

Efficient Sequential Decision-Making
Algorithms for Container Inspection
Operations

David Madigan, Sushil Mittal, Fred Roberts1

Abstract

Following work of Stroud and Saeger [26] and Anand et al. [1], we formulate a port of entry

inspection sequencing task as a problem of finding an optimal binary decision tree for an

appropriate Boolean decision function. We report on new algorithms for finding such optimal trees

that are more efficient computationally than those presented by Stroud and Saeger and Anand et al.

We achieve these efficiencies through a combination of specific numerical methods for finding

optimal thresholds for sensor functions and two novel binary decision tree search algorithms that

operate on a space of potentially acceptable binary decision trees. The improvements enable us to

analyze substantially larger applications than was previously possible.

Keywords

Sequential decision making, Boolean function, binary decision tree, container

inspection, heuristic algorithms.

1. Introduction

As a stream of containers arrives at a port, a decision maker must decide which

“inspections” to perform on each container. Current inspections include

neutron/gamma emissions, radiograph images, induced fission tests, and checks of

the ship’s manifest. The specific sequence of inspection results will ultimately

result in a decision to let the container pass through the port, or a decision to

subject the container to a complete unpacking. Stroud and Saeger [26] looked at

this as a sequential decision making problem and formulated it in an important

special case as a problem of finding an optimal binary decision tree for an

1 All three authors were supported by ONR grant number N00014-05-1-0237 and NSF
grant number SES-0518543 and David Madigan was supported by grant DMS-0505599
to Rutgers University.

appropriate binary decision function. Anand et al. [1] reported an experimental

analysis of the Stroud-Saeger method that led to the conclusion that the optimal

inspection strategy is remarkably insensitive to variations in the parameters

needed to apply the method.

Finding algorithms for sequential diagnosis that minimize the total "cost" of the

inspection procedure, including the cost of false positives and false negatives,

presents serious computational challenges that stand in the way of practical

implementation.

We will think in the abstract of containers having “attributes” and having a sensor

to test for each attribute; we will use the terms attribute and sensor

interchangeably. In practice, we dichotomize attributes and represent their values

as either 0 ("absent" or “ok”) or 1 ("present" or “suspicious”), and we can think of

a container as corresponding to a binary attribute string such as 011001.

Classification then corresponds to a binary decision function F that assigns each

binary string to a final decision category. If the category must be 0 or 1, as we

shall assume, F is a Boolean decision function (BDF). Stroud and Saeger consider

the problem of finding an optimal binary decision tree (BDT) for calculating F . In

the BDT, the interior nodes correspond to sensors and the leaf nodes correspond

to decision categories. Two arcs exit from each sensor node, labeled left and right.

By convention, the left arc corresponds to a sensor outcome of 0 and the right arc

corresponds to a sensor outcome of 1. Fig. 1 provides an example of a binary

decision tree with three sensors denoted a, b, and c2. Thus, for example, if sensor

a returns a zero (“ok”), sensor b returns a one (“suspicious”), and sensor c returns

a one (“suspicious”), the tree outputs a one (i.e., a conclusion that something is

wrong with the container).

Figure 1 here.

Fig. 1 A binary decision tree ! with 3 sensors. The individual sensors classify good and bad

containers towards left and right respectively.

2 We allow duplicates of each type of sensor. Thus, we allow multiple copies of a sensor
(of type a, and similarly for b and c). When we speak of n sensors, we mean n types and
allow such duplicates. Replicates of a particular sensor type may improve performance
but such replicates must be combined to produce a single zero or one.

Hyafil et al. [17] proved that even if the Boolean function F is fixed, the problem

of finding the lowest cost BDT for it is hard (NP-complete). Brute force

enumeration can provide a solution. However, even if the number of attributes, n,

is as small as 4, this is not practical. Please recall that n refers to the number of

sensor types and not to the total number of sensors present in a tree. In present-

day practice at busy US ports, we understand that n is of the order of 3 to 5, but

this number is likely to grow as sensor technology becomes more advanced. Even

under special assumptions (called completeness and monotonicity – see below),

Stroud and Saeger were unable to produce feasible methods for finding optimal

BDTs beyond the case 4n = . They ranked all trees with up to 4 sensors according

to increasing tree costs using a measure of cost we describe in Section 3. Anand et

al. [1] described extensive sensitivity analysis showing that the Stroud-Saeger

results were remarkably insensitive to wide-ranging changes in values of

underlying parameters.

The purpose of this paper is to describe computational approaches to this problem

that are more efficient than those developed to date. We describe efficient

approaches to the computation of sensor thresholds that seek to minimize the total

cost of inspection. We also modify the special assumptions of Stroud and Saeger

to allow search through a larger number of possible BDFs, and introduce an

algorithm for searching through the space of allowable BDTs that avoids

searching through the Boolean decision functions entirely. Our experiments

parallel those of Stroud and Saeger. This paper is an expanded version of a short

conference paper by Madigan et al. [22], with added details and a detailed formal

proof that our search methods in the larger space of allowable BDTs can reach

any tree in the space from any other tree.

A variety of papers in recent years have dealt with the container inspection

problem. Boros et al. [3] summarize a portion of this literature and Ramirez-

Marquez [25] gives a more extensive survey of the literature. Dahlman et al. [9]

provides an overview of the container security problem and present an outline of a

potential comprehensive multilateral agreement on the use of containers in

international trade. We close this section by reviewing the relevant literature.

A number of authors have built on the work of Stroud and Saeger [26]. One

direction of work has been to study the sensitivity of optimal and near optimal

trees to the input parameters used by Stroud and Saeger. As input parameters such

as the costs of false positives and false negatives, the costs of delays, etc., are

estimated with more or less accuracy, one wants solutions whose sensitivity to

changes in these parameters is known and tolerable. As noted above, Anand et al.

[1] did an extensive sensitivity analysis of the Stroud-Saeger results and showed

that the optimal inspection strategy is remarkably insensitive to variations in the

parameters needed to apply the Stroud and Saeger [26] method. The paper [22]

introduces more efficient search heuristics that allow us to address problems

involving more sensors, and it is the work of [22] that we expand on in this paper.

In related research, Concho and Ramirez-Marquez [9], [25] have used

evolutionary algorithms to optimize a decision tree formulation of the inspection

process. Their approach was based on the assumption that readings rj by the jth

sensor are normally distributed, with a different distribution depending on

whether the container in question is “bad” or “good.” Thresholds tj were used to

determine outcomes of inspections, with a container declared suspicious by the jth

sensor if rj > tj. Here, the cost function used depends upon the number of sensors

used and the cost of opening a container for manual inspection if needed, but does

not take into account the cost of false positives or false negatives, which is a key

feature of the work in [26], [1], [22] and this paper.

Another direction of work is to investigate the optimum threshold levels for

sensor alarms so as to minimize overall cost as well as minimize the probability of

not detecting hazardous material. Stroud and Saeger [26] developed threshold

models in their work. We talk about some of this work here, building on [22]. For

further related results, see [1], [3], [10]. Boros et al. [4] showed that multiple

thresholds provide substantial improvement at no added cost. The problems of

optimal threshold setting become much more complex and difficult to solve for a

larger number of sensors. An alternative approach to determining threshold levels

involves a simplifying assumption about the tree topology. Assuming a “series”

topology (looking at one sensor at a time in a fixed order), one can first determine

an optimal sequence of sensors. Once an optimum sequencing of sensors is

obtained, the threshold level problem is then formulated. Zhang et al. [28] have

used a complete enumeration approach to determine the optimum sequence of

inspection stations and the corresponding sensors’ threshold levels to solve

problems with up to three sensors in series and parallel systems.

Elsayed et al. [10] studied specific topologies for inspection stations, specifically

stations arranged in series or parallel topologies. They developed general total

cost of inspection equations for n sensors in series and parallel configurations. In

contrast to the work of Stroud and Saeger and that in this paper, they disregarded

costs of false positive and false negative classifications of containers.

Zhu, et al. [29], in work extending [10], considered sensor measurement error

independently from the natural variation in the container attribute values. They

modeled situations when measurement errors exist (and are embedded) in the

readings obtained by the inspection devices and used a threshold model to identify

containers at risk for misclassification. They studied optimization of container

inspection policies if repeated inspections of at-risk containers are a part of the

process.

Boros, et al. [4] extended the work of Stroud and Saeger and changed the

formulation of the problem. Rather than minimizing expected cost determined as a

combination of expected cost of utilizing an inspection protocol plus expected

cost of misclassifying a container, they looked at the problem of maximizing the

probability of detection of a “bad” container. They formulated a large-scale linear

programming model yielding optimal strategies for container inspection. This

model is based on a polyhedral description of all decision trees in the space of

possible container inspection histories. The dimension of this space, while quite

large, is an order of magnitude smaller than the number of decision trees. This

formulation allowed them to incorporate both the problem of finding optimal

decision trees and optimal threshold selection for each sensor into a single linear

programming problem. The model can also accommodate budget limits,

capacities, etc., and one can solve it to maximize the achievable detection rate.

Boros, et al. were able to solve this model for 4 sensors, and branching that allows

up to 7 possibly different routing decisions at each sensor (in contrast to the

binary routing solved by Stroud and Saeger, and implicit in Boolean models) in a

few minutes of CPU time, on a standard desktop PC. They were also able to run

the model for as many as 7 sensors, when they allowed only binary decisions, as

in Stroud and Saeger. It should be noted that Boros, et al. also considered more

container classifications than just the bad or good. They demonstrated the value of

a mixed strategy applied to a fraction of the containers. Goldberg et al. [15] added

budget constraints to the problem and considered the problem of finding an

inspection policy that maximizes detection probability given that the cost of

inspection cannot exceed a given budgeted amount.

Jacobson et al. [19] looked at baggage screening at airports and compared 100%

screening with one type of screening device with screening with a second device

when the first device says a bag is suspicious. They calculated costs and benefits

of the two methods. (Jacobson et al. [20] also looked at baggage screening at

airports, and studied how integer programming models can be used to obtain

optimal deployment of baggage screening security devices for a set of flights

traveling between a given set of airports.)

The first step in the container inspection process actually starts outside the United

States. To determine which containers are to be inspected, the United States

Customs and Border Protection (CBP) uses a layered security strategy. One key

element of this strategy is the Automated Targeting System (ATS). CBP uses

ATS to review documentation, including electronic manifest information

submitted by the ocean carriers on all arriving shipments, to help identify

containers for additional inspection. CBP requires the carriers to submit manifest

information 24 hours prior to a United States-bound sea container being loaded

onto a vessel in a foreign port. ATS is a complex mathematical model that uses

weighted rules that assign a risk score to each arriving shipment in a container

based on manifest information. The CBP officers then use these scores to help

them make decisions on the extent of documentary review or physical inspection

to be conducted [30]. This can be thought of as the first inspection test and the

“sensor” is the risk scoring algorithm. Thus, in some sense, all trees start with the

first sensor and this sensor is then not used again. It is not unreasonable to think of

more sophisticated risk scoring algorithms that also involve sequential decision

making, going to more detailed analysis of risk on the basis of initial risk scoring

results. The Canadian government uses similar methods. The Canadian Border

Services Agency (CBSA) uses an automatic electronic targeting system to risk-

score each marine container arriving in Canada. As with ATS, this Canadian

system has several dozen risk indicators, and a score/weight for each indicator.

The Canada Border Services Agency is applying a new performance metric,

Improvement Curve, to measure risk-assessment processes at Canada’s marine

ports with improved efficiencies [16]. Identifying mislabeled or anomalous

shipments through scrutiny of manifest data is one step in a multi-layer inspection

process for containers arriving at ports described in [27.] Other relevant work on

risk scoring and anomaly detection from manifest data is found in [5] and [13]

2. Complete, Monotonic Boolean Functions

The special assumptions Stroud and Saeger make in order to render computation

more feasible are to limit consideration to so-called complete and monotonic

Boolean functions. A Boolean function F is monotonic if, given two strings

1 2 1 2... , ...n nx x x y y y with i ix y! for all i, 1 2 1 2(...) (...)n nF x x x F y y y! . F is

incomplete if it can be calculated by finding at most 1n ! attributes and knowing

the value of the input string on those attributes. For small values of n, Stroud and

Saeger [26] enumerate all complete, monotonic Boolean functions and then

calculate the least expensive corresponding BDTs under assumptions about

various costs associated with the trees. Their method is practical for n up to 4, but

not for 5n = . The problem is exacerbated by the number of BDFs. For example,

for 4n = , there are 114 complete, monotonic Boolean functions and 11,808

distinct corresponding BDTs. By comparison, for unrestricted Boolean functions

on four variables, there exist 1,079,779,602 BDTs! For 5n = , there are 6,894

complete, monotonic Boolean functions and 263,515,920 corresponding BDTs.

Stroud and Saeger [26] showed that for the unrestricted case, the corresponding

number of BDTs for n = 5 is approximately 5 x 1018.

3. Cost of a BDT

Following Anand et al. [1] and Stroud and Saeger [26], we assume the cost of a

binary decision tree is the total expected cost across potential outcomes. The

overall cost comprises two components: (i) the expected cost of utilization of the

tree and (ii) the expected cost of misclassification. The expected cost of utilization

of a tree, Cutil, is computed by performing a summation over the cost of using each

sensor in the tree times the probability that a container is inspected by that

particular sensor. We compute the expected cost of misclassification for a tree by

calculating the probabilities of false positive (PFP) and false negative (PFN)

misclassifications by the tree and multiplying by their respective costs CFP and

CFN. Thus, the total cost Ctot is given by

Ctot = Cutil + CFP*PFP + CFN*PFN .

Costs (i) and (ii) both depend on the distribution of the containers and the

probabilities of misclassification of the individual sensors. For example, consider

the decision tree ! in Fig. 1 with 3 sensors. The overall cost function to be

optimized can be written as:

0 a a 0|0 b a 0|0 b 1|0 c a 1|0 c

1 a a 0|1 b a 0|1 b 1|1 c a 1|1 c

0 a 0|0 b 1|0 c 1|0 a 1|0 c 1|0

1 a 0|1 b 0|1 a 0|1 b 1|1 c 0|1 a 1|1 c 0|1

() ()
()
()
()

FP

FN

f P C P C P P C P C
P C P C P P C P C
P P P P P P C
P P P P P P P P C

! = = = =

= = = =

= = = = =

= = = = = = =

= + + +

+ + + +

+ +

+ + +

Here, 0P and 1P are the prior probabilities of occurrence of “good” (ok or 0) and

“bad” (suspicious or 1) containers, respectively (so 0 1 1P P+ =). For any sensor s,

|s i jP = represents the conditional probability that the sensor returns i given that the

container is in state j, { }, 0,1i j! . For real-valued attributes, Anand et al. [1]

describe a Gaussian model, which, combined with a specific threshold, leads to

the requisite conditional probabilities; we discuss this further below. sC is cost of

utilization of sensor s, and FNC and FPC are the costs of a false negative and a

false positive. (The notation here differs from that used by Anand et al. [1]) In the

above expression, the first and second terms on the right hand side together give

the cost of utilization of the tree ! while the third and fourth terms represent the

costs of positive and negative misclassifications. For specific values of various

costs and the parameters of the Gaussian model, please refer to Anand et al. [1]

and Stroud and Saeger [26].

4. Sensor Thresholds

Sensors make errors. For sensors that produce a real-valued reading (e.g., Gamma

radiation sensors), a natural approach to modeling sensor classification errors

involves a threshold. With every sensor s, we associate a hard threshold, sT . If the

sensor reading for a container falls below sT , then the output of that particular

sensor in the tree is 0; it is 1 otherwise. The variation of sensor thresholds

obviously impacts the overall cost of the tree. While sensor characteristics are a

function of design and environmental conditions, the thresholds can, at least in

principle, be set by the decision maker. Therefore, mathematically, the optimum

thresholds for a given tree ! can be defined as a vector of threshold values that

minimizes the overall cost function ()f ! for that tree.

We model the design and environmental conditions by assuming that sensor

values for good containers follow a particular Gaussian distribution and sensor

values for bad containers follow a different Gaussian distribution. This model was

described in detail by Anand et al. [1] and Stroud and Saeger [26] along with

approaches to finding optimal thresholds, based on assumptions about the

parameters underlying the Gaussians. In particular, Anand et al. [1] describes the

outcomes of experiments in which individual sensor thresholds are incremented in

fixed-size steps in an exhaustive search for optimal threshold values, and trees of

minimum cost are identified. For example, for 4n = , Anand et al. [1] reported

194,481 experiments leading to lowest cost trees, with the results being quite

similar to those obtained in experiments by Stroud and Saeger [26].

Unfortunately, the methods do not scale and quickly become infeasible as the

number of sensors increases.

One of the aims of this paper is to calculate the optimum sensor thresholds for a

tree more efficiently and avoid an exhaustive search over a large number of

threshold values for every sensor. To accomplish this, we implemented various

standard algorithms for nonlinear optimization. Numerical problems related to the

calculation of the Hessian matrix ()f !H required for Newton’s method led us to

explore modified Cholesky decomposition schemes such as those described in

Fang and O’Leary [11]. For example, a naïve way to convert a non-positive

definite matrix into a positive definite matrix is to decompose it to TLDL form

(where L is a lower triangular matrix and D is a diagonal matrix) and then make

all the non-positive elements of D positive. This crude approximation may result

in the failure of factorization of the new matrix or make it very different from the

original matrix. Therefore, to address this issue more reasonably, we use a

modified TLDL factorization method from Gill et al. [14], which incorporates

small error terms in both L and D at every step of factorization. Further, if the

Hessian matrix ()f !H is ill-conditioned, we take small steps towards the

minimum using the gradient descent method until it becomes well conditioned. In

this way we try to combine the advantages of both gradient descent and Newton’s

method. Algorithm 1 summarizes the final scheme for finding the optimum

thresholds.

Algorithm 1 A Combined Method for Optimum Threshold Computation

1. Initialize Tstart as a vector of random threshold values
2. T ← inf
3. while |T – Tstart| < 0.1% of Tstart do
4. T ← Tstart
5. Compute ∂f
6. Compute Hf(τ)
7. if H f(τ) is not positive definite, then
8. Make H f(τ) positive definite
9. end if
10. if H f(τ) is well-conditioned, then
11. Tstart ← Tstart – [H f(τ)]-1∂f
12. else
13. Tstart ← Tstart – λ∂f
14 end if
15. end while
16. Output Topt ← T

We note that the objective function ()f ! is expected to be multimodal with

respect to the various sensor thresholds. We used random restarts to address this

concern.

5. Searching Through a Generalized Tree Space

The previous section describes how we choose optimal sensor thresholds for a

specific tree. We now discuss algorithms for searching tree space to find low-cost

trees. First we fine-tune Stroud and Saeger’s original definition of completeness

and monotonicity to better suit the application.

5.1. Revisiting Completeness and Monotonicity

As noted in Section 2, Stroud and Saeger [26] limit their analysis to complete,

monotonic Boolean functions. However, as we shall illustrate below, incomplete

and/or non-monotonic Booleans functions can in fact lead to useful trees (trees

that represent viable inspection strategies). We propose here definitions of

monotonicity and completeness for trees themselves rather than the Boolean

functions whence the trees derive. We show that some incomplete and/or non-

monotonic Boolean functions can sometimes lead to complete and monotonic

trees. We shall study a class of trees called CM trees, showing that it is much

larger than the class of BDTs corresponding to complete, monotone Boolean

functions, yet allows for efficient search algorithms that lead to very low cost

trees consistently. By no means do we assert that there aren’t other useful trees

than CM trees. Consider, for example, the Boolean function F and its

corresponding BDT’s shown in Fig. 2. The Boolean function is incomplete since

the function does not depend on the attribute a. However, trees (i) and (ii), while

representing the incomplete function faithfully, are themselves potentially viable

trees with no redundancies present. Trees (iii) and (iv) on the other hand, are

problematic insofar as they each contain identical subtrees. Sensor a is redundant

in tree (iii) and tree (iv). Such considerations lead to the following definition:

Complete Decision Trees. A binary decision tree will be called complete if every

sensor type (attribute) occurs at least once in the tree and, at any non-leaf node in

the tree, its left and right sub-trees are not identical.

Figure 2 here.

 Fig. 2. A Boolean function incomplete in sensor a, and the corresponding decision trees obtained

from it.

Next consider the Boolean function and BDT’s in Fig. 3. The Boolean function is

not monotonic – when 1=b and 0c = , 0a = yields an output of 1 whereas 1a =

yields an output of 0. Except for tree (i), the corresponding trees also exhibit this

non-monotonicity because there is a right arc from a to 0 or a left arc from a to 1

or both. However, tree (i) has no such problems and might well be a useful tree.

Thus, we have the following definition:

Monotonic Decision Trees. A binary decision tree will be called monotonic if all

leaf nodes emanating from a left branch are labeled 0 and all leaf nodes emanating

from a right branch are labeled 1.

Figure 3 here.

Fig. 3. A Boolean function non-monotonic in sensor a, and the corresponding decision trees

obtained from the function.

It is straightforward to show that:

- all BDT’s corresponding to complete Boolean functions are complete,

- all BDT’s corresponding to monotonic Boolean functions are monotonic, and

- the number of complete and monotonic trees increases very rapidly with the

increasing number of sensors. There exist 114 complete, monotonic binary

trees with 3 sensors and 66,600 with 4 sensors.

5.2. Tree Neighborhood and Tree Space

As shown in Stroud and Saeger [26], the number of binary decision trees

corresponding to complete, monotonic Boolean functions increases exponentially

with the addition of each new sensor. Expanding the space of trees in which to

search for a cost-minimizing tree to the space of complete, monotonic trees, CM

tree space, actually increases the number of possible trees but can decrease the

computational challenge. We propose here a heuristic search strategy that builds

on notions of neighborhoods in CM tree space.

Chipman et al. [7] and Miglio and Soffritti [23] provide a comparison of various

definitions of neighborhood and proximity between trees. Chipman et al. [7]

describe methods to traverse the tree space and in what follows we develop a

similar approach. We define neighbors in CM tree space via the following four

kinds of operations on a tree. (Fig. 4 gives an example of neighboring trees

obtained from these operations for a particular tree.)

Split: Pick a leaf node, replace it with a sensor that is not already present in that

branch, and then insert arcs from that sensor to 0 and to 1.

Swap: Pick a non-leaf node in the tree and swap it with its parent node such that

the new tree is still monotonic and complete and no sensor occurs more than once

in any branch.

Merge: Pick a parent node of two leaf nodes and make it a leaf node by collapsing

the two leaf nodes below it, or pick a parent node with one leaf node child,

collapse both of them and shift the sub-tree up in the tree by one level. The nodes

on which both these operations are performed are selected in such a fashion that

the resulting trees are complete and monotonic.

Replace: Pick a node with a sensor occurring more than once in the tree and

replace it with any other sensor such that no sensor occurs more than once in any

branch.

Figure 4 here.

Fig. 4. An example to illustrate the notion of neighborhood.

It is easy to show that these moves take a tree in CM tree space into another tree

in CM tree space. Appendix II presents a proof that these moves generate an

irreducible process in CM tree space. That is, for any pair of trees 1! and 2! in

CM tree space, there exists a finite sequence of operations selected from the four

operations above that start at 1! and end at 2! In fact, the Replace operation is not

needed for this proof but is useful in the search algorithm.

5.3. Tree Space Traversal

5.3.1 The Stochastic Search Method

We have explored alternate ways to exploit these operations to search for a tree

with minimum cost in the entire CM tree space. Our initial approach was a simple

greedy search: randomly start at any arbitrary tree in the space, find its

neighboring trees using the above operations, move to the neighbor with the

lowest cost, and then iterate. As expected, however, the cost function is

multimodal and the greedy strategy gets stuck at local minima. For example, there

are 9 modes in the entire CM space of 114 trees for 3 sensors and 193 modes in

the space of 66,600 trees for 4 sensors. To address the problem of getting stuck in

a local minimum, we developed a stochastic search algorithm coupled with

simulated annealing. The algorithm is stochastic insofar as it selects moves

according to a probability distribution over neighboring trees. The simulated

annealing aspect involves a so-called “temperature” t, initiated to one and lowered

in discrete unequal steps after every h hops until we reach a minimum.

Specifically, if the algorithm is at a particular tree, ! , then the probability of

moving to a particular neighbor ! " is given by:

() ()()1 tP c f f!! ! !" "=

where ()f ! and ()f ! " are the costs of trees ! and! " and c is the normalization

constant. Therefore, as the temperature is decreased, the probability of moving to

the least expensive tree in the neighborhood increases. Algorithm 2 summarizes

the stochastic search algorithm.

Algorithm 2 Stochastic Search Method using Simulated Annealing

1. for p = 1 to numberOfStartPoints do
2. t ← 1
3. numberOfHops ← 0
4. currentTree ← random(allTrees)
5. do
6. Compute ()f !
7. neighborTrees ← findNeighborTrees(currentTree)
8. for all ! "# neighborTrees
9. Compute ()f ! "
10. Compute P!! "
11. end for
12. currentTree ← random(neighborTrees, !! "P)

13. numberOfHops ← numberOfHops + 1
14 if numberOfHops = h then
15. t ← t – ∆t
16. numberOfHops ← 0
17. end if
18. while () ()f f! ! "> ! ! "# neighborTrees
19. end for
20. Output lowest cost tree over all p

5.3.2 Genetic Algorithms based Search Method

We have also used a genetic algorithm (GA) based approach to search CM tree

space. The underlying concept of this approach is to obtain a population of

“better” trees from an existing population of “good” trees by performing three

basic genetic operations on them: Selection, Crossover, and Mutation. With

reference to our application, “better” decision trees correspond to lower cost

decision trees than the ones in the current population. As we keep on generating

newer generations of “better” trees (or currently best trees), the gene pool,

genePool, keeps on increasing in size. We describe each of the genetic operations

in detail below. The use of GAs to explore tree spaces was also considered in

Papagelis and Kalles [24], Bandar et al. [2] and Fu [12]. Also, Im et al. [18] and

Li et al. [21] describe applications where genetic and evolutionary algorithms

were used to solve highly multi-modal problems.

1. Selection: We select an initial population of trees, bestPop, randomly out of the

CM tree space to form a gene pool. We always maintain a population of size N of

the lowest cost trees out of the whole population for the crossover and mutation

operations.

2. Crossover: The crossover operations are performed between every pair of trees

in bestPop. For each crossover operation between two trees i! and j! , we

randomly select nodes 1s and 1s! in i! and j! respectively and replace the subtree

1is
! (rooted at 1s in i!) with

1js
! " (rooted at 1s! in j!). A typical crossover operation

is shown using the example in Fig. 5:

Figure 5 here.

Fig. 5. An example of a crossover between two trees.

For every pair of trees, such random crossover operations are performed

repeatedly until we get a specified number, Nco, of distinct trees or have exhausted

all possible crossover operations. All the trees thus obtained are then put in the

gene pool. However, we impose some restrictions on the random selection of the

nodes to make sure that the resultant tree obtained after the crossover operation

also lies in the CM tree space. For example: if
1is

! is a right subtree, then
1js

! "

cannot be a 0 leaf. Similarly, if
1is

! is a left subtree, then
1js

! " cannot be a 1 leaf.

These restrictions ensure that the resulting tree would also be a monotonic tree. To

make sure that the resulting tree is complete, we impose two restrictions: the

sibling subtree of
1is

! , which is denoted by
2is

! , should not be exactly identical to

1js
! " and

1js
! " should have all the sensors which the tree i! would lack, once

1is
! is

removed from it. In other words, the tree resulting from the crossover operation

should have all the sensors present in it.

3. Mutation: The mutation operations are performed after every gmut generations

of the algorithm. We do two types of mutations. The first type consists of

generating all the neighboring trees of the current best population of trees using

the four operations used in the stochastic search method and putting these trees

into the gene pool. The second type of mutation operation consists of replacing a

fraction, 1 M (1M >) of N, the total number of trees in bestPop, with random

samples from the CM tree space which are not in the gene pool, therefore

increasing the probability of generating trees that are quite different from the

current gene pool. Algorithm 3 summarizes the genetic algorithm based search

algorithm.

Algorithm 3 Genetic Algorithms based Search Method

1. Initialize bestPop ← generateTreesRandomly(N)
2. Initialize genePool ← bestPop
3. Initialize lastMutation ← 0
4. for p = 1 to totalNumberOfGenerations do
5. for all τi, τj ! bestPop, i ≠ j
6. GATrees ← generateGATreesRandomly(τi, τj, Nco)
7. genePool ← genePool !GATrees
8. end for

9. bestPop ← selectBestTrees(genePool, N)
10. lastMutation ← lastMutation + 1
11. if lastMutation = gmut then
12. for all τ ! bestPop do
13. neighborTrees ← findNeighborTrees(τ)
14. genePool ← genePool ! neighborTrees
15. end for
16. bestPop ← selectBestTrees(genePool, N)
17. bestPop ← selectBestTrees(bestPop, N – N/M)
18. bestPop ← bestPop! generateTreesRandomly(N/M)
19. genePool ← genePool ! bestPop
20. lastMutation ← 0
21. end if
22. end for
23. Output bestPop

6. Experimental Results

6.1 Optimizing Thresholds

Our first set of experiments focused on evaluating the optimization algorithm for

the threshold setting that we proposed in Section 4. In these experiments, for any

given tree, starting with some vector of sensor thresholds, we tried to reach a

minimum cost by adjusting thresholds in as few steps as possible. For comparison

purposes, we did an exhaustive search for optimum thresholds with a fixed step

size in a broad range for 3 and 4 sensors. Also, in all these experiments, the

various sensor parameter values were kept the same as in the threshold variation

experiments conducted in Anand et al. [1]. Both the misclassification costs and

the prior probability of occurrence of a “bad” container were fixed as the

respective averages of their minimum and maximum values used by Anand et al.

[1]. To maintain consistency throughout our experiments, we did this for both the

method of exhaustive search over thresholds with fixed step size and the

optimization method described in Algorithm 1. With our new methods we were

able reach a minimum every time with a modest number of iterations. For

example, for 3 sensors, it took an average of 0.032 seconds, as opposed to 1.34

seconds using exhaustive search over thresholds with fixed step size, to converge

to the minimum for all 114 trees using Matlab on an Intel 1.66 GHz dual core

machine with 1GB system memory. Similarly, for 4 sensors, it took an average of

0.195 seconds, as opposed to 317.28 seconds using exhaustive search, to converge

to the minimum for all 66,600 trees. Fig. 6 shows the plots for minimum costs for

all 114 trees for 3 sensors using both the methods. In each case the minimum costs

obtained using the optimization technique are equal to or less than those obtained

using the exhaustive search. Also, many times the minimum obtained using the

optimization method was considerably less than the one from the exhaustive

search method.

Figure 6 here.

Fig. 6. Minimum costs for all 114 trees for 3 sensors. To avoid confusion, dashed vertical lines

join markers for the same tree.

6.2 Searching CM Tree Space: The Stochastic Search Method

Our second set of experiments considered the stochastic tree search algorithm

proposed in Section 5.3.1. These experiments were conducted on the CM tree

space of 66,600 trees for 4n = . Each experiment was started 10 times from some

randomly chosen CM tree, moving stochastically in the neighborhood of the

current tree, until a locally minimum cost tree was found. The exponent 1/t was

initialized to 1 and was incremented by 1 after every 10 hops. The outcome of the

experiment was the tree with minimum cost from all the trees visited in the 10

runs. The average number of trees visited per experiment (averaged over 100

replications of the experiment). Table 1 summarizes the results of these

experiments. Each row in the table corresponds to the tree number that was

obtained as the least cost tree along with its cost and frequency (out of 100). The

last column in the table gives the rank of each of these tree minima among all the

local minima in the entire tree space. For example, the algorithm was able to find

the true best tree 42 times, true second best tree 15 times and so on. Thus, the

algorithm was able to find one of the least cost trees most of the time. However,

these trees are different from the lowest cost trees obtained in Anand et al. [1] and

are in fact less costly than those trees. Another important observation is that

although each of these four trees differ in structure, they still correspond to the

same Boolean function, () 0001010101111111F =abcd , where the ith digit gives

()F abcd for the ith binary string abcd if strings are arranged in lexicographically

increasing order. Also, interestingly, this Boolean function is both complete and

monotonic.

Table 1 here.

6.3 Searching CM Tree Space: Genetic Algorithm based Search
Method

We performed similar experiments using the genetic algorithm described in

Section 5.3.2. For 4n = , we started with a random population of 20 trees. At each

crossover step we crossed every tree in this population with every other tree. We

set the value of 1coN = so that we get one new tree for each crossover operation.

Also, with 3mutg = , we performed the mutation step after every three generations.

During every mutation step, we replaced half of the population of best trees

(2M =) with random samples from the tree space. We performed a set of 100

such experiments each consisting of a total of 27 generations (including the ones

obtained after mutations). We observed that for each such experiment, we had to

evaluate on average only 1439.6 trees for their costs. Table 2 summarizes the

results of these experiments. It is clear from the results that every time we were

able to find one of the cheapest trees in the CM tree space. Also, we observed that

as opposed to the stochastic search technique, where the algorithm returned a

single best tree in most of the cases, the Genetic Algorithm based search

algorithm returned a whole population of trees, most of which belonged to the

cheapest 50 trees. Fig. 7(a) shows the histogram of the actual costs of the trees

found for 4n = . Fig. 7(b) shows the zoomed-in version of the left-tail of the same

histogram with the costs of the 20 cheapest trees found overlain in dotted vertical

lines.

Figure 7 here.

Fig. 7. (a) Histogram of costs of all 66,600 trees for n = 4. (b). Left tail of the histogram. The

dotted lines show the costs of 20 best trees found using the genetic algorithm based search method.

Table 2 here.

6.4 Going beyond 4 Sensors

We performed experiments for up to 10n = sensors. Here we present the results

for 5n = and 10n = . The sensor parameters for the fifth sensor were assumed to

be the average of those of first four sensors. The last five sensors were assumed to

be identical to the first five sensors; sensor f has the same parameters as sensor a,

sensor g has same parameters as sensor b and so on. However, all ten sensors can

be set to different threshold values. For these larger-scale experiments we used the

GA approach with multiple random restarts. In addition, rather than fixing the

number of generations in advance, we ran the algorithms until the best population

remained constant over several subsequent generations. We then performed GA

on all the optimum trees obtained from each such start until the cost of the best

trees stabilized again. For 5n = , with 100 runs, the GA converged on a small

number of trees with similar costs. Please see Appendix III for actual structures of

these trees and their respective cost. For 10n = , random restarts always ended up

with different populations of best trees. However, the cost of these trees were

close and also, the trees were similar at the top few nodes. Please see Appendix III

for the actual structures of these trees and their respective costs. Also notice that

even though for each n, the costs of the cheapest trees obtained are very close to

each other, the trees themselves are not close according to the neighborhood

measure adopted above.

7. Discussion

As we have already noted, with binary decision trees, exhaustive search methods,

both for finding the optimum thresholds for a given tree and for finding a

minimum cost tree among all possible trees, become practically infeasible beyond

a very small number of sensors. The various characterizations and algorithmic

techniques discussed in this paper provide faster and better methods to explore the

search space and arrive at a minimum efficiently. We were able to obtain results

for 10 sensors using the stochastic search method described above; results for

even larger numbers of sensors are possible.

Acknowledgements

The authors thank Peter Meer and Oncel Tuzel for their ideas on implementing

the Gradient Descent Method and Newton's Method for finding the optimum

thresholds. We also thank Richard Mammone for many of the initial ideas that led

to this research.

References

[1] S. Anand, D. Madigan, R. Mammone, S. Pathak and F. Roberts, Experimental Analysis of

Sequential Decision Making Algorithms for Port of Entry Inspection Procedures, in S. Mehrotra,

D. Zeng, H. Chen, B. Thuraisingham, and F-X Wang (Eds.), Intelligence and Security Informatics,

Proceedings of ISI, 2006, Lecture Notes in Computer Science #3975, Springer-Verlag, New York.

[2] Z. Bandar, H. Al-Attar and D. McLean (1999), Genetic Algorithm Based Multiple Decision

Tree Induction, Proceedings of the 6th International Conference on Neural Information Processing

- ICONIP’99 – IEEE, 1999 (pp 429-434), IEEE Cat. No. 99EX378. ISBN 0-7803-5871-6.

[3] E. Boros, E. Elsayed, P, Kantor, F. Roberts and M. Xie, Optimization problems for port-of-

entry detection systems, Intelligence and Security Informatics: Techniques and Applications, H.

Chen and C. C. Yang (eds), Springer, 2008, 319-335.

[4] E. Boros, L. Fedzhora, P. Kantor, K. Saeger and P. Stroud, A large scale LP model for finding

optimal container inspection strategies, Naval Research Logistics Quarterly, 56 (2009), 404-420.

[5] X. Chen, J. Cheng and M. Xie, A statistical approach for analyzing manifest data in pre-portal

intelligence, working paper, DIMACS Center, Rutgers University.

[6] H. A. Chipman, E. I. George and R. E. McCulloch, Bayesian CART Model Search, Journal of

the American Statistical Association, 93 (1998), 935-960.

[7] H. A. Chipman, E. I. George and R. E. McCulloch, Extracting Representative Tree Models

from a Forest. Working paper 98-07, Department of Statistics and Actual Science, University of

Waterloo.

[8] Concho, A., and Ramirez-Marquez, J.E., An evolutionary algorithm for port-of-entry security

optimization considering sensor threshold, Reliability Engineering and System Safety, 95 (2010),

255-266.

[9] O. Dahlman, J. Mackby, B. Sitt, .A. Poucet, A. Meerburg, B. Massinon, E. Ifft, M. Asada, and

R. Alewine, Container security: A proposal for a comprehensive code of conduct, Defense and

technology paper, National Defense University Center for Technology and National Security

Policy, 2005.

[10] E. Elsayed, C. Schroepfer, M. Xie, H. Zhang and Y. Zhu, Port-of-entry inspection: sensor

deployment policy and optimization, IEEE Transactions on Automation Science and Engineering,

6 (2009), 265-277.

[11] H. Fang and D.P. O’Leary, Modified Cholesky Algorithms: A Catalog with New Approaches.

University of Maryland Technical Report CS-TR-4807.

[12] Z. Fu, A Computational Study of Using Genetic Algorithms to Develop Intelligent Decision

Trees. Proceedings of the 2001 Congress on Evolutionary Computation, 2001.

[13] M. C. Ganiz, N. I. Lytkin, and W. M. Pottenger, Leveraging higher order dependencies

between features for text classification, Machine Learning and Knowledge Discovery in

Databases, Buntine et al. (eds.), Lecture Notes in Computer Science, 5781 (2009), 375–390.

[14] P. E. Gill, W. Murray and M. H. Wright, Practical Optimization, Academic Press, 1981.

[15] N. Goldberg, J. Word, E. Boros, and P. Kantor, Optimal sequential inspection policies,

RUTCOR Research Report 14-2008, Rutgers University, 2008. (Also DIMACS technical report

2008-07, DIMACS Center, Rutgers University.)

[16] R. Hoshino, D Coughtry, S. Sivaraja, I. Volnyansky, S. Auer, and A. Trichtchenko,

Application and extension of cost curves to marine container inspection, Annals Of Operations

Research (2009) DOI 10.1007/s10479-009-0669-2.

 [17] L. Hyafil and R. L. Rivest, Constructing Optimal Binary Decision Trees is NP-Complete.

Information Processing Letters, 5 (1976), 15-17.

[18] C. Im, H. Kim, H. Jung and K. Choi, A Novel Algorithm for Multimodal Function

Optimization Based on Evolution Strategy. IEEE Transactions on Magnetics, 40 (2004), 1224-

1227.

[19] S. H. Jacobson, T. Karnani, J. E. Kobza, and L. Ritchie, A cost-benefit analysis of alternative

device configurations for aviation checked baggage security screenings, Risk Analysis 26 (2006),

297-310.

[20] S.H. Jacobson, L.A. McLay, J.L. Virta, and J.E. Kobza, Integer programming models for

deployment of airport baggage screening security devices, Optimization and Engineering 6 (2005),

339-358.

[21] J. P. Li, M. Balazs, G. Parks and P. Clarkson, A Species Conserving Genetic Algorithm for

Multimodal Function Optimization. Evolutionary Computation, 10(3), 2002, 207-234.

[22] D. Madigan, S. Mittal and F. S. Roberts, Sequential Decision Making Algorithms for Port of

Entry Inspection: Overcoming Computational Challenges, in G. Muresan, T. Altiok, B. Melamed,

and D. Zeng (Eds.), Proceedings of IEEE International Conference on Intelligence and Security

Informatics, 2007, IEEE Press, Piscataway, NJ, 1-7.

[23] R. Miglio and G. Soffritti, The Comparison between Classification Trees through Proximity

Measures. Computational Statistics and Data Analysis, 45 (2004), 577-593.

[24] A. Papagelis and D. Kalles, Breeding Decision Trees Using Evolutionary Techniques,

Proceedings of the Eighteenth International Conference on Machine Learning, 2001, 393-400.

[25] J. Ramirez-Marquez, Port-of-entry safety via the reliability optimization of container

inspection strategy through and evolutionary approach, Reliability Engineering & System Safety

93 (2008), 1698-1709.

[26] P. D. Stroud and K. J. Saeger, Enumeration of Increasing Boolean Expressions and

Alternative Digraph Implementations for Diagnostic Applications. Proceedings Volume IV,

Computer, Communication and Control Technologies, 2003, 328-333.

[27] L. Wein, A. Wilkins, M. Bajeva, and S. Flynn, Preventing the importation of illicit nuclear

materials in shipping containers, Risk Analysis, 26:5, 2006.

[28] Zhang, H., Schroepfer, C. and Elsayed E. A. (2006) Sensor Thresholds in Port-of-Entry

Inspection Systems, Proceedings of the 12th ISSAT International Conference on Reliability and

Quality in Design, Chicago, Illinois, USA, August 3-5, 2006, pages 172-176.

[29] Y. Zhu, M. Li, C.M. Young, M. Xie, and E. Elsayed, Impact of measurement error on

container inspection policies at port-of-entry, DIMACS Technical Report 2009-11, DIMACS

Center, Rutgers University. Annals of Operations Research (2010), DOI 10.1007/s10479-010-

0681-6

[30] United States Government Accountability Office (2006), Cargo container inspection, GAO-

06-591T. March 30, 2006.

APPENDIX I. Terminology

A rooted binary tree is a connected, directed, acyclic graph denoted by a pair

(),V E where V is a finite set of nodes and (){ }, |E v w V V v w! " # $ is a set of

edges, (i.e. a set of ordered pairs of distinct nodes) such that there are exactly two

edges going out of any internal node and exactly one edge coming into it. For any

(),v w E! , we call w the child node of v and v the parent node of w . Nodes

sharing the same parent are called sibling nodes. v is called a descendent of u

and u an ancestor of v if and only if the unique path from the root to v passes

through u . The unique node in a tree with no parent node is called the root node

while the nodes with no descendents are called leaf nodes. The internal nodes

together with the root node are called non-leaf nodes. The subtree at a node v is

the binary tree with its root at v . If u and w are left and right children of a node

v , then the subtrees formed at u and w are called the left and right subtrees of v

respectively. The left and right subtrees of any node are called sibling subtrees of

each other. A binary decision tree (BDT) ! is a rooted binary tree where the non-

leaf nodes correspond to specific sensors and the leaf nodes represent the final

decision outputs.

Merging a node v in a tree corresponds to performing a Merge operation on that

node while subtree removal at a node v corresponds to replacing the subtree at v

in the tree with a leaf node. A node v in ! is at level l if exactly l edges connect

v and the root node of ! . Alternatively, v is said to be at level l of ! . A levelset

(),L l! of a tree ! is the set of nodes in ! at level l. If lmax is the maximal level of

! , then the level 1maxl ! is called the maximal non-leaf level of ! .

Let CMn represent the space of complete and monotonic binary decision trees in

n sensors. We consider neighborhood operations chosen from the set {Split, Swap,

Merge, Replace} (though it turns out that we do not need Replace for the proof of

the main theorem). Note that CMn!" # , o() CMn! " for any operation o . Let

1 2o ,o , ,oz! = … represent a finite sequence of neighborhood operations where

()()()()1 1()=o o oz z! !"# … and z is a positive integer.

We define the following binary relation on a pair of trees , CMn
i j! ! " :

i j! ! " #! a finite sequence of neighborhood operations 1 2o ,o , ,oz! = …

such that ()=Oj i! ! , or i j! != .

Definition 1. (Simple tree)

We define a simple tree CMn! " as a complete and monotonic binary decision

tree such that the levelsets (),L i! of ! , 0, , 1i n= !… , each contain exactly one

non-leaf node. The unique path from the root node (i.e., level 0) to level 1n !

containing all the non-leaf nodes is called the essential path. Fig. 8 shows a few

examples of simple trees for 4n = .

Figure 8 here.

Fig. 8. A few examples of simple trees for n = 4.

Definition 2. (Partially simple tree)

A partially simple tree to level l, l! , is defined as a complete and monotonic

binary decision tree where the levelsets (),lL i! of l! , 0, ,i l= … , each contain

exactly one non-leaf node. Fig. 9 shows some examples of partially simple trees

for 7n = .

Figure 9 here.

Fig. 9. A few examples of partially simple trees. The first tree is partially simple

to level 0, the second tree to level 2 and the third tree to level 3.

APPENDIX II. Proof of CM Tree Space Irreducibility
for n > 2

To establish irreducibility, i.e., that every tree in CMn is obtainable from any other

tree in CMn by a sequence of neighborhood operations, we will first prove three

lemmas that will form the backbone of the main proof. First we will show that for

every CMn! " there exists a simple tree CMn! " such that ! "! . Next we will

show that for every pair of simple trees, , CMn! ! "# , ! ! "! . Finally we will

show that for every CMn! " there exists a simple tree, CMn! " , such that

! "! .

Lemma 1.

For every tree CMn! " there always exists a simple tree CMn! " such that

! "! using only the neighborhood operations Split and Merge.

Proof. We will first prove the following assertion:

Given any partially simple tree, CMn
l! " , there always exists a sequence of

neighborhood operations ! such that () 1l l! ! +" = , where 1l! + is a partially

simple tree to level 1l + . The lemma will follow from this assertion since we can

then define n such sequences of operations 1 2, , , n! ! !… , such that

()()()()1 1n n !"# # #… is a simple tree. Otherwise, we consider a sequence of

operations ! which we will divide into two sub-sequences 1! and 2! such that

() ()()2 1l l! !" = " " . 1! will comprise zero or more Split operations and 2!

will comprise zero or more Merge operations. Let lv be the sole non-leaf node at

level l in l! . Therefore, both the left and right child nodes of lv are non-leaf. We

will proceed by retaining one of the subtrees of lv and removing the other via a

sequence of Merge operations. The selection of which subtree to remove is based

on one of the following rules:

1. If only one of the two subtrees of lv is complete in n l! sensors, then we

choose to remove the incomplete one. Fig. 10 tree (1) shows an example where

we remove the right subtree of sensor c rather than the left one.

2. If both the subtrees are complete in n l! sensors, we choose to remove the one

that has fewer nodes in it. Fig. 10 tree (2) shows an example where we remove the

right subtree of sensor b rather than the left one.

3. If both the subtrees are incomplete in n l! sensor types, then we choose to

retain the subtree that has larger number of different sensor types in it. Fig. 10 tree

(3) shows an example where we remove the left subtree of sensor d rather than the

right one.

4. If both the subtrees are incomplete in n l! sensor types and have an equal

number of different sensor types, then we choose to retain the one that has fewer

nodes in it. Fig. 10 tree (4) shows an example where we remove the left subtree of

sensor d rather than the right one.

5. If both the subtrees are incomplete in n l! sensor types and have equal number

of different sensor types and equal number of nodes, we can merge any one of the

two.

Figure 10 here.

Fig. 10. A few examples of trees to illustrate the selection criteria for subtree removal. In tree (1)

we chose to remove the right subtree of sensor c, in tree (2), the right subtree of sensor b, in tree

(3), the left subtree of sensor d and in tree (4), the left subtree of sensor d.

Notice that in cases 1 and 2, 1 !" = . In cases 3, 4 and 5, 1! is defined as the

sequence of Split operations performed iteratively, wherein each of the Split

operations is performed at the maximal level node of the subtree that we decide to

retain (choosing arbitrarily when there is more than one such node) until that

subtree is complete in 1n l! ! sensors not present at levels 0 through l. Let

()1 1
l l! != " . Note that both l! and 1

l! are simple up to level l. Construction of

2! is however non-trivial since we cannot merge a node that would lead to a tree

that is incomplete in a different node. For example, Fig. 11 shows an example of a

tree where merger of the node d from the leftmost branch of the tree results in the

tree becoming incomplete in a higher level node b (circled). Therefore, we make

use of an algorithm called “smartMerge” to construct 2! . smartMerge guarantees

that there always exists a node in the subtree that we want to remove, which can

be removed (through a Merge operation) without making the resultant tree

incomplete at any node.

Figure 11 here.

Fig. 11. An example where the merger of node d from the leftmost branch of the tree will result in

a tree incomplete in node b (circled).

smartMerge Algorithm

Input: A partially simple tree 1
l! .

Output: A partially simple tree 1l! + .

Let lv be the sole non-leaf node at level l in 1
l! . Let 1sub! and 2sub! be the two

subtrees of lv in 1
l! . Further, we assume without loss of generality that we want

to retain 2sub! and remove 1sub! . Let the maximal non-leaf level of 1sub! be m (as

measured from the root node in 1sub!). We first choose the non-leaf node 1mv at

level m of 1sub! (choosing arbitrarily when there is more than one such node) as

the candidate node to merge. Note that if we merge 1mv , at most one of 1m !

ancestor nodes of 1mv with level , 0, , 2i i m= !… (again, 0i = for the root node

of 1sub!) can render the resultant tree incomplete. In other words, there can be at

most one of 1m ! nodes in the resultant tree, whose left subtree would become

exactly identical to the right subtree after we merge 1mv , thus resulting in an

incomplete tree. Since we always insert an appropriate leaf (0 if the node is a left

node, 1 otherwise) after merging 1mv , the tree cannot become incomplete at the

parent node of the new leaf. If a subtree (in 1sub!) at a level r, { }0, , 2r m! "… ,

denoted by 1r! and containing 1mv becomes identical to its sibling subtree 2r!

after the merger of 1mv , then we cannot merge 1mv . Let 2mv be the sibling node of

1mv (obviously it would also be at level m). Anytime such a situation occurs, the

next candidate node for removal is selected based on one of the following two

possible configurations.

1. 2mv is a non-leaf node: In this case we propose to merge the exact counterpart

of 2mv , denoted by 2mv! , in 2r! . Again, we need to check at most 1m ! nodes in

the tree for completeness, but we know for sure that at least 1r! cannot be

identical to 2r! . Therefore, there are just 2m ! nodes that we need to check for

completeness for the proposed merger of 2mv! . For example, in Fig. 12 tree (1),

0l = and therefore sensor a represents lv . Let the left subtree of a be 1sub! and the

right subtree be 2sub! . Further let sensor f (marked *) represent 1mv , where 4m = .

First we observe that if we remove sensor f, the tree cannot become incomplete in

its parent node (sensor d). In fact, it would become incomplete in sensor b

(circled). Therefore, as discussed above, we propose to remove sensor g present in

the right subtree of sensor b (circled). This step of getting the new candidate node

for removal, 2mv! from the previous one 1mv is shown as a transition from tree (1)

to tree (2) in Fig. 12.

2. 2mv is a leaf node: Denote by 1mu ! the parent node of 1mv . We propose to merge

its counterpart 1mu !" in 2r! . In this case, again we need to check 2m ! nodes for

completeness for the proposed merger of 1mu !" . For example, in Fig. 12 tree (8),

again 0l = and sensor g (marked *) represents 1mv , while its parent node (sensor

d) represents 1mu ! , where 4m = . It is clear that if we remove sensor g, the tree

would become incomplete in sensor b (circled). Also, since the sibling node of

sensor g is a leaf node, therefore, we propose to remove the sensor d in the right

subtree of sensor b (circled). This step of getting the new candidate node for

removal 1mu !" from the previous one 1mv is shown as a transition from tree (8) to

tree (9).

Note that as this process continues, both the children of a candidate node might be

non-leaf. For example, let us assume that 1pv (m g p m! " ") is the proposed

candidate node for removal after performing g candidate generation steps

described above. At this point, there will be at most 1m g! ! nodes to check for

completeness for the proposed merger of 1pv . Further, assume that the merger of

1pv results in the tree becoming incomplete at a certain higher node at level s.

Therefore, if 2 pv is the sibling node of 1pv , we select its counterpart node 2 pv!

(with 2m g! ! completeness constraints) in 2s! as the next candidate node for

merger. Let us assume that both the children of 2 pv! are non-leaf nodes. In this

case we try to merge a non-leaf node 2qv! at the maximal non-leaf level of the

subtree rooted at 2 pv! . If the level of that node in 1sub! is q (p q m< !), then there

are at most 2 ()m g q p! ! + ! nodes to check for completeness for the proposed

merger of that node. Therefore, even in the worst case, when p m g= ! and

q m= , there are at most 2 () 2 (()) 2m g q p m g m m g m! ! + ! = ! ! + ! ! = !

nodes to check for completeness. Thus we reduce by one the number of nodes

that need to be checked. Therefore, by induction, we will reach to a node which

requires 0m m! = nodes to be checked for completeness, and hence can be

merged using the Merge operation. Then we repeat this procedure again to one of

the non-leaf nodes at the maximal non-leaf level of the subtree that we want to

merge, until 1l! + is obtained. Algorithm 4 summarizes the smartMerge

algorithm. Fig. 12, trees (1) through (16), show an example of obtaining a

partially simple tree to level 1, 1! , from an arbitrary tree in CM7 (which is also

trivially a partially simple tree to level 0). Further, trees (16) through (23) show

how we can reach from the partially simple tree 1! , to a simple tree just by

repeated use of the smartMerge algorithm.

Algorithm 4 smartMerge Algorithm

0. Input: A partially simple tree 1
l!

1. Initialize v1m ← a non-leaf node at the maximal non-leaf level of τsub1
2. while τsub1 is not a leaf node, do
3. flag_delete ← TRUE
4. for r = 0 to m -2 level ancestors of v1m, do
5. if τr1 = τr2, then
6. if v´2m exists, then
7. m ← q
8. v1m ← v´2q

9. else
10. m ← m – 1
11. v1m ← u´m-1
12. end if
13. flag_delete ← FALSE
14. break
15. end if
16. end for
17. if flag_delete = TRUE
18. merge v1m
19. v1m ← a non-leaf node at the maximal non-leaf level of τsub1
20. end if
21. end while
22. Output partially simple tree 1l! +

Thus we have shown that for any partially simple tree, l! , there exists a sequence

of neighborhood operations (specifically, a series of zero or more Split operations

followed by a sequence of zero or more Merge operations) that lead to a partially

simple tree 1l! + (i.e. a tree that is simple further down in the tree). Since with n

sensors, 1n! " is a simple tree, and since every tree is partially simple to level 0,

we have thus established the existence of a sequence of neighborhood operations

that starts with an arbitrary tree in CMn and leads to a simple tree. This completes

the proof of Lemma 1.

Lemma 2.

For every pair of simple trees , CMn! ! "# , ! ! "! using only the neighborhood

operations Split, Merge and Swap.

Proof: We will prove that any simple tree ! " in CMn can be reached from any

other simple tree ! in CMn using the four operations, repeatedly. Let P and P!

be the essential paths of simple trees ! and ! " respectively, where:

11 2
0 1 1

n
n

dd dP v v v!
!= ""# ""# """#……

11 2
0 1 1

n
n

dd dP v v v!
!

"" "" " " "= ##$ ##$ ###$……

where 0 1 1, ,..., nv v v ! are the non-leaf nodes at level 0,1, , 1n !… in the essential

path of ! and 0 1 1, ,..., nv v v !" " " are the non-leaf nodes at level 0,1, , 1n !… in the

essential path of ! " . Also, 1 1 2 1{ , , , }nD d d d != … and 2 1 2 1{ , , , }nD d d d !" " "= … are

direction (n-1)-tuples such that , { , }, 1, 2, , 1i id d Left Right i n!" = #… . We use id

to denote the direction complementary to di, that is, iffi id Left d Right= = and

vice-versa. Also, we say that 1 2D D= iff , 1, 2, , 1i id d i n!= = "… . Lastly, by

“adding iv towards d at jv ”, we mean inserting iv as a child node of jv (using

the Split operation) where iv is the left child when d Left= and the right child

when d Right= .

In order to go from ! to ! " , we first modify ! so that 1 2D D= . Then ! " can be

obtained by one or more Swap operations. Let k be an integer such that 1 k n! <

such that
if 1
if

i i

i i

d d i k
d d i k

!= " <# $
% &!' =()

. If 1k n= ! , then 1D differs from 2D only in

1nd ! . In this case we temporarily add 1nv ! towards 1d at 0v . This can be done with

a Split operation since in a simple tree, there is always a leaf node at each level,

and therefore one at level 1. We then merge 1nv ! from P , add 1nv ! towards 1nd ! at

2nv ! (i.e., again using the Split operation) and finally merge 1nv ! from 1d at 0v . If

1k n< ! , we insert 1nv ! towards kd ! at 1kv ! (because k kd d !=) (this is the Split

operation) and merge 1nv ! from P . We then add 2nv ! at 1nv ! towards 1kd +! and

merge 2nv ! from P . We repeat this procedure for all 1k i n! < " until 1 2D D= .

After that we rearrange the nodes in the resultant tree using repeated Swap

operations to obtain ! " . For example, in Fig. 12 let trees (23) and (42) be ! and

! " respectively in CM7. Since 1 1d d != , 2 2d d != and 3 3d d !" , therefore 3k = . As

discussed above, in tree (24), we add sensor e towards the right of sensor c (2v)

and in tree (25), we merge sensor e (6v) from the left of sensor f (5v). We then

add sensor f towards the left of sensor e in tree (26) and merge sensor f from left

of sensor g (4v) in tree (27). By proceeding in a similar fashion we can reach from

tree (27) to tree (31). Thereafter, by doing repeated Swap operations, we can reach

from tree (31) to tree (42). In this way, we prove that any simple tree can be

reached from any other simple tree, using neighborhood operations repeatedly in

CMn . This completes the proof of Lemma 2.

Lemma 3.

For any arbitrary tree CMn! "# there exists a simple tree, CMn! "# , such that

! "# #! using only the neighborhood operations Split and Merge.

Proof: This lemma follows from the fact that the entire process of getting from an

arbitrary tree to a simple tree is exactly reversible. For example, any Split

operation can be reversed using a Merge operation and since we only merge nodes

with both children as leaves, the converse is also true. Thus, we see that we can

get from ! " to ! " using the steps to reach ! " from ! " in the exact reverse order.

Fig. 12, trees (42) through (55), provide an example of reaching to an arbitrary

tree from a simple tree. Notice that all the steps in this sequence are reversible.

This completes the proof of Lemma 3.

Theorem 1.

In the space of complete and monotonic trees, every tree is reachable from every

other tree by a sequence of neighborhood operations from the set {Merge, Swap,

Split}.

Proof: Lemmas 1, 2, and 3 give the result.

Figure 12a here.

Figure 12b here.

Figure 12. An example showing that any arbitrary tree in τ6 can be reached from any other

arbitrary tree using the four neighborhood operations repetitively. The node marked * in every tree

is subject to a neighborhood operation while the nodes circled show a possible conflict with

completeness constraint.

APPENDIX III. Tree Structures

1. 4n =

Figure 13 here.

Figure 13. Some of the best trees obtained using the genetic algorithm based search method. The

cost of each of the first three trees is very close to 59.3364 and that of the last one is 59.4150 .

2. 5n =

Figure 14 here.

Figure 14. Best trees obtained over 100 runs. The cost of each of these trees is 41.4668.

3. 10n =

Figure 15a here.

Figure 15b here.

Figure 15. Best trees obtained for four runs. Their cost is 8.6508, 8.5499, 8.7236 and 8.6189

respectively.

