
The Locality of Searchable
Symmetric Encryption

David Cash
Rutgers U

Stefano Tessaro
UC Santa Barbara

1

Outsourced storage and searching

Browser only
downloads documents
matching query.

Avoids downloading  
all 6 GB.

2

cloud provider
???

End-to-end encryption and searching

give me all records 
containing “meeting”

‣ Searching incompatible with privacy goals of traditional encryption

‣ server compromise

‣ government surveillance

‣ insider access

possible threats:

encrypted by client
(browser, app, etc)  
or proxy with key
unknown to cloud

3

4

End-to-end encryption for outsourced storage

cloud provider

Search with encryption: possible solution #1

, ,

‣ unencrypted auxiliary info reveals words in document

‣ document recovery sometimes possible [Fillmore-Goldberg-Zhu].

keyword documents

meeting 4, 9,37

rutgers 9,37,93,94,95

committee 8,37,89,90

accept 4,37,62,75

give me all records 
containing “meeting”

encrypted records unencrypted auxiliary info

5

client cloud provider

Search with encryption: possible solution #2

give me records #4,9,37

, ,

want all docs 
containing
“meeting”

keyword documents

meeting 4, 9,37

rutgers 9,37,93,94,95

committee 8,37,89,90

accept 4,37,62,75

local auxiliary info

‣ large state precludes advantages of outsourcing

‣ even this is not perfect: still leaks “access pattern”
6

client cloud provider

Searchable encryption: 3 parts
‣ special protocols to enable provider to “search without decrypting”

‣ all searching in this talk is for single keywords

upload encrypted records 
+ extra helper info

[Song-Wagner-Perrig] , [Curtmola-Garay-Kamara-Ostrovsky], …

1 Encrypted index generation

7

client cloud provider

Searchable encryption: 3 parts

want all docs 
containing
“california”

, ,

…

1 Encrypted index generation 2 Search protocol

Decrypt locally:

‣ special protocols to enable provider to “search without decrypting”

‣ all searching in this talk is for single keywords

[Song-Wagner-Perrig] , [Curtmola-Garay-Kamara-Ostrovsky], …

8

client cloud provider

Searchable encryption: 3 parts

1 Encrypted index generation 2 Search protocol 3 Update protocol

need to add 
new record

…

updated records + helper info

‣ searches should still “work” on added record

‣ special protocols to enable provider to “search without decrypting”

‣ all searching in this talk is for single keywords

[Song-Wagner-Perrig] , [Curtmola-Garay-Kamara-Ostrovsky], …

9

10

keyword records

sunnyvale 4, 9,37

rutgers 9,37,93,94,95

committee 8,37,89,90

accept 4,37,62,75

Inverted index:

processing
keyword records

45e8a 4, 9,37

092ff 9,37,93,94,95

f61b5 8,37,89,90

cc562 4,37,62,75

Encrypted index:

1 Encrypted index generation

1. Replace each keyword with “keyed hash” (i.e., PRF) of keyword: H(K,w)

2. Client saves key K

2 Search protocol

1. Client sends: H(K,w)

2. Server retrieves proper row

3 Update protocol
‣ To add new record, client

identifies which rows to
add new identifier to

Example searchable encryption

keyword records

45e8a 4, 9,37

092ff 9,37,93,94,95

f61b5 8,37,89,90

cc562 4,37,62,75

Example of searchable encryption (strengthened)

keyword records

45e8a 4, 9,37

092ff 9,37,93,94,95

f61b5 8,37,89,90

cc562 4,37,62,75

‣ additionally encrypt rows under different keys

‣ requires modification of server, but more secure

11

In this talk: Also hide lengths and number of rows

keyword records

45e8a 4, 9,37

092ff 9,37,93,94,95

f61b5 8,37,89,90

cc562 4,37,62,75

a845c

b8423

ab067

63fa2

54db1

b7696

ed15b

nCeUKlK7GO5ew6mwpIra
ODusbskYvBj9GX0F0bNv
puxtwXKuEdbHVuYAd4mE
ULgyJmzHV03ar8RDpUE1
6TfEqihoa8WzcEol8U8b
Q1BzLK368qufbMMHlGvN
sOVqt2xtfZhDUpDig8I0
jyWyuOedYOvYq6XPqZc2
5tDHNCLv2DFJdcD9o4FD

‣ Searches reveal intended results but leak 
no other information

‣ Formal definition omitted

‣ Simple construction later

12

[Curtmola-Garay-Kamara-Ostrovsky], …

13

systems collaborators and others have complained:

➡ Runtime bottleneck: disk latency, not crypto processing.

Fine, the asymptotics are optimal, but this
stuff is unusably slow for large indexes.“

Performance Bottleneck

client
nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud provider

w

w = “Committee”
w

8,76,89,90

14

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

➡ constructions access one random part of memory per posting

- one disk seek per posting (≈ only a few bytes, wasteful)
➡ plaintext search can use one contiguous access for entire

postings list

Memory access during encrypted search

15

‣ count only # of blocks moved to/from disk [Aggarwal-Vitter]

- idea: i/o time overwhelms time for computation

‣ numerous versions of theory i/o models (see [Vitter] text)

‣ optimal results (matching upper/lower bounds) for many
problems like sorting, dictionary look-up, …

I/O theory (not IO theory)

16

➡Study I/O efficiency and security 

➡Unconditional I/O lower bounds for searchable encryption"

‣ new proof technique  

➡Construction improving I/O efficiency of prior work

[C., Tessaro’14]
Our results: I/O efficiency and searchable encryption

“Theorem”: Secure searchable encryption must either:
(1) Have a very large encrypted index,

or
(2) Read memory in a highly “non-local” fashion,"

or"
(3) Read more memory than a plaintext search.

17

➡ unconditional (no complexity assumptions)
➡ applies to any scheme (no assumption about how it works)
➡ different type of i/o lower bound: security vs. correctness

Our results: I/O efficiency lower bound

18

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

w

8,76,89,90

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

Any construction can be seen as “touching” contiguous regions of
memory during search processing:

Memory utilization in searching

19

We use three (very coarse) measures:

1.encrypted index size: measured relative to #-postings

2. locality: number of contiguous regions touched

3. read overlaps: amount of touched memory common between  
searches

term postings
“Rutgers” 4,9,37

“Admissions” 9,37,93,94,95,96
“Committee” 8,37,93,94

“Accept” 2,37,62,75

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

N postings total f(N) bits

Memory utilization in searching

20

We use three (very coarse) measures:

1.encrypted index size: measured relative to #-postings

2. locality: number of contiguous regions touched

3. read overlaps: amount of touched memory common between  
searches

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

w

8,76,89,90

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

search for R postings

touch g(N,R) contiguous regions

Memory utilization in searching

21

We use three (very coarse) measures:

1.encrypted index size: measured relative to #-postings

2. locality: number of contiguous regions touched

3. read overlaps: amount of touched memory common between  
searches

Memory utilization in searching

search for w3

22

search for w1 search for w2

Overlap of search for w3 = size of orange regions

➡ h-overlap ⟹ any search touches ≤ h bits touched by any other  
possible search

➡ intuition: large overlaps ≈ reading more bits than necessary
➡ small overlap in known constructions (e.g. hash table access)

Encrypted index in memory:

Read overlaps

Theorem: No length-hiding scheme can have all 3:
1. O(N)-size encrypted index
2. O(1)-locality
3. O(1)-overlap on searches

23

Let N = no. postings in input index

➡ super-linear blow-up in storage/locality or highly  
overlapping reads

➡ in paper: smooth trade-off

✴ can be circumvented by tweaking security def [CJJJKRS]

Our results: lower bound (formal)

24

Enc Ind Size Overlap Locality

lower bound: 1 of ω(N) ω(1) ω(1)

[CGKO,KPR,…] N 1 R

[CK] N 1 1

trivial “read all” N N 1

new construction N log N log N log N

➡ open problem: get closer to lower bound

N = no. postings in input index, R = no. postings in search

2

Memory utilization of constructions

- prior constructions and why they can’t be “localized”

- lower bound approach

25

Outline

- prior constructions and why they can’t be “localized”!

- lower bound approach

26

Outline

term postings

Columbia 4, 9,37

Big 9,37,93,94,95

Data 8,37,89,90

Workshop 4,37,62,75

term postings

Columbia 4, 9,37

Big 9,37,93,94,95

Data 8,37,89,90

Workshop 4,37,62,75

Encrypted Index Generation Step 1:"

- derive per-term encryption keys: Ki = PRF(wi)

- encrypt individual postings under respective keys

27

[CGKO] construction

Encrypted Index Generation Step 2:"

1. put ciphertexts in random order in array A

2. link together postings lists with encrypted
pointers (encrypted under Ki)

3. encrypted index = A

(example with pointers for word “Workshop”)
28

A[CGKO] construction: searching

search token generation for w:"

- re-derive key K = PRF(w)

- token = K

server search using token:"

- step through list, decrypt postings/
pointers with K

29

A[CGKO] construction: searching

Memory utilization:"

- O(N) size index

- O(R) locality for search w/ R postings

- O(1) read overlaps

30

A[CGKO] construction: memory efficiency

suppose we try to make construction “local”"
➡ store encrypted postings lists together.

which looks like

31

becomes

server can observe memory touched during searches:

composition of untouched 
regions reveals info about  
unopened part of index!

➡ e.g. 7 remaining spots 
do not correspond to a  
single postings list

32

Touched on 
search 1:

Touched on 
search 2:

33

Let N = no. postings in input index

➡ proof approach: suppose construction satisfies all 3.  
then we find an attack

➡ attack looks at where server touches memory, infers info  
about index

Theorem: No secure searchable encryption can have all 3:
1. O(N)-size encrypted index
2. O(1) locality
3. O(1)-overlaps between searches

Our Lower Bound (recall)

we’ll show no secure scheme can have all 3:"

(1) <1.5x-size encrypted index over plaintext index

(2) exactly 1-locality (i.e. reads one contiguous region)

(3) 0-overlaps (i.e. disjoint reads for searches)

34

➡ “perfectly local construction that reads one region for exactly
number of bits needed must double index size”

➡ in paper:

‣ improve (1) from “double” to “any constant factor” via
delicate argument

‣ improve (2) and (3) via minor tweaks to argument

Warm up: Special Case

term records

w p

w p

w p

⋮ ⋮

w p

term records

w p

w p

‣ We distinguish these two indices:

35

❉ terms/identifiers all random strings

Index I0 Index I1

‣ Examine which region of memory is read when searching for w1

Red regions: Regions that
would be touched during a
search for each keyword

"

By assumptions:

➡ If I0 encrypted, then N
small regions

➡ If I1 encrypted, then one
small region and one
huge region

36

I0 Encrypted I1 Encrypted

Both < (1.5 × N) blocks long by assumption

Attack Intuition

Consider region touched when
searching for w1:

➡ If I0 encrypted, then random
small region touched

➡ If I1 encrypted, then fixed
small region touched

37

I0 Encrypted I1 Encrypted

Both < (1.5 × N) blocks long by assumption

Attack Intuition

38

I0 Encrypted I1 Encrypted

Both < (1.5 × N) blocks long by assumption

Two observations:

1. If I1 encrypted, touched region
must leave large contiguous
untouched region on one side

2. If I0 encrypted, ≥ 1/N chance
this does not happen

‣ Proof by pigeonhole: < 1.5N
places to store N blocks, so
one must be “close to center”,
preventing large block fitting

No room for  
large block

No room for  
large block

Large block  
always fits

➡We check if large block  
could fit, decides which index  
was encrypted

observed 
read

observed 
read

Attack Intuition

39

I0 Encrypted I1 Encrypted

Both < (1.5 × N) blocks long by assumption

very weak bound so far:

‣ does not apply if server can
read two regions

‣ does not apply if encrypted
index can be slightly larger

‣ does not apply if tiny amount
of overlap allowed

Now: first deal with larger index
(factor k instead of 2), still assume
perfect locality

No room for  
large block

No room for  
large block

Large block  
always fits

observed 
read

observed 
read

Attack Intuition

(huge list)

term postings

w aa

w aa

w aa

w aaaa

w aaaa

w aaaa

w aaaaaaaa

w aaaaaaaa

w aaaaaaaaaaaaa

w aaaaaaaaaaaaa

w

term postings

w aa

w aa

w aa

w aaaa

w aaaa

w aaaa

w aaaaaaaa

w aaaaaaaa

w aaaaaaaaaaaaa

w aaaaaaaaaaaaa

w aaaaaaaaaaaaaaaaaa

w aaaaaaaaaaaaaaaaaa

w aaaaaaaaaaaaaaaaaa

Index I0 Index I1

aaa

Stronger Attack Intuition

40

(huge list)

term postings

w aa

w aa

w aa

w aaaa

w aaaa

w aaaa

w aaaaaaaa

w aaaaaaaa

w aaaaaaaaaaaaa

w aaaaaaaaaaaaa

w

term postings

w aa

w aa

w aa

w aaaa

w aaaa

w aaaa

w aaaaaaaa

w aaaaaaaa

w aaaaaaaaaaaaa

w aaaaaaaaaaaaa

w aaaaaaaaaaaaaaaaaa

w aaaaaaaaaaaaaaaaaa

w aaaaaaaaaaaaaaaaaa

Index I0 Index I1

➡We ask to search terms w1, …, w10

‣ I1 encrypted ⟹ observe huge contiguous untouched region

‣ I0 encrypted ⟹ no such region with constant probability

aaa

Stronger Attack Intuition

41

(huge list)

term postings

w aa

w aa

w aa

w aaaa

w aaaa

w aaaa

w aaaaaaaa

w aaaaaaaa

w aaaaaaaaaaaaa

w aaaaaaaaaaaaa

w

term postings

w aa

w aa

w aa

w aaaa

w aaaa

w aaaa

w aaaaaaaa

w aaaaaaaa

w aaaaaaaaaaaaa

w aaaaaaaaaaaaa

w aaaaaaaaaaaaaaaaaa

w aaaaaaaaaaaaaaaaaa

w aaaaaaaaaaaaaaaaaa

Index I0 Index I1

➡We ask to search terms w1, …, w10

‣ I1 encrypted ⟹ observe huge contiguous untouched region

‣ I0 encrypted ⟹ no such region with constant probability

aaa

Stronger Attack Intuition

42

(huge list)

term postings

w aa

w aa

w aa

w aaaa

w aaaa

w aaaa

w aaaaaaaa

w aaaaaaaa

w aaaaaaaaaaaaa

w aaaaaaaaaaaaa

w

term postings

w aa

w aa

w aa

w aaaa

w aaaa

w aaaa

w aaaaaaaa

w aaaaaaaa

w aaaaaaaaaaaaa

w aaaaaaaaaaaaa

w aaaaaaaaaaaaaaaaaa

w aaaaaaaaaaaaaaaaaa

w aaaaaaaaaaaaaaaaaa

Index I0 Index I1

➡We ask to search terms w1, …, w10

‣ I1 encrypted ⟹ observe huge contiguous untouched region

‣ I0 encrypted ⟹ no such region with constant probability

aaa

Stronger Attack Intuition

43

Exploit simple combinatorics of gaps between random intervals:

‣ Lemma 1: If scheme secure, then memory touched during a
O(1)-local search satisfies a mild pseudorandomness condition

‣ Lemma 2: Pseudorandom reads will have “many” small gaps
between contiguous regions with constant probability.

⟹

no room for 
larger intervals

➡ Small number of reads prevent lots of area from holding larger 
postings lists (assuming zero overlap)

Tools for the Attack

44

Start with all memory unmarked.  

1. Observe reads for smallest posting lists.
‣ Mark out area where larger intervals will not fit.

2. Observe reads for next larger size of posting lists.
‣ Mark out more area where larger intervals will not fit.

3. Iterate for all sizes

➡ Eventually conclude that a huge postings list will not fit at all

➡ Allows distinguishing I0 and I1

Stronger Attack

45

46

➡ first results showing security requires poor i/o efficiency
➡ unconditional lower bounds via new proof technique

- different from known i/o lower bounds
➡ improved theoretical i/o efficiency of prior work

Q1: Tighten gap between upper/lower bound?

Q2: Fine-grained lower bounds?

Q3: Other primitives where i/o efficiency dominates?

Summary

Thanks!

47

