ≤ h bits touched by any other  
possible search 

➡ intuition:  large overlaps ≈ reading more bits than necessary 
➡ small overlap in known constructions (e.g. hash table access)

Encrypted index in memory:

Read overlaps



Theorem: No length-hiding scheme can have all 3: 
1. O(N)-size encrypted index 
2. O(1)-locality 
3. O(1)-overlap on searches
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Let N = no. postings in input index

➡ super-linear blow-up in storage/locality or highly  
overlapping reads 

➡ in paper: smooth trade-off 

✴ can be circumvented by tweaking security def [CJJJKRS]

Our results:  lower bound (formal)
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Enc Ind Size Overlap Locality

lower bound: 1 of ω(N) ω(1) ω(1)

[CGKO,KPR,…] N 1 R

[CK] N 1 1

trivial “read all” N N 1

new construction N log N log N log N

➡ open problem: get closer to lower bound

N = no. postings in input index,  R = no. postings in search

2

Memory utilization of constructions



- prior constructions and why they can’t be “localized” 

- lower bound approach

25

Outline



- prior constructions and why they can’t be “localized”!

- lower bound approach

26

Outline



term postings

Columbia 4, 9,37

Big 9,37,93,94,95

Data 8,37,89,90

Workshop 4,37,62,75

term postings

Columbia 4, 9,37

Big 9,37,93,94,95

Data 8,37,89,90

Workshop 4,37,62,75

Encrypted Index Generation Step 1:"

- derive per-term encryption keys:  Ki = PRF(wi) 

- encrypt individual postings under respective keys

27

[CGKO] construction



Encrypted Index Generation Step 2:"

1. put ciphertexts in random order in array A 

2. link together postings lists with encrypted 
pointers (encrypted under Ki) 

3. encrypted index = A

(example with pointers for word “Workshop”)
28

A[CGKO] construction: searching



search token generation for w:"

-  re-derive key K = PRF(w) 

-  token = K

server search using token:"

- step through list, decrypt postings/
pointers with K

29

A[CGKO] construction: searching



Memory utilization:"

- O(N) size index 

- O(R) locality for search w/ R postings 

- O(1) read overlaps

30

A[CGKO] construction: memory efficiency



suppose we try to make construction “local”"
➡  store encrypted postings lists together.

which looks like

31

becomes



server can observe memory touched during searches:

composition of untouched 
regions reveals info about  
unopened part of index!

➡ e.g. 7 remaining spots 
do not correspond to a  
single postings list

32

Touched on 
search 1:

Touched on 
search 2:
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Let N = no. postings in input index

➡ proof approach:  suppose construction satisfies all 3.   
then we find an attack 

➡ attack looks at where server touches memory, infers info  
about index

Theorem: No secure searchable encryption can have all 3: 
1. O(N)-size encrypted index 
2. O(1) locality 
3. O(1)-overlaps between searches

Our Lower Bound (recall)



we’ll show no secure scheme can have all 3:"

(1) <1.5x-size encrypted index over plaintext index 

(2) exactly 1-locality (i.e. reads one contiguous region) 

(3) 0-overlaps (i.e. disjoint reads for searches)

34

➡ “perfectly local construction that reads one region for exactly 
number of bits needed must double index size” 

➡ in paper:   

‣ improve (1) from “double” to “any constant factor” via 
delicate argument 

‣ improve (2) and (3) via minor tweaks to argument

Warm up:  Special Case



term records

w p

w p

w p

⋮ ⋮

w p

term records

w p

w p

‣ We distinguish these two indices:
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❉ terms/identifiers all random strings

Index I0 Index I1

‣ Examine which region of memory is read when searching for w1



Red regions:  Regions that 
would be touched during a 
search for each keyword 

"

By assumptions: 

➡ If I0 encrypted, then N 
small regions 

➡ If I1 encrypted, then one 
small region and one 
huge region

36

I0 Encrypted I1 Encrypted

Both < (1.5 × N) blocks long by assumption

Attack Intuition



Consider region touched when 
searching for w1: 

➡ If I0 encrypted, then random 
small region touched 

➡ If I1 encrypted, then fixed 
small region touched

37

I0 Encrypted I1 Encrypted

Both < (1.5 × N) blocks long by assumption

Attack Intuition
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I0 Encrypted I1 Encrypted

Both < (1.5 × N) blocks long by assumption

Two observations: 

1. If I1 encrypted, touched region 
must leave large contiguous 
untouched region on one side 

2. If I0 encrypted, ≥ 1/N chance 
this does not happen 

‣ Proof by pigeonhole: < 1.5N 
places to store N blocks, so 
one must be “close to center”, 
preventing large block fitting

No room for  
large block

No room for  
large block

Large block  
always fits

➡We check if large block  
could fit, decides which index  
was encrypted

observed 
read

observed 
read

Attack Intuition
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I0 Encrypted I1 Encrypted

Both < (1.5 × N) blocks long by assumption

very weak bound so far: 

‣ does not apply if server can 
read two regions 

‣ does not apply if encrypted 
index can be slightly larger 

‣ does not apply if tiny amount 
of overlap allowed 

Now:  first deal with larger index 
(factor k instead of 2), still assume 
perfect locality

No room for  
large block

No room for  
large block

Large block  
always fits

observed 
read

observed 
read

Attack Intuition



(huge list)

term postings

w aa

w aa

w aa

w aaaa

w aaaa

w aaaa

w aaaaaaaa

w aaaaaaaa

w aaaaaaaaaaaaa

w aaaaaaaaaaaaa

w

term postings

w aa

w aa

w aa

w aaaa

w aaaa

w aaaa

w aaaaaaaa

w aaaaaaaa

w aaaaaaaaaaaaa

w aaaaaaaaaaaaa

w aaaaaaaaaaaaaaaaaa

w aaaaaaaaaaaaaaaaaa

w aaaaaaaaaaaaaaaaaa

Index I0 Index I1

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Stronger Attack Intuition
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(huge list)

term postings

w aa

w aa

w aa

w aaaa

w aaaa

w aaaa

w aaaaaaaa

w aaaaaaaa

w aaaaaaaaaaaaa

w aaaaaaaaaaaaa

w

term postings

w aa

w aa

w aa

w aaaa

w aaaa

w aaaa

w aaaaaaaa

w aaaaaaaa

w aaaaaaaaaaaaa

w aaaaaaaaaaaaa

w aaaaaaaaaaaaaaaaaa

w aaaaaaaaaaaaaaaaaa

w aaaaaaaaaaaaaaaaaa

Index I0 Index I1

➡We ask to search terms w1, …, w10 

‣ I1 encrypted ⟹ observe huge contiguous untouched region 

‣ I0 encrypted ⟹ no such region with constant probability

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Stronger Attack Intuition
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(huge list)

term postings

w aa

w aa

w aa

w aaaa

w aaaa

w aaaa

w aaaaaaaa

w aaaaaaaa

w aaaaaaaaaaaaa

w aaaaaaaaaaaaa

w

term postings

w aa

w aa

w aa

w aaaa

w aaaa

w aaaa

w aaaaaaaa

w aaaaaaaa

w aaaaaaaaaaaaa

w aaaaaaaaaaaaa

w aaaaaaaaaaaaaaaaaa

w aaaaaaaaaaaaaaaaaa

w aaaaaaaaaaaaaaaaaa

Index I0 Index I1

➡We ask to search terms w1, …, w10 

‣ I1 encrypted ⟹ observe huge contiguous untouched region 

‣ I0 encrypted ⟹ no such region with constant probability

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Stronger Attack Intuition
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(huge list)

term postings

w aa

w aa

w aa

w aaaa

w aaaa

w aaaa

w aaaaaaaa

w aaaaaaaa

w aaaaaaaaaaaaa

w aaaaaaaaaaaaa

w

term postings

w aa

w aa

w aa

w aaaa

w aaaa

w aaaa

w aaaaaaaa

w aaaaaaaa

w aaaaaaaaaaaaa

w aaaaaaaaaaaaa

w aaaaaaaaaaaaaaaaaa

w aaaaaaaaaaaaaaaaaa

w aaaaaaaaaaaaaaaaaa

Index I0 Index I1

➡We ask to search terms w1, …, w10 

‣ I1 encrypted ⟹ observe huge contiguous untouched region 

‣ I0 encrypted ⟹ no such region with constant probability

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Stronger Attack Intuition
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Exploit simple combinatorics of gaps between random intervals: 

‣ Lemma 1: If scheme secure, then memory touched during a 
O(1)-local search satisfies a mild pseudorandomness condition 

‣ Lemma 2:  Pseudorandom reads will have “many” small gaps 
between contiguous regions with constant probability.

⟹

no room for 
larger intervals

➡ Small number of reads prevent lots of area from holding larger 
postings lists (assuming zero overlap)

Tools for the Attack
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Start with all memory unmarked.  

1. Observe reads for smallest posting lists. 
‣ Mark out area where larger intervals will not fit. 

2. Observe reads for next larger size of posting lists. 
‣ Mark out more area where larger intervals will not fit. 

3. Iterate for all sizes

➡ Eventually conclude that a huge postings list will not fit at all 

➡ Allows distinguishing I0 and I1

Stronger Attack
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➡ first results showing security requires poor i/o efficiency 
➡ unconditional lower bounds via new proof technique 

- different from known i/o lower bounds 
➡ improved theoretical i/o efficiency of prior work

Q1: Tighten gap between upper/lower bound? 

Q2: Fine-grained lower bounds? 

Q3: Other primitives where i/o efficiency dominates?

Summary



Thanks!
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