
THE BALLOT PROBLEM

Michael L. GARGANO1, Lorraine L. LURIE1

Louis V. QUINTAS2, and Eric M. WAHL2

1Computer Science Department, Pace University
New York, NY 10038 U.S.A.

mgargano@pace.edu, lllurie@pace.edu
2The New York Institute for Bioengineering and Health Science

30 Fifth Avenue #1E
New York, NY 10011 U.S.A.

qmail02@attglobal.net, ericwahl.md@verizon.net

DRAFT:March 21, 2005

Abstract

If there are two candidates for an elective office and 2n voters such that
n vote for one candidate and n vote for the other candidate, then in how
many ways can one sequentially count the votes so that a given candidate
is always ahead or tied with the other candidate? This is called the
Ballot Problem. Variations of this problem and algorithmic lexicographic
orderings for these sequences will be discussed.

Keywords: Ballot Problem, lexicographic ordering, angiogenesis

VARIATIONS ON THE BALLOT PROBLEM
Michael L. GARGANO1, Lorraine L. LURIE2

Louis V. QUINTAS3, Eric M. WAHL3

1Computer Science Department, Pace University
2Mathematics Department, Pace University

New York, NY 10038 U.S.A.
mgargano@pace.edu, llurie@pace.edu

3The New York Institute for Bioengineering and Health Science
30 Fifth Avenue #1E

New York, NY 10011 U.S.A.
qmail02@attglobal.net, ericwahlmd@aol.com

Abstract. If there are two candidates for an elective office and 2n voters such

that n vote for one candidate and n vote for the other candidate, then in how many

1



ways can one sequentially count the votes so that a given candidate is always ahead

or tied with the other candidate? This is called the Ballot Problem. Variations of this

problem, algorithmic lexicographic ordering for these sequences, and an application in

biology will be discussed.

Keywords: Ballot Problem, lexicographic ordering, angiogenesis

1. INTRODUCTION.
1.1. The Ballot Problem: n(B) + n(C) = 2n
The following is called the Ballot Problem. Suppose Bob and Carol are candidates

for an elective office and there are 2n voters such that n vote for Bob and n vote for

Carol. In how many ways can the votes be sequentially counted so that Bob is always

ahead of or tied with Carol? (see [7]).

The answer to this question is the same as the number of sequences of length 2n
consisting of n B terms and n C terms such that for every initial subsequence the

number of B terms is greater than or equal to the number of C terms. It is known

(see [7]) that the solution of the Ballot Problem is the Catalan Number

Cn =
1

n + 1

(
2n

n

)
=

(2n)!
(n + 1)!n!

2



Call a sequence such that each term is either a B or a C a BC-sequence and

let n(X) denote the number of X terms in a given sequence (where n(X) is not

necessarily restricted to BC-sequences).

A restatement of the Ballot Problem and its solution is as follows.

If A(m) is the number of BC-sequences of length m such that n(B) = n(C) = n
and for each initial subsequence n(B) ≥ n(C), then m = 2n and A(2n) = Cn.

A BC-sequence of this type is called an A(m)-sequence.

A recursive formula for A(m) is obtained as follows.

If m = 0, then the sequence is empty and we define A(0) = 1.

If m = 2, then A(2) = 1, realized by the A(2)-sequence BC.

For m ≥ 4 and i = 0, 2, . . . , m − 2, every A(m)-sequence is of the form:

a B followed by an A(i)-sequence (of length i) followed by a C followed by an

A(j)-sequence (of length j), where i + j = m− 2.

Then, recursively we have:

A(m) = A(0)A(m − 2) + A(2)A(m − 4) + · · ·+ A(m − 2)A(0)

or equivalently

A(m + 2) = A(0)A(m) + A(2)A(m − 2) + A(4)A(m − 4) + . . . + A(m)A(0)

Keeping in mind that m = 2n, let A(m) = bm
2

= bn. This yields:

bn+1 = b0bn + b1bn−1 + b2bn−2 + . . . + bnb0

It is known that the solution to this recursion is the Catalan number Cn. For

a proof of this see pp. 501-502 of [3]. From this, we obtain, A(m) = bn = Cn.

Therefore,

A(2n) = Cn.

Note that, although Bob and Carol will end up with an equal number of votes for

the office they are running for, if exit polls reflect the sequentially counted votes

as indicated above, candidate Bob could claim impending ”victory” throughout the

election. If the exit poll counts are random, the probability that Bob could claim

”impending victory” is:

Cn(
2n
n

) =
1

n + 1

3



1.2. An algorithm for the listing of A(m)-sequences
The following algorithm gives a lexicographic listing of all A(m)-sequences. The

algorithm is written in the pseudocode style as described by Rosen (see Chapter 2,

pp. 121-129 and Appendix A-2, in [5]).

Algorithm 1.
n(C) = m = 2n, n(B) = n(C) = n, and each initial subsequence satisfies n(B) ≥
n(C).

Get(n)

m = 2n
initialize (bp[1], . . . , bp[n] = 1, 2, . . . , n)
process (bp[1], . . . , bp[n])
while (bp[1], . . . , bp[n] �= n + 1, n + 2, . . . , 2n)

next-a(bp[1], . . . , bp[n])
process (bp[1], . . . , bp[n])

procedure next-a(bp[1], . . . , bp[n])
i = n
while bp[i] = n + i

i = i − 1
bp[i] = bp[i] + 1
for j = (i + 1) to n

bp[j] = bp[j] + j − i
return (bp[1], . . . , bp[n])

procedure process (bp[1], . . . , bp[n])
i = 1
while(bp[i] ≤ 2i−1and i ≤ n) i =

i + 1

4



if i = n + 1, then initialize (a[1], ..., a[m] = C, ..., C)
for j = 1 to n

. a[bp[j]] = B
print (a[1], a[2], . . . , a[m])

2. A VARIATION ON THE BALLOT PROBLEM: n(B)+n(C) = m
Let A∗(m) denote the number of BC-sequences with n(B) + n(C) = m and

for each initial subsequence n(B) ≥ n(C). Call such a BC-sequence of an A∗(m)-
sequence. The number A∗(m) of such sequences is given in the following theorem and

its corollary.

2.1. A∗(m) =

⎧⎨
⎩

1 if m = 0
2A∗(m − 1) − C m−1

2
if m is odd, m ≥ 1

2A∗(m − 1) if m is even, m ≥ 2
Proof. A∗(0) = 1, by definition.
If m is odd, then an A∗(m − 1)-sequence has even length. If such a sequence

is extended with either a B or a C , we obtain 2A∗(m − 1) sequences of length m.

However, for those A∗(m − 1)-sequences that have n(B) = n(C) the addition of a

C does not produce an A∗(m)-sequence (since this would create too many C terms).

Thus, we must subtract the number of BC-sequences of length m − 1 such that

n(B) = n(C) = m−1
2

and each initial subsequence satisfies n(B) ≥ n(C). By

Section 1.1, this number is A(m − 1) = C m−1
2

. Therefore,

A∗(m) = 2A∗(m − 1)− C m−1
2

.

If m is even, then every A∗(m − 1)-sequence has n(B) > n(C). Thus, every

A∗(m − 1)-sequence can be extended by adding either a B or a C in the m-th

position. Thus, A∗(m) = 2A∗(m − 1), when m is even. �
2.2. A∗(m) = M(m) =

(
m

�m/2�
)
, the middle binomial coefficient.

5



Proof. The proof follows by showing that A∗(m) and M(m) satisfy the same

recursion definition. Namely, M(0) =
(
0
0

)
= 1.

If m = 2n + 1 for n ≥ 0, then combining M(2n + 1) =
(
2n+1

n

)
and

(
2n+1

n

)
=(

2n
n−1

)
+

(
2n
n

)
, we have M(2n + 1) =

(
2n

n−1

)
+

(
2n
n

)
. Using, the Catalan number

identity Cn =
(
2n
n

)
−

(
2n

n−1

)
, this yields:

M(2n + 1) =
(
2n
n

)
− Cn +

(
2n
n

)
= 2

(
2n
n

)
− Cn.

Therefore, if m is odd

M(m) = 2M(m− 1) −C m−1
2

.

If m = 2n, then M(2n) =
(
2n
n

)
=

(
2n−1
n−1

)
+

(
2n−1

n

)
= 2

(
2n−1
n−1

)
. Since

(
2n−1
n−1

)
=

M(2n − 1), we have M(2n) = 2M(2n − 1). Therefore, if m is even,

M(m) = 2M(m − 1).

Since, M(m) and A∗(m) are defined by the same recursion, A∗(m) = M(m). �
2.1. An algorithm for the listing of A∗(m)-sequences
The following algorithm gives a lexicographic listing of all A∗(m)-sequences.

Algorithm 2. n(B)+
n(C) = m and each initial subsequence satisfies n(B) ≥ n(C).

get(m)
initialize (a[1], . . . , a[m] = B, . . . , B)
print (a[1], . . . , a[m])
while (a[1], . . . , a[m] �= B, C, B, C . . . )

next-a (a[1], . . . , a[m])
procedure next-a (a[1], . . . , a[m])

i = m
while (a[i] = C)

a[i] = B
i = i − 1

a[i] = C
n(C) = 0
n(B) = 0
j = 1
while (j ≤ m and n(B) ≥ n(C))

if a[j] = B then n(B) = n(B) + 1
else n(C) = n(C) + 1

j = j + 1
if (j = m + 1 and n(B) ≥ n(C)) then print (a[1], . . . , a[m])
return (a[1], . . . , a[m])

3. A FURTHER VARIATION ON THE BALLOT PROBLEM:
n(B) + n(S) + n(C) = m

Assume there is a third choice for voting in the Bob and Carol election. This

could be a third candidate but with interest still focused on the Bob and Carol votes

6



or the third choice could simply be a ”no preference” vote denoted with an S. Here

the sequence formulation of this problem is as follows.

Using notation analogous to that used for A∗(m)-sequences we shall seek the

number A∗∗(m) of BSC-sequences of length m = n(B)+n(S)+n(C) such that for

each initial subsequence n(B) ≥ n(C). Call such a sequence an A∗∗(m)- sequence.

The number A∗∗(m) of such sequences is given in the following theorem.

3.1. A∗∗(m) =
∑m

k=0

(
m

k, �(m−k)/2�
)
, where

(
m

k, �(m−k)/2�
)

is the trinomial

coefficient m!
k!�(m−k)/2�!(m−k−�(m−k)/2�)! .

Proof. Let k be the number of S terms in a given A∗∗(m)-sequence.

In an A∗∗(m)-sequence, for a given k, the S terms can appear in
(
m
k

)
different

positions. Corresponding to each such distribution an A∗(m − k)-sequence can be

placed in order in the remaining m − k positions. Since there are A∗(m − k) of

the latter sequences, we have the number of A∗∗(m)-sequences having k S terms is

precisely
(

m
k

)
A∗(m − k). Thus, the total number ofA∗∗(m)-sequences is:

A∗∗(m) =
∑m

k=0

(
m
k

)
A∗(m − k).

7



By Corollary 2.2, we have A∗(m − k) =
(

m−k
�(m−k)/2�

)
. Next note that(

m
k

)(
m−k

�(m−k)/2�
)

= m!
k!(m−k)!

(m−k)!
�(m−k)/2�!(m−k−�(m−k)/2�)! =

(
m

k, �(m−k)/2�
)
. �

Problem 1. Obtain a closed formula for A∗∗(m).
3.1. An algorithm for the listing of A∗∗(m)-sequences
The following algorithm gives a lexicographic listing of all A∗∗(m)-sequences.

Algorithm 3.
n(B) + n(S) + n(C) = m and each initial subsequence satisfies n(B) ≥ n(C).
get(m)
initialize (a[1], . . . , a[m] = S, . . . , S)
print (a[1], . . . , a[m])
while (a[1], . . . , a[m] �= BCBC . . . )

next-a (a[1], . . . , a[m])
procedure next-a (a[1], . . . , a[m])

i = m
while (a[i] = C)

a[i] = S
i = i − 1

if a[i] = S, then a[i] = B
if a[i] = B, then a[i] = C
n(C) = 0
n(B) = 0
j = 1
while (j ≤ m and n(B) ≥ n(C))

if a[j] = B then n(B) = n(B) + 1
if a[j] = C then n(C) = n(C) + 1
j = j + 1

if (j = m + 1 and n(B) ≥ n(C)) then print (a[1], . . . , a[m])
return (a[1], . . . , a[m])

Problem 2. Can Algorithms 1, 2, and 3 be made more efficient?

4. AN APPLICATION IN BIOLOGY
In [4] (also see [1][2][6]) a random graph model for angiogenesis in the renal

glomerulus was defined. It is assumed that the vascular network of a renal glomerulus

starts with a single vessel and then through the realization of three mechanisms called

budding, splitting, and connecting, the single vessel develops into an adult vascular net-

work. The mechanism of budding (also called sprouting) occurs when a vessel grows

out from another vessel. Splitting corresponds to a vessel dividing longitudinally into

two parallel channels with a portion of the beginning and end of the vessel remain-

ing intact. Connecting is the mechanism when a bud joins to another vessel in the

developing vascular network. Denote these mechanisms by B, S, and C, respectively.

Thus, a given adult vascular network is assumed to have developed through a

BSC- sequence corresponding to the mechanisms noted above. The splitting and

budding mechanisms can occur at any step of the development. However, it is a

property of these mechanisms that a connecting mechanism cannot occur without an

available budding mechanism to have preceded it. Thus, we have the n(B) ≥ n(C)

8



condition for each initial subsequence of the BSC-sequence that leads to an adult

vascular network.

Therefore, the number of sequences of length m corresponding to B, S, or C mech-

anisms that result in a renal glomerulus vascular network is A∗∗(m). This number is

given in Theorem 3.1.

Acknowledgments
We thank Louis W. Shapiro of Howard University for advising us that the number

of A∗(m) sequences has been previously shown to be the middle binomial coefficient

and in particular for providing us with his geometric proof of this fact using paths

and Andre’s Reflection Principle. MLG acknowledges the partial support through

research grants from The School of Computer Science and Information Systems, Pace

University during the preparation of this work.

References
[1] M.L. Gargano, L.L. Lurie, L.V. Quintas, and E.M. Wahl, A graph theory

analysis of renal glomerular networks. Microvascular Research 67 (2004) 223-230.

[2] M.L. Gargano, L.V. Quintas, and E.M. Wahl, Angiogenesis as a random graph

process. Congressus Numerantium 167 (2004) 193-207.

[3] R.P. Grimaldi, Discrete and Combinatorial Mathematics. Addison-Wesley, 3rd

Edition (1994).

[4] L.V. Quintas and E.M. Wahl, Random graph process models for angiogenesis.

CSIS Pace University Technical Report Series, Report No. 183 (2002).

[5] K.H. Rosen, Discrete Mathematics and its Applications, Fifth Edition, McGraw

Hill, New York (2003).

[6] E.M. Wahl, An introduction to a graph theory model of angiogenesis, Graph

Theory Notes of New York XLVII, New York Academy of Sciences (2004) 27-33.

[7] E. Weisstein, Eric Weisstein’s World of Mathematics, see WEB page, http://mathworld.wolfram.com/BallotProble

9


