Citizen Science in the Classroom

David Hills Black, Jr. PhD. Groton School Groton, Massachusetts, USA

Monarch Butterfly: What is Citizen Science?

Citizen Science is the collection of scientific data by individuals who are not professional scientists. Professional biologists from the land management agency prepare the individuals for their work as citizen scientists. These projects are on-going and consist of a network of volunteers. Citizen Science networks are very important. The citizen science monitoring programs would not be the success it is without the participation of citizen scientists. Without these dedicated volunteers, too few data would be collected to accomplish research objectives. Much of what has been learned about the monarch butterfly and its migration is the result of citizen science projects.

butterfly they recently tagged. Photo by Anne Okonek.

Science education must change to include more process and less content

Testing can frequently make laboratory work appear to be in conflict with the need to cover a large amount of content

Why do laboratories fail so often?

- Small sample sizes and high variance make the data difficult to interpret
- Teachers may lack adequate background and training in the field
- Insufficient time is available to see results.

ID (initials #)	Plant #	# sepals	# carpels	# honey leaves	Length of longest sepal (mm)	Width of sepal (mm)	# sepals with green coloration	
KB1	3	6	9	25	33	23	5	
KB2	3	5	8	17	30	25	0	
LC1	3	7	9	19	23	19	0	
LC2	4	5	8	17	27	26	0	
SC1	4	5	7	0	36	30	5	
SC2	4	5	7	13	41	37	5	
BC1	2	5	13	21	28	23	4	
BC2	2	6	17	18	36	31	4	
WD1	1	8	10	26	31	25	1	
WD2	1	7	12	11	36	28	4	
EG1	4	5	10	18	30	28	0	
EG2	4	5	3	19	32	29	1	
OG1	1	5	6	15	25	22	0	
OG2	1	5	7	18	24	23	0	
RK1	1	5	6	17	23	20	0	

Making things still more difficult: established educational goals include a quantitative, inquiry based approach

Quantitative Litera	CV
---------------------	----

OBSERVATION_MON DAY_OF_YEAR	SPECIES_ID C	COMMON_N	SCIENTIFIC	PLANT_GRO	PHENOPHAS	PHENOPHAS	OBSERVAT	ICOBSERVATIC	LATITUDE	LONGITUDE	SITE_ID
1 2	7 A	\pple	Malus pumil	occ_trees	Leaves Unfo	110	Single	Happy New	40.0361	-105.062	106
1 2	7 A	\pple	Malus pumil	occ_trees	Leaves Cha	120	Single	Happy New	40.0361	-105.062	106
1 2	7 A	Apple	Malus pumil	occ_trees	Leaves Drop	130	Single	Happy New	40.0361	-105.062	106
1 2	7 A	\pple	Malus pumil	occ_trees	Flowers (No	140	Single	Happy New	40.0361	-105.062	106
1 2	7 A	\pple	Malus pumil	occ_trees	Fruit (None)	150	Single	Happy New	40.0361	-105.062	106
1 4	174 S	Skunk cabba	Symplocarpu	wildflowers	First Flower	21	Regular	not actual fl	41.8234	-124.148	106
1 8	169 S	Sea rosema	Argusia gna	occ_evergre	Flowers (Mic	412	Single		36.38	-75.8305	106
1 8	169 S	Sea rosema	Argusia gna	occ_evergre	Fruit (None)	420	Single		36.38	-75.8305	106
1 8	240 A	American ho	Ilex opaca	occ_evergre	Flowers (No	410	Single	Cedar Waxv	37.1218	-76.4484	106
1 8	240 A	American ho	Ilex opaca	occ_evergre	Fruit (Middle	422	Single	Cedar Waxv	37.1218	-76.4484	106
1 15	7649 N	Varrowleaf (Populus an <u>c</u>	occ_trees	Leaves Unfo	110	Single	This entry is	39.8255	-105.13	106
1 15	7649 N	Varrowleaf	Populus an <u>c</u>	occ_trees	Leaves Cha	120	Single	This entry is	39.8255	-105.13	106
1 15	7649 N	Varrowleaf	Populus an <u>c</u>	occ_trees	Leaves Drop	130	Single	This entry is	39.8255	-105.13	106
1 15	7649 N	Varrowleaf (Populus an <u>c</u>	occ_trees	Flowers (No	140	Single	This entry is	39.8255	-105.13	106
1 15	7649 N	Varrowleaf (Populus an <u>c</u>	occ_trees	Fruit (None)	150	Single	This entry is	39.8255	-105.13	106
1 15	143 N	Varrowleaf (Typha angu	occ_grasses	Flower Stalk	310	Single	This observa	39.8255	-105.13	106
1 15	143 N	Narrowleaf (Typha angu	occ_grasses	Pollen (None	320	Single	This observa	39.8255	-105.13	106
1 15	143 N	Narrowleaf (Typha angu	occ_grasses	Fruit (Late)	333	Single	This observa	39.8255	-105.13	106
1 16	78 E	Eastern red	Cercis canad	occ_trees	Leaves Unfo	110	Single	larger buds	35.8108	-78.7151	106
1 16	78 E	Eastern red	Cercis canad	occ_trees	Leaves Cha	120	Single	larger buds	35.8108	-78.7151	106
1 16	78 E	Eastern red	Cercis canad	occ_trees	Leaves Drop	133	Single	larger buds	35.8108	-78.7151	106
1 16	78 E	Eastern red	Cercis canad	occ_trees	Flowers (No	140	Single	larger buds	35.8108	-78.7151	106
1 16	78 E	Eastern red	Cercis canad	occ_trees	Fruit (None)	150	Single	larger buds	35.8108	-78.7151	106
1 16	50 E	Eastern ser	Amelanchier	occ_trees	Leaves Unfo	110	Single	larger buds	35.8108	-78.7151	106
1 16	50 E	Eastern ser	Amelanchier	occ_trees	Leaves Cha	120	Single	larger buds	35.8108	-78.7151	106
1 16	50 E	Eastern ser	Amelanchier	occ_trees	Leaves Drop	133	Single	larger buds	35.8108	-78.7151	106
1 16	50 E	Eastern ser	Amelanchier	occ_trees	Flowers (No	140	Single	larger buds	35.8108	-78.7151	106
1 16	50 E	Eastern ser	Amelanchier	occ_trees	Fruit (None)	150	Single	larger buds	35.8108	-78.7151	106
1 16	52 F	lowering d	Cornus floric	occ_trees	Leaves Unfo	110	Single	larger buds	35.8108	-78.7151	106
1 16	52 F	lowering d	Cornus florid	occ_trees	Leaves Cha	120	Single	larger buds	35.8108	-78.7151	106
1 16	52 F	lowering d	Cornus florid	ore trees	Leaves Dror	133	Single	larger bude	35,8108	-78 7151	106

Student Engagement

- Meaningful Work
- Active Inquiry
- Hands-on and Participatory
- Access to experts

Inclusion of math and computer science skill instruction into the project

An (over)abundance of opportunities

CITIZEN SCIENCE

Help make science happen by volunteering for a real research project.

Topics - Type-

Study

Send Us Your Skeletons

October 30, 2015 - Larry

[Australia]

Greenemeier

Track a Tree [U.K.] Animal Ownership Interaction August 25, 2015 September 1, 2015 - Larry

Virginia Key Restoration August 18, 2015 - Larry Greenemeier

FAIRBANKS

Community of Observers

Humphack Tails Wanted

Greenemeier

November 20, 2015 - Larry

Connecticut Turtle Atlas Michigan Herp Atlas August 12, 2015 - Larry August 4, 2015 - Larry Greenemeier Greenemeier

Wildbook for Whale Sharks July 21, 2015 -- Larry Greenemeier

2 Plants of Concern

1

NYC Cyclist Air Quality Study June 16, 2015 - Larry Greenemeier

Greenemeier

May 12, 2015 - Larry Greenemeier

MIGRATORY DRAGONFLY

Fairbanks Community of Observers

The challenges – why isn't everyone doing this?

Recognition of the need to incorporate learning goals into Citizen Science Projects

- Identify the fundamental research questions being addressed, phrased in terms that make the science that underlies them clear
- Identify classes and age groups best served by the project
- Link the quantitative skills required for the analysis with the content presented and provide background in these analytical techniques
- Identify the content-standards met by the prepared material
- Include still more resources that will provide adequate background and instruction for easy integration.

Effectiveness of the approach has yet to fully demonstrated

Benefits to those setting up the projects

- Training costs are shared with the teachers who frequently have experience training data collectors
- Data submitted will likely get a good first review
- Many students will be motivated (albeit for varying reasons)

Challenges and Opportunities

