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My Message
•The modern theory of measurement was 
developed to deal with measurement in the social 
and behavioral sciences where scales are not as 
readily defined as in the physical sciences.

– Utility, noise, intelligence, …
•Traditional concepts of measurement 
theory are not well known in the public 
health arena.
•Problems of epidemiology and
public health are providing new 
challenges for measurement theory.

measles
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Some Questions We Will Ask

•Is it meaningful to say that the malaria parasite 
load has doubled? 
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Some Questions We Will Ask
•Is the average cough score for one set of TB 
patients higher than that for another?
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Some Questions We Will Ask
•For controlling the spread of HIV, which of 
abstinence education, universal screening, and 
condom distribution are more effective?
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MEASUREMENT
•All of these questions have something to do with 
measurement.

•We will discuss applications of the theory of measurement 
to measurement in epidemiology and 
public health.
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MEASUREMENT
•Measurement has something to do with numbers. 

•Think of starting with a set A of objects that we want to 
measure.

•We shall think of a scale of measurement as a function f
that assigns a real number f(a) to each element a of A (or 
more generally assigns a number f(a) in some other set B).
•The representational theory of measurement gives 
conditions under which a function is an acceptable scale 
of measurement. 
•Formalized through study of homomorphisms from one 
relational system to another.
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Outline
1. Theory of Uniqueness of Scales of 

Measurement/Scale Types
2. Meaningful Statements
3. Averaging Judgments of Cough Severity
4. Measurement of Air Pollution
5. Evaluation of Alternative HIV Treatments: �Merging 

Normalized Scores�
6. Optimization Problems in Epidemiology
7. Meaningfulness of Statistical Tests
8. How to Average Scores
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The Theory of Uniqueness
Admissible Transformations

•An admissible transformation sends one acceptable scale 
into another.   

Centigrade Æ Fahrenheit
Kilograms Æ Pounds

•In most cases one can think of an admissible 
transformation as defined on the range of a scale of 
measurement.

•Suppose  f is an acceptable scale on A taking values in B .

•j:f(A) Æ B is called an admissible transformation of f if           
jÈf is again an acceptable scale.
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The Theory of Uniqueness
Admissible Transformations j

Centigrade Æ Fahrenheit: j(x) = (9/5)x + 32

Kilograms Æ Pounds: j(x) = 2.2x
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The Theory of Uniqueness
•A classification of scales is obtained by studying 
the class of admissible transformations associated 
with the scale.
•This defines the scale type. (S.S. Stevens)
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Some Common Scale Types

Class of Adm. Transfs. Scale Type Example
j(x) = ax, a > 0 ratio Mass

Temp. (Kelvin)
Time (intervals)
Length
Volume
Loudness (sones)?

______________________________________________
j(x) = ax+b, a > 0 interval Temp (F,C)

Time (calendar)



13

Some Common Scale Types

Class of Adm. Transfs. Scale Type Example
x ≥ y´ j(x) ≥ j(y)
j strictly increasing ordinal Preference?

Hardness
Grades of leather, 

wool, etc.
Subjective 

judgments:
cough, fatigue,...

_________________________________________
j(x) = x absolute Counting
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Meaningful Statements
•In measurement theory, we speak of a statement as being 
meaningful if its truth or falsity is not an artifact of the 
particular scale values used.

•The following definition is due to Suppes 1959 and 
Suppes and Zinnes 1963.

Definition:  A statement involving numerical scales is 
meaningful if its truth or falsity is unchanged after any (or 
all) of the scales is transformed (independently?) by an 
admissible transformation.
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Meaningful Statements

•A slightly more informal definition:

Alternate Definition: A statement involving numerical 
scales is meaningful if its truth or falsity is unchanged 
after any (or all) of the scales is (independently?) replaced 
by another acceptable scale.

•In some practical examples, for example those involving 
preference judgments or judgments �louder than� under 
the �semiorder� model, it is possible to have two scales 
where one can’t go from one to the other by an admissible 
transformation, so one has to use this definition.
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Meaningful Statements

•We will avoid the long literature of more sophisticated 
approaches to meaningfulness.

•Situations where this relatively simple-minded definition 
may run into trouble will be disregarded.

•Emphasis is to be on applications of the �invariance�
motivation behind the theory of meaningfulness.
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Meaningful Statements
�This talk will be three times as long as the next talk.�

•Is this meaningful?
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Meaningful Statements
�This talk will be three times as long as the next talk.�

•Is this meaningful?

I hope not!
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Meaningful Statements
�This talk will be three times as long as the next talk.�

•Is this meaningful?

Me too
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Meaningful Statements
�This talk will be three times as long as the next talk.�

•Is this meaningful?
•We have a ratio scale (time intervals).

(1) f(a) = 3f(b).

•This is meaningful if  f is a ratio scale.  For, an 
admissible transformation is  j(x) = ax, a > 0. We want 
(1) to hold iff 

(2)                   (jÈf)(a) = 3(jÈf)(b)

•But (2) becomes
(3)                        af(a) = 3af(b)

•(1) ´ (3)  since a > 0.
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Meaningful Statements
�The patient’s temperature at 9AM today is 2 per cent 
higher than it was at 9 AM yesterday.�

•Is this meaningful?



23

Meaningful Statements
�The patient’s temperature at 9AM today is 2 per cent 
higher than it was at 9 AM yesterday.�

f(a) = 1.02f(b)

•Meaningless.  It could be true with Fahrenheit and false 
with Centigrade, or vice versa.
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Meaningful Statements
In general:

•For ratio scales, it is meaningful to compare ratios:

f(a)/f(b) > f(c)/f(d)
•For interval scales, it is meaningful to compare intervals:

f(a) - f(b) > f(c) - f(d)
•For ordinal scales, it is meaningful to compare size:

f(a) > f(b)
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Meaningful Statements
Malaria parasite density is still mainly obtained by 
reading slides under microscopes. 

�The parasite density in this slide is double the parasite 
density in that slide.�

•Is this meaningful?  
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Meaningful Statements
�The parasite density in this slide is double the parasite 
density in that slide.�

•Density is measured in number per microliter. So, if one 
slide has 100,000 per mL and another 50,000 per m L, is it 
meaningful to conclude that the first slide has twice the 
density of the second?
•Meaningful.  Volume involves ratio scales. And counts are 
absolute scales.

However: This disregards errors in measurement. A 
statement can be meaningful in the measurement theory 
sense but meaningless in a practical sense.
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Meaningful Statements
�I weigh 1000 times what that elephant weighs.�
•Is this meaningful?
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Meaningful Statements
�I weigh 1000 times what that elephant weighs.�
•Meaningful.  It involves ratio scales.
It is false no matter what the unit.

•Meaningfulness is different from truth.

•It has to do with what kinds of assertions 
it makes sense to make, which assertions
are not accidents of the particular choice
of scale (units, zero points) in use.
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Average Cough Severity
•Study two groups of patients with TB.

•f(a) is the cough severity of a as judged on one of the 
subjective cough severity scales (e.g., rate severity as 1 to 5).

•Data suggests that the average cough severity for 
patients in the first group is higher than the average 
cough severity of patients in the second group.

a1, a2, …, an patients in first group
b1, b2, …, bm patients in second group.

n m
(1)   (1/n) Σ f(ai) > (1/m) Σ f(bi)

i=1                 i=1
•We are comparing arithmetic means.
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Average Cough Severity
•Statement (1) is meaningful iff for all admissible 
transformations of scale j,  (1) holds iff

n m
(2)   (1/n) Σ (jÈf)(ai) > (1/m) Σ (jÈf)(bi)

i=1                        i=1

•If cough severity defines a ratio scale:

•Then,  j(x) = ax, a > 0, so (2) becomes
n m

(3)   (1/n) Σ af(ai) > (1/m) Σ af(bi)
i=1                   i=1

•Then  a > 0 implies (1) ´ (3). Hence, (1) is meaningful.
•So this kind of comparison would work if we were 
comparing weights of TB patients.
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Average Cough Severity
•Note:  (1) is still meaningful if  f is an interval scale.
•

•For example, we could be comparing temperatures  f(a).
•Here,  j(x) = ax + b, a > 0.  Then (2) becomes

n m
(4)   (1/n) Σ af(ai)+b > (1/m) Σ af(bi)+b

i=1                       i=1

•This readily reduces to (1).

•However, (1) is meaningless if  f is just an ordinal 
scale.
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Average Cough Severity
•To show that comparison of arithmetic means can be 
meaningless for ordinal scales, note that we are asking 
experts for a subjective judgment of cough severity.

•It seems that  f(a) is measured on an ordinal scale, e.g., 5-
point scale:  5=extremely severe, 4=very severe, 3=severe, 
2=slightly severe, 1=no cough.

•In such a scale, the numbers may not mean anything; 
only their order matters.

Group 1:  5, 3, 1  average 3
Group 2:  4, 4, 2  average 3.33

•Conclude: average cough severity of group 2 patients is 
higher.
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Average Cough Severity
•Suppose f(a) is measured on an ordinal scale, e.g., 5-
point scale:  5=extremely severe, 4=very severe, 3=severe, 
2=slightly severe, 1=no cough. 
•In such a scale, the numbers may not mean anything; only 
their order matters.

Group 1:  5, 3, 1  average 3
Group 2:  4, 4, 2  average 3.33 (greater)

•Admissible transformation:  5 Æ 100, 4 Æ 75, 3 Æ 65,       
2 Æ 40, 1 Æ 30
•New scale conveys the same information.  New scores:

Group 1:  100, 65, 30  average 65  
Group 2:  75, 75, 40   average 63.33 

Conclude: average severity of group 1 patients is higher.
.
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Average Cough Severity
•Thus, comparison of arithmetic means can be 
meaningless for ordinal data.

•Of course, you may argue that in the 5-point scale, at least 
equal spacing between scale values is an inherent property 
of the scale.  In that case, the scale is not ordinal and this 
example does not apply.

•Note: Comparing medians is meaningful with ordinal 
scales:  To say that one group has a higher median than 
another group is preserved under admissible 
transformations.
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Average Fatigue
•Fatigue is an important variable in measuring the progress 
of patients with serious diseases. 
•One scale widely used in measuring fatigue is the Piper 
Fatigue Scale.
•It asks questions like:
� On a scale of 1 to 10, to what degree is the fatigue 

you are feeling now interfering with your ability to 
complete your work or school activities? (1 = none, 
10 = a great deal)

� On a scale of 1 to 10, how would you describe the 
degree of intensity or severity of the fatigue which 
you are experiencing now? (1 = mild, 10 = severe)

•Similar analysis applies: Meaningless to compare means, 
meaningful to compare medians
.
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Average Cough Severity
•Suppose each of  n observers is asked to rate each of a 
collection of patients as to their relative cough severity.

• Or we rate patients on different criteria or against 
different benchmarks. (Similar results with performance 
ratings, importance ratings, etc.)

•Let  fi(a)  be the rating of patient a by  judge  i (under 
criterion i).  Is it meaningful to assert that the average 
rating of patient a is higher than the average rating of 
patient  b?  
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Average  Cough Severity
•Let  fi(a)  be the rating of patient a by  
judge  i (under criterion i).  Is it meaningful to assert that 
the average rating of patient a is higher than the average 
rating of patient  b?  

•A similar question arises in fatigue ratings, ratings of 
brightness of rash, etc.

n n

(1)   (1/n) Σ fi(a) > (1/n) Σ fi(b)
i=1                i=1
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Average Cough Severity
•If each  fi is a ratio scale, then we consider for a > 0,

n n
(2)   (1/n) Σ afi(a) > (1/n) Σ afi(b)

i=1                  i=1
•Clearly,  (1) ´ (2), so (1) is meaningful.

•Problem: f1, f2, …, fn might have independent units.  In 
this case, we want to allow independent admissible 
transformations of the fi.  Thus, we must consider

n n
(3)   (1/n) Σ aifi(a) > (1/n) Σ aifi(b)

i=1                   i=1
•It is easy to see that there are ai so that (1) holds and (3) 
fails. Thus, (1) is meaningless.
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Average Cough Severity
Motivation for considering different ai: 

n = 2,   f1(a) = weight of a,  f2(a) =  height of a.  Then (1) 
says that the average of  a's  weight and height is greater 
than the average of  b's weight and height.  This could be 
true with one combination of weight and height scales and 
false with another.
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Average Cough Severity
Motivation for considering different ai: 

n = 2,   f1(a) = weight of a,  f2(a) =  height of a.  Then (1) 
says that the average of  a's  weight and height is greater 
than the average of  b's weight and height.  This could be 
true with one combination of weight and height scales and 
false with another.

• Conclusion:  Be careful when comparing 
arithmetic mean ratings.
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Average Cough Severity
•In this context, it is safer to compare geometric means
(Dalkey).

n_____     n_____           n______     n_______
√Π fi(a) > √Π fi(b) ßà √Π aifi(a) > √Π aifi(b) 

all  ai > 0.

•Thus, if each  fi is a ratio scale, if individuals can change 
cough severity rating scales (performance rating scales, 
importance rating scales) independently, then comparison 
of geometric means is meaningful while comparison of 
arithmetic means is not.
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Application of this Idea
Role of Air Pollution in Health.
•In a study of air pollution and related energy use in San 
Diego, a panel of experts each estimated the relative 
importance of variables relevant to air pollution using the 
magnitude estimation procedure. Roberts (1972, 1973).
•Magnitude estimation: Most important gets score of 100. 
If half as important, score of 50. And so on.
•If magnitude estimation leads to a ratio scale -- Stevens 
presumes this -- then comparison of geometric mean 
importance ratings is meaningful. 

•However, comparison of arithmetic means
may not be.  Geometric means were used.

.
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Magnitude Estimation by One Expert of Relative 
Importance for Air Pollution of Variables Related to 

Commuter Bus Transportation in a Given Region

Variable Rel. Import. Rating
1. No. bus passenger mi. annually 80
2. No. trips annually 100
3. No. miles of bus routes 50
4. No. miles special bus lanes 50
5. Average time home to office 70
6. Average distance home to office 65
7. Average speed 10
8. Average no. passengers per bus 20
9. Distance to bus stop from home 50
10. No. buses in the region 20
11. No. stops, home to office 20
.
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MEASUREMENT OF AIR POLLUTION
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MEASUREMENT OF AIR POLLUTION
•Close relationship between pollution and health
•Various pollutants are present in the air:
�Carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides 

(NOX), sulfur oxides (SOX), particulate matter (PM). 

•Also damaging: Products of chemical reactions among 
pollutants. 
� E.g.: Oxidants such as ozone produced by HC and 

NOX reacting in presence of sunlight.
•Some pollutants are more serious in presence of others, 
e.g., SOX are more harmful in presence of PM.
•Can we measure pollution with one overall measure?
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•To compare pollution control policies, need to compare effects 
of different pollutants.  We might allow increase of some 
pollutants in order to achieve decrease of others.
•One single measure could give indication of how bad 
pollution level is and might help us determine if we have 
made progress.

Combining Weight of Pollutants:
•Measure total weight of emissions of pollutant i over fixed 
period of time and sum over  i.
e(i,t,k) = total weight of emissions of pollutant i (per cubic 
meter) over  tth  time period and due to  kth  source or measured 
in  kth  location.

n
A(t,k) = Σ e(i,t,k)

i=1

MEASUREMENT OF AIR POLLUTION
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• Early uses of this simple index  A in the early 1970s led 
to the conclusions:

(A) Transportation is the largest source of air pollution, with 
stationary fuel combustion (especially by electric power 
plants) second largest.  

(B) Transportation accounts for over 50% of all air 
pollution.

(C) CO accounts for over half of all emitted air pollution.

• Are these meaningful conclusions?

MEASUREMENT OF AIR POLLUTION
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• Early uses of this simple index  A in the early 1970s led 
to the conclusions:

(A) Transportation is the largest source of air pollution, with 
stationary fuel combustion (especially by electric power 
plants) second largest.  

• Are these meaningful conclusions?

A(t,k) > A(t,k’)

MEASUREMENT OF AIR POLLUTION
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• Early uses of this simple index  A in the early 1970s led 
to the conclusions:

(B) Transportation accounts for over 50% of all air 
pollution.

• Are these meaningful conclusions?

A(t,kr) > Σ A(t,k)
k≠kr

MEASUREMENT OF AIR POLLUTION
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• Early uses of this simple index  A in the early 1970s led 
to the conclusions:

(C) CO accounts for over half of all emitted air pollution.

• Are these meaningful conclusions?

Σ e(i,t,k) > Σ   Σ e(j,t,k)
t,k t,k  j≠i

MEASUREMENT OF AIR POLLUTION
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All these conclusions are meaningful if we measure all  
e(i,t,k) in same units of mass (e.g., milligrams per cubic 
meter) and so admissible transformation means multiply  
e(i,t,k) by same constant.

MEASUREMENT OF AIR POLLUTION

A(t,k) > A(t,k’)

A(t,kr) > Σ A(t,k)
k≠kr

Σ e(i,t,k) > Σ   Σ e(j,t,k)
t,k t,k  j≠i
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•These comparisons are meaningful in the technical sense.

•But: Are they meaningful comparisons of pollution level 
in a practical sense?

•A unit of mass of CO is far less harmful than a unit of mass 
of NOX.  Early EPA standards based on health effects for 24 
hour period allowed 7800 units of CO to 330 units of NOX.  

•These are Minimum acute toxicity effluent tolerance 
factors (MATE criteria). 

•Tolerance factor is level at which adverse effects are 
known.  Let  t(i) be tolerance factor for  ith  pollutant.  
•Severity factor:  t(CO)/t(i) or  1/t(i)

MEASUREMENT OF AIR POLLUTION
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•One idea (Babcock and Nagda, Walther, Caretto and 
Sawyer):  Weight the emission levels (in mass) by severity 
factor and get a weighted sum.  This amounts to using the 
indices
Degree of hazard:  1/t(i) * e(i,t,k)

and the combined index
n

Pindex: B(t,k) = Σ [1/t(i) * e(i,t,k)]
i=1

•Under pindex, transportation is still the largest source of 
pollutants, but now accounting for less than 50%. Stationary 
sources fall to fourth place.  CO drops to bottom of list of 
pollutants, accounting for just over 2% of the total.

MEASUREMENT OF AIR POLLUTION
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•These conclusions are again meaningful if all emission 
weights are measured in the same units.  For an admissible 
transformation multiplies  t and e by the same constant 
and thus leaves the degree of hazard unchanged and pindex 
unchanged.

•Pindex was introduced in the San Francisco 
Bay Area in the 1960s. 

•But, are comparisons using pindex meaningful in the 
practical sense?

MEASUREMENT OF AIR POLLUTION
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•Pindex amounts to:  For a given pollutant, take the 
percentage of a given harmful level of emissions that is 
reached in a given period of time, and add up these 
percentages over all pollutants. (Sum can be greater than 
100% as a result.)

•If 100% of the CO tolerance level is reached, this is known 
to have some damaging effects.  Pindex implies that the 
effects are equally severe if levels of five major pollutants 
are relatively low, say 20% of their known harmful levels. 

MEASUREMENT OF AIR POLLUTION



58

•Severity tonnage of pollutant  i due to a given source is 
actual tonnage times the severity factor 1/t(i).
•In early air pollution measurement literature, severity 
tonnage was considered a measure of how severe pollution 
due to a source was.

•Data from Walther 1972 suggests the following.

•Interesting exercise to decide which of these 
conclusions are meaningful.

MEASUREMENT OF AIR POLLUTION
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1. HC emissions are more severe (have greater severity 
tonnage) than NOX emissions.
2. Effects of HC emissions from transportation are more 
severe than those of HC emissions from industry. (Same for 
NOX.).
3. Effects of HC emissions from transportation are more 
severe than those of CO emissions from industry. 
4. Effects of HC emissions from transportation are more 
than 20 times as severe as effects of CO emissions from 
transportation.
5. The total effect of HC emissions due to all sources is 
more than 8 times as severe as total effect of NOX emissions 
due to all sources.

MEASUREMENT OF AIR POLLUTION
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Evaluation of Alternative HIV 
Treatments

•How do we evaluate alternative possible treatment plans or 
interventions for a given disease?
• One common procedure: A number of treatments are 
compared on different criteria/benchmarks.  
•Their scores on each criterion are normalized relative to the 
score of one of the treatments.  
•The normalized scores of a treatment are combined by some 
averaging procedure and normalized scores are compared. 

AIDS orphans
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Evaluation of Alternative HIV 
Treatments

•The normalized scores of a treatment are combined by some 
averaging procedure.  
•If the averaging is the arithmetic mean, then the statement 
�one treatment has a higher arithmetic mean normalized 
score than another system� is meaningless:  
•The treatment to which scores are normalized can determine 
which has the higher arithmetic mean.

AIDS street kids
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Evaluation of HIV Treatments
•Similar methods are used in comparing performance of 
alternative computer systems or other types of machinery.

•Consider a number of treatments/interventions:
üUniversal screening
üFree condom distribution
üAbstinence education
üMale circumcision

•Consider a number of criteria/outcomes:
üCD4 count
üDays without symptoms of …
üNumber days hospitalized …



64

Treatment Evaluation
Evaluation of HIV Treatments

417 83 66 39,449 772

244 70 153 33,527 368

134 70 135 66,000 369

CRITERION

R

M

Z

T
R
E
A
T
M
E
N
T

E F G H I
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Treatment Evaluation
Normalize Relative to Treatment R

417
1.00

83
1.00

66
1.00

39,449
1.00

772
1.00

244
.59

70
.84

153
2.32

33,527
.85

368
.48

134
.32

70
.85

135
2.05

66,000
1.67

369
.45

CRITERION

R

M

Z

T
R
E
A
T
M
E
N
T

E F G H I
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Treatment Evaluation

Take Arithmetic Mean of Normalized Scores

417
1.00

83
1.00

66
1.00

39,449
1.00

772
1.00

244
.59

70
.84

153
2.32

33,527
.85

368
.48

134
.32

70
.85

135
2.05

66,000
1.67

369
.45

CRITERION

R

M

Z

T
R
E
A
T
M
E
N
T

E F G H I
Arithmetic
Mean

1.00

1.01

1.07
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Treatment Evaluation

Take Arithmetic Mean of Normalized Scores

417
1.00

83
1.00

66
1.00

39,449
1.00

772
1.00

244
.59

70
.84

153
2.32

33,527
.85

368
.48

134
.32

70
.85

135
2.05

66,000
1.67

369
.45

CRITERION

R

M

Z

T
R
E
A
T
M
E
N
T

E F G H I
Arithmetic
Mean

1.00

1.01

1.07

Conclude that treatment Z is best
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Treatment Evaluation
Now Normalize Relative to Treatment M

417
1.71

83
1.19

66
.43

39,449
1.18

772
2.10

244
1.00

70
1.00

153
1.00

33,527
1.00

368
1.00

134
.55

70
1.00

135
.88

66,000
1.97

369
1.00

CRITERION

R

M

Z

T
R
E
A
T
M
E
N
T

E F G H I
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Treatment Evaluation
Take Arithmetic Mean of Normalized Scores

417
1.71

83
1.19

66
.43

39,449
1.18

772
2.10

244
1.00

70
1.00

153
1.00

33,527
1.00

368
1.00

134
.55

70
1.00

135
.88

66,000
1.97

369
1.00

CRITERION

R

M

Z

T
R
E
A
T
M
E
N
T

E F G H I

Arithmetic
Mean

1.32

1.00

1.08
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Treatment Evaluation
Take Arithmetic Mean of Normalized Scores

417
1.71

83
1.19

66
.43

39,449
1.18

772
2.10

244
1.00

70
1.00

153
1.00

33,527
1.00

368
1.00

134
.55

70
1.00

135
.88

66,000
1.97

369
1.00

CRITERION

R

M

Z

T
R
E
A
T
M
E
N
T

E F G H I

Arithmetic
Mean

1.32

1.00

1.08

Conclude that treatment R is best
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Treatment Evaluation

• So, the conclusion that a given treatment is best  
by taking arithmetic mean of normalized scores 
is meaningless in this case.

• Above example from Fleming and Wallace 
(1986), data from Heath (1984) (in a computing 
machine application)

• Sometimes, geometric mean is helpful.
• Geometric mean is

÷ Pis(xi)
n s
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Treatment Evaluation
Normalize Relative to Treatment R

417
1.00

83
1.00

66
1.00

39,449
1.00

772
1.00

244
.59

70
.84

153
2.32

33,527
.85

368
.48

134
.32

70
.85

135
2.05

66,000
1.67

369
.45

CRITERION

R

M

Z

T
R
E
A
T
M
E
N
T

E F G H I
Geometric
Mean

1.00

.86

.84

Conclude that treatment R is best
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Treatment Evaluation
Now Normalize Relative to Treatment M

417
1.71

83
1.19

66
.43

39,449
1.18

772
2.10

244
1.00

70
1.00

153
1.00

33,527
1.00

368
1.00

134
.55

70
1.00

135
.88

66,000
1.97

369
1.00

CRITERION

R

M

Z

T
R
E
A
T
M
E
N
T

E F G H I
Geometric
Mean

1.17

1.00

.99

Still conclude that treatment R is best
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Treatment Evaluation

• In this situation, it is easy to show that the conclusion 
that a given treatment has highest geometric mean 
normalized score is a meaningful conclusion.

• Even meaningful: A given treatment has geometric 
mean normalized score 20% higher than another 
treatment.

• Fleming and Wallace give general conditions under 
which comparing geometric means of normalized 
scores is meaningful.

• Research area: what averaging procedures make sense 
in what situations? Large literature. 
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Treatment Evaluation

Message from measurement theory:

Do not perform arithmetic operations on 
data without paying attention to whether 
the conclusions you get are meaningful.
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Treatment Evaluation

• We have seen that in some situations, comparing 
arithmetic means is not a good idea and 
comparing geometric means is.

• There are situations where the reverse is true.
• Can we lay down some guidelines as to when to 

use what averaging procedure?

• A brief discussion follows later – if there is time.
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Outline
1. Theory of Uniqueness of Scales of Measurement/Scale   

Types
2. Meaningful Statements
3. Averaging Judgments of Cough Severity
4. Measurement of Air Pollution
5. Evaluation of Alternative HIV Treatments: �Merging 

Normalized Scores�
6. Optimization Problems in Epidemiology
7. Meaningfulness of Statistical Tests
8. How to Average Scores
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DIMACS Initiative on Climate and 
Health

•Spurred by concerns about global warming.
•Resulting impact on health

–Of people
–Of animals
–Of plants
–Of ecosystems
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Extreme Events due to Global Warming
•We anticipate an increase in number and severity of 
extreme events due to global warming.
•More heat waves.
•More floods, hurricanes.
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DIMACS Project: Extreme Heat Events

• Extreme heat events: key test case when CDC rolled out 
its mathematical modeling initiative.

• Extreme heat events result in increased incidence of heat 
stroke, dehydration, cardiac stress, respiratory distress. 

• Hyperthermia in elderly patients can lead to cardiac 
arrest.

• Effects not independent: Individuals under stress due to 
climate may be more susceptible to infectious diseases 
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Extreme Heat Events: Evacuation
•One response to such events: evacuation of most 
vulnerable individuals to climate controlled 
environments.
•Modeling challenges:

–Where to locate the evacuation centers?
–Whom to send where?
–Goals include minimizing travel time, keeping facilities to 
their maximum capacity, etc.
–Relevance of mathematical tools of operations research –
location theory, assignment problems, etc.
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One Approach to Evacuation: Find the 
Shortest Route from Home to 

Evacuation Center
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Optimization Problems in 
Epidemiology: 

Shortest Path Problem

x y

z

2

4
15

• Problem: Find the shortest path from x to z in the network.
• Widely applied problem. 
� US Dept. of Transportation alone uses it billions of 

times a year.

Numbers = some
sort of weights or
lengths
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Shortest Path Problem

x y

z

2

4
15

• The shortest path from x to z is the path x to y to z.
• Is this conclusion meaningful?
• It is if the numbers define a ratio scale.
• The numbers define a ratio scale if they are distances, 

as in the DIMACS Climate and Health project.
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Shortest Path Problem
z

x y2

4
15

• However, what if the numbers define an interval scale?
• For example, the numbers could be costs in terms of 

utility (or disutility) assigned to a route, and these might 
only define an interval scale. 
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Shortest Path Problem

x y

z

2

4
15

• Consider the admissible transformation  j(x) = 3x + 100.
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Shortest Path Problem
z

x y106

112
145

• Consider the admissible transformation  j(x) = 3x + 100.
• Now we get the above numbers on the edges.
• Now the shortest path is to go directly from x to z.
• The original conclusion was meaningless.
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Linear Programming
• The shortest path problem can be formulated as a 

linear programming problem.
• Thus: The conclusion that A is the solution to a 

linear programming problem can be meaningless if 
cost parameters are measured on an interval scale.

• How many people realize that?
• Note that linear programming is widely used in public 

health, for example to solve problems like:
� Optimal inventories of medicines
� Assignment of patients or doctors to clinics
� Optimization of size of a treatment facility
� Amount to invest in preventive treatments 
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Related Example: Minimum 
Spanning Tree Problem

2

8

10 14

16

20 22

• A spanning tree is a tree using the edges of the graph and 
containing all of the vertices.

• It is minimum if the sum of the numbers on the edges 
used is as small as possible.

15

26

28
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Related Example: Minimum 
Spanning Tree Problem

• Minimum spanning trees arise in many applications.
• One example: Given a road network, find usable roads 

that allow you to go from any vertex to any other vertex, 
minimizing the lengths of the roads used.

• This problem arises in another DIMACS Climate and 
Health project: Find a usable road network for 
emergency vehicles in case extreme events leave flooded 
roads.
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Related Example: Minimum 
Spanning Tree Problem

2

8

10 14

16

20 22

• Red edges define a minimum spanning tree.
• Is it meaningful to conclude that this is a minimum 

spanning tree?

15

26

28
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Related Example: Minimum 
Spanning Tree Problem

2

8

10 14

16

20 22

• Consider the admissible transformation  j(x) = 3x + 100.

15

26

28
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Related Example: Minimum 
Spanning Tree Problem

106

124

130 142

148

160 166

• Consider the admissible transformation  j(x) = 3x + 100.
• We now get the above numbers on edges.

145

178

184
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Related Example: Minimum 
Spanning Tree Problem

106

124

130 142

148

160 166

• The minimum spanning tree is the same.

145

178

184



95

Related Example: Minimum 
Spanning Tree Problem

106

124

130 142

148

160 166

• Is this an accident?
• No: By Kruskal’s algorithm for finding the minimum 

spanning tree, even an ordinal transformation will leave 
the minimum spanning tree unchanged.

145

178

184
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Related Example: Minimum 
Spanning Tree Problem

106

124

130 142

148

160 166

• Kruskal�s algorithm:
ü Order edges by weight.
ü At each step, pick least-weight edge that does not 

create a cycle with previously chosen edges.

145

178

184
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Related Example: Minimum 
Spanning Tree Problem

• Many practical decision making problems 
involve the search for an optimal solution as in 
Shortest Path and Minimum Spanning Tree.

• Little attention is paid to the possibility that 
conclusion that a particular solution is 
optimal may be an accident of the way things 
are measured.
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Outline
1. Theory of Uniqueness of Scales of Measurement/Scale   

Types
2. Meaningful Statements
3. Averaging Judgments of Cough Severity
4. Measurement of Air Pollution
5. Evaluation of Alternative HIV Treatments: �Merging 

Normalized Scores�
6. Optimization Problems in Epidemiology
7. Meaningfulness of Statistical Tests
8. How to Average Scores
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Meaningfulness of Statistical Tests
(joint work with Helen Marcus-Roberts)

•Biostatistics a key component of epidemiological 
research.
•However, biostatisticians know virtually nothing 
about measurement theory.
•Most have never heard about the theory of 
meaningfulness or limitations that meaningfulness 
places on conclusions from statistical tests.



100

Meaningfulness of Statistical Tests
(joint work with Helen Marcus-Roberts)

•For > 50 years: considerable disagreement on 
limitations scales of measurement impose on 
statistical procedures we may apply.  
•Controversy stems from Stevens (1946, 1951, 
1959, ...): 
� Foundational work
�Developed the classification of scales of 

measurement 
� Provided rules for the use of statistical 

procedures: certain statistics are inappropriate at 
certain levels of measurement.
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Meaningfulness of Statistical Tests

•The application of Stevens' ideas to descriptive 
statistics has been widely accepted
•Application to inferential statistics has been 
labeled by some a misconception.
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Meaningfulness of Statistical Tests: 
Descriptive Statistics

•P = population whose distribution we would like to 
describe.
•Capture properties of  P by finding a descriptive 
statistic for  P or taking a sample  S from  P and 
finding a descriptive statistic for  S.
•Our examples suggest: certain descriptive statistics 
appropriate only for certain measurement situations.
•This idea originally due to Stevens.
•Popularized by Siegel in his well-known book 
Nonparametric Statistics (1956).
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Meaningfulness of Statistical Tests: 
Descriptive Statistics

•Our examples suggest the principle: Arithmetic 
means are �appropriate� statistics for interval scales, 
medians for ordinal scales.
•Other side of the coin:  It is argued that it is always
appropriate to calculate means, medians, and other 
descriptive statistics, no matter what the scale of 
measurement.
Frederic Lord:  Famous football player example.  
�The numbers don't remember where they came 
from.�
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Meaningfulness of Statistical Tests: 
Descriptive Statistics

•I agree:  It is always appropriate to calculate
means, medians, ...
•But:  Is it appropriate to make certain statements 
using these descriptive statistics?
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Meaningfulness of Statistical Tests: 
Descriptive Statistics

•My position:  It is usually appropriate to make a 
statement using descriptive statistics iff the statement is 
meaningful.

•A statement that is true but meaningless gives information 
that is an accident of the scale of measurement used, not 
information that describes the population in some 
fundamental way.

•So, it is appropriate to calculate the mean of ordinal data

•It is just not appropriate to say that the mean of one group 
is higher than the mean of another group.
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Meaningfulness of Statistical 
Tests: Inferential Statistics

•Stevens' ideas have come to be applied to 
inferential statistics -- inferences about an unknown 
population  P.  

•They have led to such principles as the following:

(1).  Classical parametric tests (e.g., t-test, Pearson 
correlation, analysis of variance) are inappropriate 
for ordinal data.  They should be applied only to 
data that define an interval or ratio scale.
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Meaningfulness of Statistical 
Tests: Inferential Statistics

(2).  For ordinal scales, non-parametric tests (e.g., 
Mann-Whitney U, Kruskal-Wallis, Kendall's tau) 
can be used.

Not everyone agrees. Thus:  Controversy
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Meaningfulness of Statistical 
Tests: Inferential Statistics

My View:
•The validity of a statistical test depends on a 
statistical model
�This includes information about the 

distribution of the population and about the 
sampling procedure.  

•The validity of the test does not depend on a 
measurement model
�This is concerned with the admissible 

transformations and scale type.
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Meaningfulness of Statistical 
Tests: Inferential Statistics

•The scale type enters in deciding whether the 
hypothesis is worth testing at all -- is it a 
meaningful hypothesis?

•The issue is:  If we perform admissible 
transformations of scale, is the truth or falsity of the 
hypothesis unchanged?

•Example: Ordinal data. Hypothesis: Mean is 0. 
Conclusion: This is a meaningless hypothesis.
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Meaningfulness of Statistical
Tests: Inferential Statistics

•Can we test meaningless hypotheses? 
•Sure.  But I question what information we get 
outside of information about the population as 
measured.

More details: Testing H0 about  P :
1). Draw a random sample S from  P.
2). Calculate a test statistic based on  S.
3). Calculate probability that the test statistic is 
what was observed given H0 is true.
4). Accept or reject H0 on the basis of the test.
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Meaningfulness of Statistical
Tests: Inferential Statistics

•Calculation of probability depends on a statistical 
model, which includes information about the 
distribution of  P and about the sampling 
procedure.  
•But, validity of the test depends only on the 
statistical model, not on the measurement model.
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Meaningfulness of Statistical 
Tests: Inferential Statistics

• Thus, you can apply parametric tests to ordinal 
data, provided the statistical model is satisfied.
• Model satisfied if the data is normally distributed.  
• Where does the scale type enter? 
• In determining if the hypothesis is worth testing at 
all. i.e., if it is meaningful.  
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Meaningfulness of Statistical 
Tests: Inferential Statistics

• For instance, consider ordinal data and
H0: mean is 0

•The hypothesis is meaningless. 
• But, if the data meets certain distributional 
requirements such as normality, we can apply a 
parametric test, such as the t-test, to check if the 
mean is 0.
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Outline
1. Theory of Uniqueness of Scales of Measurement/Scale   

Types
2. Meaningful Statements
3. Averaging Judgments of Cough Severity
4. Measurement of Air Pollution
5. Evaluation of Alternative HIV Treatments: �Merging 

Normalized Scores�
6. Optimization Problems in Epidemiology
7. Meaningfulness of Statistical Tests
8. How to Average Scores
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•Sometimes arithmetic means are not a good idea. 
• Sometimes geometric means are. 

•Are there situations where the opposite is the case?  Or 
some other method is better?  
•Can we lay down some guidelines about when to use what 
averaging or merging procedure?
•Methods we have described will help.
•Let  a1, a2, …, an be �scores� or ratings, e.g., scores on 
criteria for evaluating treatments.
•Let  u = F(a1,a2, …, an)
•F  is an unknown averaging function – sometimes called a 
merging function, and  u  is the average or merged score.

How Should We Average Scores?
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An Axiomatic Approach
Theorem (Fleming and Wallace).  Suppose  F:(¬+)n Æ ¬+

has the following properties:

(1). Reflexivity:  F(a,a,...,a) = a
(2). Symmetry:  F(a1,a2,…,an) = F(ap(1),ap(2),…,ap(n))
for all permutations p of {1,2,…,n}

(3). Multiplicativity: 
F(a1b1,a2b2,…,anbn) = F(a1,a2,…,an) F(b1,b2,…,bn)

Then  F is the geometric mean.  And conversely.

How Should We Average Scores?
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A Functional Equations Approach Using Scale 
Type or Meaningfulness Assumptions

Unknown function u = F(a1,a2,…,an) 

Luce's idea (�Principle of Theory Construction�):  If you 
know the scale types of the ai and the scale type of  u and 
you assume that an admissible transformation of each of the 
ai leads to an admissible transformation of  u,  you can 
derive the form of  F.  

(We will disregard some of the restrictions on applicability 
of this principle, including those given by Luce.)

How Should We Average Scores?
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A Functional Equations Approach

Example: u = F(a).  Assume a and u are ratio scales.

• Admissible transformations of scale: multiplication by a 
positive constant.
•Multiplying the independent variable by a positive constant 
a leads to multiplying the dependent variable by a positive 
constant A that depends on a.
•This leads to the functional equation:

(&)                    F(aa) = A(a)F(a), A(a) > 0.

How Should we Average Scores?
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•This leads to the functional equation:

(&)                    F(aa) = A(a)F(a), a > 0, A(a) > 0.

By solving this functional equation, Luce proved the 
following theorem:

Theorem (Luce 1959): Suppose the averaging function F is 
continuous and suppose a takes on all positive real values 
and F takes on positive real values. Then 

F(a) = cak

Thus, if both the independent and dependent variables are 
ratio scales, the only possible way to relate them is by a 
power law.

How Should we Average Scores?
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• This result is very general. 

• It can be interpreted as limiting in very strict ways the 
�possible scientific laws”

• Other examples of power laws:
– V = (4/3)pr3 Volume V, radius r are ratio scales
– Newton�s Law of gravitation: F = G(mm*/r2),

where F is force of attraction, G is gravitational 
constant, m,m* are fixed masses of bodies being 
attracted, r is distance between them.

– Ohm�s Law: Under fixed resistance, voltage is 
proportional to current (voltage, current are ratio 
scales)

The Possible Scientific Laws
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A Functional Equations Approach
Example: a1, a2, …, an are independent ratio scales,  u is a 
ratio scale.

F: (¬+)n Æ ¬+

F(a1,a2,…,an) = u Æ F(a1a1,a2a2,…,anan) = au,

a1 > 0,  a2  > 0, an > 0, a > 0, a depends on a1, a2, …, an.

•Thus we get the functional equation:

(*) F(a1a1,a2a2,…,anan) = A(a1,a2,…,an)F(a1,a2,…,an),

A(a1,a2,…,an) > 0

How Should We Average Scores?
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A Functional Equations Approach

(*) F(a1a1,a2a2,…,anan) = A(a1,a2,…,an)F(a1,a2,…,an),

A(a1,a2,…,an) > 0

Theorem (Luce 1964):  If   F: (¬+)n Æ ¬+ is continuous and 
satisfies (*), then there are l > 0, c1, c2, …, cn so that

c1 c2 cnF(a1,a2,…,an) = λa1  a2  …an

λ, c1, c2, …, cn constants

How Should We Average Scores?
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Theorem (Aczél and Roberts 1989):  If in addition  F
satisfies reflexivity and symmetry, then l= 1  and  c1 = c2 = 
… = cn = 1/n ,  so  F is the geometric mean.

How Should We Average Scores?
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Sometimes You Get the Arithmetic Mean

Example:  a1, a2, …, an interval scales with the same unit 
and independent zero points;  u an interval scale.

Functional Equation:

(****)     F(aa1+b1,aa2+b2,…,aan+bn) = 
A(a,b1,b2,…,bn)F(a1,a2,…,an) + B(a,b1,b2,…,bn) 

A(a,b1,b2,…,bn) > 0

How Should We Average Scores?
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Functional Equation:

(****)     F(aa1+b1,aa2+b2,…,aan+bn) = 
A(a,b1,b2,…,bn)F(a1,a2,…,an) + B(a,b1,b2,…,bn) 

A(a,b1,b2,…,bn) > 0

Solutions to (****) (Even Without Continuity Assumed)
(Aczél, Roberts, and Rosenbaum):

n
F(a1,a2,…,an) = Σ lia i+ b

i=1

l1,  l2, …,  ln, b arbitrary constants

How Should We Average Scores?
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Theorem (Aczél and Roberts):

(1).  If in addition  F satisfies reflexivity, then  

Σ li = 1, b = 0

(2).  If in addition  F satisfies reflexivity and symmetry, 
then  li= 1/n for all i, and b = 0,  i.e., F is the arithmetic 
mean.

How Should We Average Scores?
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Meaningfulness Approach

•While it is often reasonable to assume you know the scale 
type of the independent variables  a1, a2, …, an,  it is not so 
often reasonable to assume that you know the scale type of 
the dependent variable  u. 

• However, it turns out that you can replace the assumption 
that the scale type of  u is  xxxxxxx  by the assumption that 
a certain statement involving  u is meaningful.

How Should We Average Scores?
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Back to Earlier Example:  a1, a2, …, an are independent 
ratio scales. Instead of assuming  u is a ratio scale, assume 
that the statement

F(a1,a2, …, an) = kF(b1, b2, …, bn)

is meaningful for all a1, a2, …, an, b1, b2, …, bn and  k > 0.  
Then we get the same results as before:

Theorem (Roberts and Rosenbaum 1986):  Under these 
hypotheses and continuity of F, 

c1 c2 cnF(a1,a2,…,an) = λa1  a2  …an

If in addition  F satisfies reflexivity and symmetry, then  F
is the geometric mean.

How Should We Average Scores?
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There is much more analysis of a similar nature in 
the field of epidemiology that can be done with the 
principles of measurement theory. Similar work 
has been applied to ecology and homeland security.


