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Diseases: How Can Graph Theory Help? 

 

Fred Roberts, CCICADA 



2 



3 

Mathematical Models of Disease 
Spread 

Mathematical models of infectious diseases go 
back to Daniel Bernoulli’s mathematical analysis of 
smallpox in 1760. 
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Understanding infectious systems requires being 
able to reason about highly complex biological 
systems, with hundreds of demographic and 
epidemiological variables. 

Intuition alone is insufficient to fully understand 
the dynamics of such systems. 

smallpox 
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Experimentation or field trials are often 
prohibitively expensive or unethical and do not 
always lead to fundamental understanding. 
 
Therefore, mathematical modeling becomes an 
important experimental and analytical tool. 
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Mathematical models have become important tools 
in analyzing the spread and control of infectious 
diseases, especially when combined with powerful, 
modern computer methods for analyzing and/or 
simulating the models. 
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Great concern about the deliberate introduction of 
diseases by bioterrorists has led to new challenges 
for mathematical modelers. 
 
 
 
 
 
 
 
                                                                    
anthrax 
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Great concern about possibly devastating new 
diseases like H1N1 influenza has also led to new 
challenges for mathematical modelers. 
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Models of the Spread  and Control 
of Disease through Social 

Networks 

• Diseases are spread through social networks. 
• “Contact tracing” is an important part of any 
strategy to combat outbreaks of infectious diseases, 
whether naturally occurring or resulting from 
bioterrorist attacks. 

AIDS 
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The Model: Moving From State to 
State 

Social Network = Graph 
Vertices = People 
Edges = contact 
 
Let si(t) give the state of vertex  i   
at time  t. 
 

Simplified Model: Two states: 
    = susceptible,     =  infected (SI Model) 
 
Times are discrete: t = 0, 1, 2, …  
 

  

t=0 
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The Model: Moving From State to 
State 

More complex models: SI, SEI,  
SEIR, etc. 
 
S = susceptible, E = exposed,  
I = infected, R = recovered  
(or removed) 
 
 

measles 

SARS 
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 Threshold Processes  
Irreversible  k-Threshold Process: You change 
your state from     to      at time  t+1  if at least  k  of 
your neighbors have state     at time  t. You never 
leave state     . 
 

Disease interpretation?  Infected if sufficiently 
many of your neighbors are infected. 
 

Special Case  k = 1:  Infected if any 
of your neighbors is infected.  
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Irreversible 2-Threshold Process 

t=0 
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t=1 t=0 

Irreversible 2-Threshold Process 
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t=1 t=2 

Irreversible 2-Threshold Process 
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Irreversible 3-Threshold Process 

t = 0 
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Irreversible 3-Threshold Process 
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Irreversible 3-Threshold Process 

t = 1 
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Complications to Add to Model 
• k = 1, but you only get infected with a certain 
probability. 
• You are automatically cured after you are in the 
infected state for  d  time periods. 
• A public health authority has the ability to 
“vaccinate”  a certain number of vertices, making 
them immune from infection. 

Waiting for smallpox 
vaccination, NYC, 1947 
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Vaccination Strategies 

Mathematical models are very helpful in 
comparing alternative vaccination strategies. The 
problem is especially interesting if we think of 
protecting against deliberate infection by a 
bioterrorist. 
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Vaccination Strategies 
If you didn’t know whom a bioterrorist might 
infect, what people would you vaccinate to be sure 
that a disease doesn’t spread very much? 
(Vaccinated vertices stay at state     regardless of 
the state of their neighbors.) 
 

Try odd cycles. Consider an irreversible 2-
threshold process. Suppose your  
adversary has enough supply to  
infect two individuals. 
 

5-cycle C5 
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Vaccination Strategies  
One strategy: “Mass vaccination”:  Make 
everyone  immune in initial state. 
 

In  5-cycle C5,  mass vaccination means vaccinate 5 
vertices. This obviously works.  
 

In practice, vaccination is only effective with a 
certain probability, so results could be different. 
 

Can we do better than mass vaccination?   
 

What does better mean? If vaccine has no cost and 
is unlimited and has no side effects, of course we 
use mass vaccination. 
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Vaccination Strategies  
What if vaccine is in limited supply? Suppose we 
only have enough vaccine to vaccinate 2 vertices. 
Two different vaccination strategies:  
 
 
 
 
 
 

Vaccination Strategy I Vaccination Strategy II 

V V 

V 

V 
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Vaccination Strategy I: Worst 
Case (Adversary Infects Two) 
Two Strategies for Adversary 

Adversary Strategy Ia Adversary Strategy Ib 

V V 

I 

I 

V V 

I I 

This assumes adversary doesn’t attack a vaccinated vertex.  
Problem is interesting if this could happen – or you encourage  
it to happen. 
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The “alternation” between your  
choice of a defensive strategy  
and your adversary’s choice of  
an offensive strategy suggests we  
consider the problem from the 
point of view of game theory. 
 
 
 
 

The Food and Drug  
Administration is studying 
the use of game-theoretic 
models in the defense  
against bioterrorism. 
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Vaccination Strategy I 
 Adversary Strategy Ia 

V V 

I 

I 
t = 0 
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Vaccination Strategy I 
 Adversary Strategy Ia 

V V 

I 

I 

V V 

I 

I t = 0 t = 1 
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Vaccination Strategy I 
 Adversary Strategy Ia 

V V 

I 

I 

V V 

I 

I t = 1 t = 2 
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Vaccination Strategy I 
 Adversary Strategy Ib 

V V 

I I 

t = 0 
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Vaccination Strategy I 
 Adversary Strategy Ib 

V V 

I I 

V V 

I I 

t = 0 t = 1 
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Vaccination Strategy I 
 Adversary Strategy Ib 

V V 

I 

I 

V V 

I 

I t = 1 t = 2 
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Vaccination Strategy II: Worst 
Case (Adversary Infects Two) 
Two Strategies for Adversary 

Adversary Strategy IIa Adversary Strategy IIb 

V 

V 

V 

V 

I 

I 

I 

I 



33 

Vaccination Strategy II 
 Adversary Strategy IIa 

V 

V 

I 

I t = 0 
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Vaccination Strategy II 
 Adversary Strategy IIa 

V 

V 
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I t = 0 
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I t = 1 
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Vaccination Strategy II 
 Adversary Strategy IIa 

V 
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Vaccination Strategy II 
 Adversary Strategy IIb 

V 

V 
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t = 0 
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Vaccination Strategy II 
 Adversary Strategy IIb 
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t = 1 
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Vaccination Strategy II 
 Adversary Strategy IIb 

V 

V 
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t = 1 
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t = 2 
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Conclusions about Strategies I 
and II 

 

Vaccination Strategy II never leads to more than 
two infected individuals, while Vaccination 
Strategy I sometimes leads to three infected 
individuals (depending upon strategy used by 
adversary).  
 

Thus, Vaccination Strategy II is  
better. 
 
More on vaccination strategies later. 
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The Saturation Problem 
 

Attacker’s Problem: Given a graph, what subsets  
S  of the vertices should we plant a disease with so 
that ultimately the  maximum number of people 
will get it? 
 

Economic interpretation: What set of people do we 
place a new product with to guarantee “saturation” 
of the product in the population? 
 

Defender’s Problem: Given a graph, what subsets  
S  of the vertices should we vaccinate to guarantee 
that as few people as possible will be infected? 
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k-Conversion Sets 
Attacker’s Problem: Can we guarantee that 
ultimately everyone is infected?  
 
Irreversible k-Conversion Set: Subset  S  of the 
vertices that can force an irreversible k-threshold 
process to the situation where every state  si(t) =   
 
Comment: If we can change back from     to    at 
least after awhile, we can also consider the 
Defender’s Problem: Can we guarantee that 
ultimately no one is infected, i.e., all  si(t) =   ? 
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What is an irreversible 2-conversion set for the 
following graph? 
 
 

 
 
 

x1 x2 x3 x4 x6 

x5 
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x1, x3  is an irreversible 2-conversion set. 
 
 

 
 
 

x1 x2 x3 x4 x6 

x5 

t = 0 
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x1, x3  is an irreversible 2-conversion set. 
 
 

 
 
 

x1 x2 x3 x4 x6 

x5 

t = 1 
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x1, x3  is an irreversible 2-conversion set. 
 
 

 
 
 

x1 x2 x3 x4 x6 

x5 

t = 2 
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x1, x3  is an irreversible 2-conversion set. 
 
 

 
 
 

x1 x2 x3 x4 x6 

x5 

t = 3 
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Irreversible  
k-Conversion Sets in Regular Graphs 

G  is  r-regular if every vertex has degree  r. 
Set of vertices is independent if there are no edges. 
 
Theorem (Dreyer 2000):  Let  G = (V,E)  be a 
connected  r-regular graph and  D  be a set of 
vertices. Then D  is an irreversible  r-conversion set 
iff  V-D  is an independent set. 
 

Note: same r 
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k-Conversion Sets in Regular Graphs  

Corollary (Dreyer 2000):   
The size of the smallest irreversible 2- conversion 
set in  Cn  is  ceiling[n/2]. 
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k-Conversion Sets in Regular Graphs  
Corollary (Dreyer 2000):   
The size of the smallest irreversible 2- conversion 
set in  Cn  is  ceiling[n/2]. 
 

C5 is 2-regular. The smallest irreversible 2-
conversion set has three vertices: the red ones. 
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k-Conversion Sets in Regular Graphs  

Another Example:  
 
 a 

e 

d c 

b 

f 
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k-Conversion Sets in Regular Graphs 
Another Example:  
This is 3-regular. 
Let k = 3.  
The largest independent set has 2 vertices. 
 
 

a 

e 

d c 

b 

f 
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k-Conversion Sets in Regular Graphs 
• The largest independent set has 2 vertices.  
• Thus, the smallest irreversible 3-conversion set 
has 6-2 = 4 vertices. 
• The 4 red vertices form such a set. 
• Each other vertex has three 
red neighbors. 
 
 

a 

e 

d c 

b 

f 
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Irreversible k-Conversion Sets in 
Graphs of Maximum Degree r 

Theorem (Dreyer 2000):  Let  G = (V,E)  be a 
connected graph with maximum degree r  and  S be 
the set of all vertices of degree < r.  If  D is a set of 
vertices, then D  is an irreversible  r-conversion set 
iff  SÕD and V-D  is an independent set. 
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How Hard is it to Find out if There is 
an Irreversible k-Conversion Set of 

Size at Most p? 

Problem IRREVERSIBLE k-CONVERSION 
SET: Given a positive integer  p  and a graph  G,  
does  G  have an irreversible  k-conversion set of 
size at most  p? 
 
 

How hard is this problem? 
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Difficulty of Finding Irreversible 
Conversion Sets 

Problem IRREVERSIBLE k-CONVERSION 
SET: Given a positive integer  p  and a graph  G,  
does  G  have an irreversible  k-conversion set of 
size at most  p? 
 
 

Theorem (Dreyer 2000):  IRREVERSIBLE k-
CONVERSION SET is NP-complete for fixed  k > 
2.  
 

(Whether or not it is NP-complete for  k = 2  
remains open.) 
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Irreversible k-Conversion Sets in 
Special Graphs 

Studied for many special graphs.  
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Irreversible k-Conversion Sets in 
Trees 
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Irreversible k-Conversion Sets in Trees 
The simplest case is when every internal vertex of 
the tree has degree > k. 
Leaf = vertex of degree 1; internal vertex = not a 
leaf. 
 
 
 
 
 
 
 
What is an irreversible 2-conversion set here?  
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Irreversible k-Conversion Sets in Trees 
The simplest case is when every internal vertex of 
the tree has degree > k. 
Leaf = vertex of degree 1; internal vertex = not a 
leaf. 
 
 
 
 
 
 
 
What is an irreversible 2-conversion set here?  

Do you know any vertices 
that have to be in such a set? 
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All leaves have to be in it. 
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All leaves have to be in it. 
 
This will suffice. 
 

t = 0 
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All leaves have to be in it. 
 
This will suffice. 
 

t = 0 t = 1 
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All leaves have to be in it. 
 
This will suffice. 
 

t = 1 t = 2 
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All leaves have to be in it. 
 
This will suffice. 
 

t = 2 t = 3 
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Irreversible k-Conversion Sets in 
Trees 

 
So k = 2 is easy. What about k > 2? Also easy. 
 
Proposition (Dreyer 2000): Let  T  be a tree and 
every internal vertex have degree > k, where k > 1. 
Then the smallest irreversible k-conversion set has 
size equal to the number of leaves of the tree. 
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Irreversible k-Conversion Sets in 
Trees 

What if not every internal vertex has degree > k? 
 

If there is an internal vertex of degree < k, it will have 
to be in any irreversible k-conversion set and will 
never change sign.  
 

So, to every neighbor, this vertex v acts like a leaf, and 
we can break T into deg(v) subtrees with v a leaf in 
each. 
 

If every internal vertex has degree ≥ k, one can obtain 
analogous results to those for the > k case by looking 
at maximal connected subsets of vertices of degree k.  
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Irreversible k-Conversion Sets in 
Trees 

Dreyer presents an O(n) algorithm for finding the 
size of the smallest irreversible k-conversion set in 
a tree of n vertices. 
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Irreversible k-Conversion Sets in 
Special Graphs 

Studied for many special graphs.  
 
Let  G(m,n)  be the rectangular grid graph with  m  
rows and  n  columns.  

G(3,4) 
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Toroidal Grids 
The toroidal grid  T(m,n)  is obtained from the 
rectangular grid  G(m,n)  by adding edges from the 
first vertex in each row to the last and from the first 
vertex in each column to the last. 
 
Toroidal grids are easier to deal with than 
rectangular grids because they form regular graphs:  
Every vertex has degree 4. Thus, we can make use 
of the results about regular graphs. 
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T(3,4) 
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Irreversible4-Conversion Sets in 
Toroidal Grids 

Theorem (Dreyer 2000): In a toroidal grid  T(m,n), 
the size of the smallest irreversible 4-conversion 
set is 
 
max{n(ceiling[m/2]), m(ceiling[n/2])} m or n odd 
 
mn/2      m, n even 
 

{ 
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Part of the Proof:  Recall that  D  is an irreversible 
4-conversion set in a 4-regular graph iff  V-D  is 
independent.  
 
V-D  independent means that every edge  {u,v} in  
G  has  u  or  v  in  D. In particular, the ith row 
must contain at least ceiling[n/2] vertices in D and 
the ith column at least ceiling[m/2] vertices in D 
(alternating starting with the end vertex of the row 
or column).  
 
We must cover all rows and all columns, and so 
need at least max{n(ceiling[m/2]), m(ceiling[n/2])}  
vertices in an irreversible 4-conversion set. 
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Irreversible k-Conversion Sets for 
Rectangular Grids 

Let Ck(G) be the size of the smallest irreversible 
k-conversion set in graph G. 
 

Theorem (Dreyer 2000):  
 

C4[G(m,n)] = 2m + 2n - 4 + floor[(m-2)(n-2)/2] 
 
Theorem (Flocchini, Lodi, Luccio, Pagli, and 
Santoro): 
 

C2[G(m,n)] = ceiling([m+n]/2)    
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Irreversible 3-Conversion Sets for 
Rectangular Grids 

For 3-conversion sets, the best we have are bounds: 
 
Theorem (Flocchini, Lodi, Luccio, Pagli, and 
Santoro): 
   
  [(m-1)(n-1)+1]/3 £ C3[G(m,n)] £  

  [(m-1)(n-1)+1]/3 +[3m+2n-3]/4 + 5  
 
Finding the exact value is an open problem.   
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Vaccination Strategies 
Stephen Hartke and others worked on a different problem: 
 

Defender: can vaccinate v people per time period.  
Attacker: can only infect people at the beginning.  
Irreversible k-threshold model. 
What vaccination strategy minimizes number of people 
infected?  
 

Sometimes called the firefighter problem: 
alternate fire spread and firefighter placement. 
Usual assumption: k = 1. (We will assume this.) 
 

Variation: The vaccinator and infector alternate turns, having 
v vaccinations per period and i doses of pathogen per period. 
What is a good strategy for the vaccinator? 
 
Problem goes back to Bert Hartnell 1995 
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A Survey of Some Results on 
the Firefighter Problem 

Thanks to 
Kah Loon Ng 

DIMACS 
For the animated slides, 
slightly modified by me 
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Mathematicians can be Lazy 
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Mathematicians can be Lazy 
• Different application. 
• Different terminology 
• Same mathematical model. 

measles 
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A Simple Model (k = 1) (v = 3)  
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A Simple Model 
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A Simple Model 
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A Simple Model 
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A Simple Model 
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A Simple Model 
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A Simple Model 
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A Simple Model 



88 

Some questions that can be asked (but  
not necessarily answered!) 

•  Can the fire be contained? 
•  How many time steps are required before fire is 

contained? 
•  How many firefighters per time step are necessary? 
•  What fraction of all vertices will be saved (burnt)? 
•  Does where the fire breaks out matter? 
•  Fire starting at more than 1 vertex? 
•  Consider different graphs. Construction of 

(connected) graphs to minimize damage. 
•  Complexity/Algorithmic issues 
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Containing Fires in Infinite Grids Ld 

Fire starts at only one vertex: 
d =1: Trivial. 
d = 2: Impossible to contain the fire with 1 

firefighter per time step 
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Containing Fires in Infinite Grids Ld  
d = 2: Two firefighters per time step needed to contain the 

fire. 

8 time steps 

18 burnt 
vertices 
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Containing Fires in Infinite Grids Ld  
d = 2: Two firefighters per time step needed to contain the 

fire. 

8 time steps 

18 burnt 
vertices 

Develin & Hartke 
(2007): cannot do 
better than 18 
 
Wang & Moeller  
(2002): Cannot  
contain fire in < 8 
steps 
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…… 

Containing Fires in Infinite Grids Ld  
 d ≥ 3: Wang and Moeller (2002): If G is an r-regular 

graph, r – 1 firefighters per time step is always 
sufficient to contain any fire outbreak (at a single 
vertex) in G. (r-regular: every vertex has r neighbors.) 

.…. 
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Containing Fires in Infinite Grids Ld  
 
 d ≥ 3:  In Ld, every vertex has degree 2d.  

Thus: 2d-1 firefighters per time step are sufficient to 
contain any outbreak starting at a single vertex. 

 Theorem (Hartke 2004): If d ≥ 3, 2d – 2 firefighters per 
time step are not enough to contain an outbreak in Ld. 

Thus, 2d – 1 firefighters per time step is the minimum 
number required to contain an outbreak in Ld and 
containment can be attained in 2 time steps. 
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Containing Fires in Infinite Grids Ld 

Fire can start at more than one vertex. 
 d = 2: Fogarty (2003): Two firefighters per time 
step are sufficient to contain any outbreak at a finite 
number of vertices. 
d ≥ 3:  Hartke (2004): For any d ≥ 3 and any 
positive integer f, f firefighters per time step is not 
sufficient to contain all finite outbreaks in Ld.  In 
other words, for d ≥ 3 and any positive integer  f,  
there is an outbreak such that f firefighters per time 
step cannot contain the outbreak. 
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Containing Fires in Infinite Grids Ld 

The case of a different number of 
firefighters per time step. 

 Let f(t) = number firefighters available at time t. 
Assume f(t) is periodic with period  pf. 
 
Possible motivations for periodicity:  
• Firefighters arrive in batches. 
• Firefighters need to stay at a vertex for several 
time periods before redeployment. 
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Containing Fires in Infinite Grids Ld 

The case of a different number of 
firefighters per time step. 

 
 

Nf = f(1) + f(2) + … + f(pf) 
 

Rf = Nf/pf 

(average number firefighters available per time 
period) 
 
Theorem (Ng and Raff 2006): If  d =2  and  f  is 
periodic with period pf ≥ 1 and Rf > 1.5, then an 
outbreak at any number of vertices can be contained 
at a finite number of vertices. 
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Containing Fires in Infinite Grids Ld 

The case of a different number of 
firefighters per time step. 

 
 

Conjecture (Develin and Hartke 2007): Suppose 
that f(t)/td-2 goes to 0 as t gets large. Then there is 
some fire on Ld that cannot be contained by 
deploying f(t) firefighters at time t. 
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Containing Fires in Infinite Grids 

Other work has been done on infinite 
triangular grids and infinite hexagonal grids 
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Saving Vertices in Finite Grids G 

Assumptions: 
1.  1 firefighter is deployed per time step 
2.  Fire starts at one vertex 
 
Let  

MVS(G, v) = maximum number of vertices 
that can be saved in G if fire starts at v. 
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Saving Vertices in Finite Grids G 
nn PPG ×= },|),{()( nbabaGV ≤≤= 1

⎡ ⎤2n
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Saving Vertices in Finite Grids G 
nn PPG ×= },|),{()( nbabaGV ≤≤= 1

nnnnPPMVS nn −=−=× 2111 )()),(,(
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Saving Vertices in  nml PPP ××

21111633 =×× )),,(,( PPPMVS

,)),,(,( 33911133 −=×× nPPPMVS n 6≥n
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Saving Vertices in Pn x Pn x Pn 

Conjecture (Moeller and Wang): 
  
limn−>∞ MVS(PnxPnxPn,v)/n3 = 0 for all v 
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Algorithmic and Complexity Matters 

FIREFIGHTER: 
Instance: A rooted graph  (G,v)  and an integer  
p ≥ 1. 

Question: Is MVS(G,v) ≥ p?    That is, is there a finite 
sequence   d1, d2, …, dt  of vertices of   G such that if 
the fire breaks out at  v, then, 

1. vertex  di  is neither burning nor defended at time i 

2. at time t, no undefended vertex is next to a burning 
vertex 

3. at least p vertices are saved at the end of time t. 
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Algorithmic and Complexity Matters 

Theorem (MacGillivray and Wang, 2003): 
FIREFIGHTER is NP-complete. 
 

Theorem (Finbow, Kind, MacGillivray, Wang 
(2007): FIREFIGHTER is NP-complete even if 
restricted to trees with maximum degree 3.  
 

Theorem (Finbow, Kind, MacGillivray, Wang 
(2007): The problem is solvable in polynomial 
time for graphs of maximum degree 3 if the fire 
starts at a vertex of degree 2.  
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Algorithmic and Complexity Matters 

Theorem (King and MacGivillray, 2010): 
FIREFIGHTER is NP-complete for cubic 
graphs. 
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Algorithmic and Complexity Matters 
The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then 
insert it again.

Firefighting on Trees: 
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Algorithmic and Complexity Matters 

Greedy algorithm: 

For each  v  in  V(T), define 

weight (v) = number descendants of v + 1 

Algorithm: At each time step, place 
firefighter at vertex that has not been saved 
such that weight (v) is maximized. 
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Algorithmic and Complexity Matters 
The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then 
insert it again.

Firefighting on Trees: 

7 8 9 12 11 

3 2 4 1 6 1 5 1 2 6 

1 2 1 1 3 1 1 1 1 3 1 

26 
22 
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Algorithmic and Complexity Matters 

Greedy Optimal 

= 7 = 9 
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Algorithmic and Complexity Matters 

Theorem (Hartnell and Li, 2000): For any tree 
with one fire starting at the root and one 
firefighter to be deployed per time step, the 
greedy algorithm always saves more than ½ of 
the vertices that any algorithm saves. 
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Algorithmic and Complexity Matters 

Theorem (Finbow and MacGillivray 2009): 
The FireFighter problem is solvable in 
polynomial time for caterpillars and for trees of 
maximum degree 3 where the root has degree 
2. (This includes binary trees.) 
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Would Graph Theory help with a 
deliberate outbreak of Anthrax? 

 



115 

What about a deliberate release of 
smallpox? 
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Similar approaches using mathematical models 
have proven useful in public health and many other 
fields, to: 
  
• make policy 
• plan operations 
• analyze risk 
• compare interventions 
• identify the cause of observed events 
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More Realistic Models 
Many oversimplifications in both of our models. 
For instance: 
 
• What if you stay infected (burning) 
only a certain number of days? 
• What if you are not necessarily  
infective for the first few days you 
 are sick?  
• What if your threshold k for changes from     to   
(uninfected to infected) changes depending upon 
how long you have been uninfected? 

 

measles 
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More Realistic Models 
Consider an irreversible process in which you stay 
in the infected state (state   ) for  d  time periods 
after entering it and then go back to the uninfected 
state (state   ).  
 

Consider an irreversible  k-threshold process in 
which we vaccinate a person in state    once k-1 
neighbors are infected (in state   ). 
 

Etc. – experiment with a  
variety of assumptions 
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More Realistic Models 
Our models are deterministic. How do probabilities 
enter?  
 
• What if you only get infected with  
a certain probability if you meet an  
infected person? 

• What if vaccines only work with a certain 
probability? 

• What if the amount of time you remain infective 
exhibits a probability distribution? 
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Other Questions 
Can you use graph-
theoretical models to 
analyze the effect of 
different quarantine 
strategies? 
 

Don’t forget diseases of plants. 
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There is much more analysis of a similar nature that 
can be done with graph-theoretical models.  


