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• Module Summary: This module explores the probabilistic spread of the Emerald
Ash Borer (an invasive species) through a series of stylized landscapes.

• Informal Description: This module explains the ideas of percolation and their ap-
plication on several different levels. Students learn through simulation or proof about
percolation and percolation thresholds and how they can be applied to many areas
including invasive species control.

• Target Audience: The module materials include a number of components (handout,
simulation/lab, lecture notes on mathematical proofs) in the interest of customization
(both across levels of math courses and across disciplines). The introduction, de-
scription of percolation and subsequent proofs would be an appropriate lesson for an
advanced undergrad probability class. The introduction, math background, descrip-
tion of percolation, and simulation component would be an appropriate lesson for an
earlier course, or for a general course on quantitative methods in ecology.

• Prerequisites: The module can be taught at two different levels; beginner and ad-
vanced.

– Beginner: High school through early college non-mathematics majors. Basic un-
derstanding of probability is helpful, but not necessary.

– Advanced: Intro to proofs or beyond. Understanding of limits, probability, count-
ing, and proofs is sufficient. Little to no background in graph theory is needed.

• Mathematical Fields: Probability, Simulation, Discrete Math, Proof writing,
Graph Theory.

• Application Areas: Invasive species threaten local ecology as well as renewable
economic resources systems (in this case, the timber industry). Local species may
be overconsumed or out-competed for food sources: extinctions result in gaps that
destabilize greater ecological processes.



DIMACS Percolation Module

• Goals and Objectives: Ideas accessed:
probabilistic independence
Simulation as a tool to reach an initial hypothesis
idea of threshhold boundary between two regimes
variation due to connectivity
interplay of connectivity and probability
compelling pointers to unsolved problems

• Technology/Software Needs: If available, Excel or internet access allows for demon-
strations, otherwise

Time: This self contained module is designed to be completed within 50-90 minutes.

Suggested content based on level:

High school, beginning undergraduate, non-math major:

1
Section

2.1−2.2 3.1−3.2 5.1, 7.1 6.1

3.3

Section Section

Section

Section Section

Advanced Undergraduate Mathematics - Proof Based

6.2
Section Section Section Section Section
2.1−2.3 4.1−4.2 5.1−5.2 7.1
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1 Math Background

This module uses the basic probability rules given below. You can skip this section if you
already know basic probability.

• Independence: if event A has probability pA and event B has probability pB and events
A and B are independent (that is, whether A happens does not change the probability
B happens), then the probability of A and B is pApB.

• For two independent events A and B, the probability that either A happens or B
happens (or both happen) is pA + pB − pApB.
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2 Introduction: Invasive Species and Percolation

2.1 Invasive Species

The term invasive species is used to describe animal or plant species that have colonized
regions outside where they are naturally found. The introduction of non-native species can
cause imbalance in the environment: if the new species finds a good food source and has no
natural predators, its numbers can explode. There are many examples where this explosion
of population causes major problems including driving local species to extinction either
through over-consumption or through direct competition for resources.

This unit focuses on the Emerald Ash Borer.

(Image from Tennessee Government page
http://www.tn.gov/agriculture/regulatory/eab.shtml)

• A beetle introduced to North America in the 1990s, has spread to 15 states so far. The
ash borer probably hitch-hiked to Michigan on wood products imported from Asia.
• Spread of the Ash Borer: The ash borer is able to fly short distances from infected

trees to new ash trees. The ash borer infects all species of ash trees in North America,
killing trees approximately three years after initial infection.
• So far this invasive species is estimated to have killed 50-100 million ash trees. It is

considered one of the most destructive non-native insects in the United States.
• The timber industry produces approximately 25 billion dollars of ash saw timber per

year, and ash trees are planted extensively in urban neighborhoods throughout the
Southeast. The ash borer threatens an estimated 7.5 billion ash trees in North America.

Problem: We will use ideas from probability to explore how the Emerald Ash Borer will
spread through a (stylized) landscape.

Modeling: Foresters have determined that the probability that a tree infected with ash
borers will spread the infection to nearby trees depends on the distance between the two
trees. For now, assume that an infected tree will have one chance to infect the trees near it
before it dies, and that the ash borers remaining at a dead tree will die from lack of food.
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A mathematical model for the spread of an invasive species like the emerald ash borer is
percolation. The word percolate comes from the Latin word percolare, meaning to be filtered
through. Older adults and outdoor enthusiasts may be familiar with the word percolate
because they have made coffee using this process. Others may have used the word percolate
to describe the way an idea gradually spreads through a social network. Scientists use the
word percolate to describe the movement of a fluid through a porous medium, such as water
through soil, shale, or sandstone.

Percolation theory can be used to study the movement of anything that spreads from one
discrete location to another, ignoring all the space in between. For example, the emerald ash
borer moves from one tree to another. Many other applications are active areas of research
in applied mathematics and engineering. Your teacher can give you some examples, or you
can research them for yourself.

Stop and Think: I live on one end of a street with 3 ash trees on it (the last tree is in
my yard). The trees are spaced 20 feet apart. Suppose that the probability of ash borers
infecting a tree within 25 feet of an infected tree is 60% but that if the distance is more than
25 feet then the probability of transmission is 0.

I notice that the tree at the other end of the street is infected. The following figure illustrates
this situation, where the X indicates the infected tree.

How could my tree become infected? What is the probability of this event?

Suppose now that the next street also has 3 ash trees, as shown in the following figure. As-
suming the same separation distances and probability of transmission, what are the different
ways in which my tree could become infected? Is my tree more likely or less likely to be
infected than in the previous setup? How might you go about finding the probability of this
event?
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2.2 Percolation

The previous examples are known as bond percolation because it is the bonds between the
vertices which transmit the disease from one vertex to another. We say a graph percolates if
there is a connected path from a vertex in the top row to a vertex in the bottom row (this
is top-down percolation). This can represent a diseases spreading through a neighborhood
of trees.

From the example in the previous section, you have discovered how tedious it can be to find
the probability that a particular tree could be infected. It can be very difficult to keep track
of the many possible paths for the borers to follow from the infected tree. Imagine how
difficult this calculation would be if you were working with the trees in the neighborhood
shown below!

Stop and Discuss: What do we see happening in this graph?
Is it what you would expect?
What do you think happens when the number of lattice points gets larger?

See section 3 for teacher notes on the simulations.
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2.3 Percolation Threshold

Consider a n× n lattice. For each value of 0 ≤ p ≤ 1 and any positive integer n, we have a
probability of percolation on an n×n lattice with a transmission probability of p. Technically
speaking we an define

fn(p) = P(n× n lattice percolates given the transmission probability is p).

Stop and Think: What do you think the value of fn(p) would be if p is close to 0? Close
to 1? What happens if n gets large?

The percolation threshold is a value 0 ≤ pc ≤ 1 (if one exists) such that

lim
n→∞

fn(p) =

{
0 if p < pc

1 if p > pc.

In non-technical terms, the percolation threshold is the critical point of a very large (infi-
nite) graph; if the transmission probability is below the threshold, then the graph will not
percolate, if it is above the threshold, then the graph will percolate.

Often times there is no particular critical value, but there is a percolation function limn→∞ fn(p) =
f(p).

Stop and Think: How would we find the percolation threshold for a lattice (or other
variations!)?

See section ?? for more history and information about bond percolation and thresholds.
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3 Simulation In-class Activity

3.1 Simulation Background and Notes

In an activity with your class, you will learn an alternative way to study the transmission of
an invasive species through a grid graph like the one above. You will use a spinner or other
random outcome to decide whether or not each line segment will allow borers to spread,
and then look for paths in the graph. This method is called a simulation, because you are
”acting out” the random process of spreading from tree to tree. A simulation requires many
repetitions of the process to produce a reliable estimate of the answer.

Complete section 3.2 as a handout for all the students. Then graph the results of the
simulation as a function of the transmission probability p. (Note: The probability of the
graph percolating is small for p < .5 and large for p > .5. So you will most likely see a shift
in the simulation near p = .5.)

Bond percolation is easily simulated by randomly assigning each bond, or edge, in a square
lattice or other graph to be open with probability p. By simulating percolation in a finite
graph, students can quickly collect data that allows them to conjecture the value of the
asymptotic phase transition probability. Handouts are provided for both bond and, as an
extension, site percolation.

Collectively, the class should explore a range of probabilities between 0 and 1, being sure
to include the value 0.5. A rule of thumb is that each probability should be simulated at
least 5 times. You might rule out very small probabilities and very large probabilities after
discussing threshold behavior with the class.

In a small class, you may wish to have every student simulate percolation for each probability
value. In larger classes, you can accomplish the task more quickly by dividing into groups,
and having each group do the simulation with a different probability. Electronic methods
of simulation enable the class to explore larger lattices, a wider range of probabilities, and
perform more replications of each. Alternatively, you could hand out strips of paper with
pre-computed simulations, done with either of the methods described below, or project these
strips of pre- computed simulations on the board for the whole class to evaluate together.

Choose one of the following methods to perform the simulation. For each probability value,
track the proportion of simulations for which percolation occurs (there is an open path from
any node at the top of the lattice to any node at the bottom). Put the results in a table like
the following (with idealized results) on the board:
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P(open) Percolation Proportion
0.1 0
0.2 0
0.3 0
0.4 0.1
0.5 0.6
0.6 0.9
0.7 1.0
0.8 1.0
0.9 1.0

The module asks students to graph the results, which should look something like the graph
below:

1.5

percolation probability

p

1

Simulation Method 1: Pencil and Paper (Handout) Students use a physical (game-
board style) spinner with a fraction of the circle colored black corresponding to their assigned
probability. (Note, however, the significant time investment required to build and flick
physical spinners. A less time-consuming option that still lets students actively participate
in the simulation is to use a random number generator. Use the rand() command in Excel,
or use an online random number generator. For example, at http://www.random.org/

decimal-fractions/, where they can generate all their random numbers ) to determine
whether each bond is open or closed, and fill in with a solid line each open bond. Closed
bonds are left as is. Once each bond is determined to be open or not, the students must
determine by eye whether or not there is percolation.

Simulation Method 2: Excel Workbook Open the Excel file BondPerc.xlsx. Each
time the probability of a bond being open is changed, the entire lattice is redrawn with the
simulated open and closed bonds. Students must determine by eye whether or not there is
an open path, consisting of adjacent colored edges, from any node at the top of the lattice
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to any node at the bottom of the lattice.
With a smaller class, you might want to use BondPercExplore.xlsx, which lets each student
with a computer generate 3 results for each of 4 different probabilities. Note that these
probabilities can be modified, as in BondPerc.xlsx.

Discussing the graph: First, look at the extremes:

If p is very close to 0: hardly any edges, not likely to percolate.

If p is close to 1: lots of edges, very likely to percolate.

What is happening between these two extremes?

• When p is less than 1
2
, the graph does not percolate

• When p is greater than 1
2

the graph does percolate.

This simulation is illustrating the concept of percolation threshhold, a common flavor of
results in the theory of random graphs.

If a particular probability is above pc then one property is exhibited, if the probability is
below pc, some other property is exhibited. We say pc is the threshhold value of the property.
In our case, the property is “percolation happens.”

Q: What happens when the number of lattice points gets larger?
A: graph becomes increasingly sharp.

See section ?? - ?? for more information and background.
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3.2 Bond Percolation Simulation Example

Use the spinner for each of the 40 edges on the graph. If you spin and land on black,
color the edge. You must go in order (top to bottom, left to right). This represents an open
edge. An example is done for you.

Example:

Can you find a path from the top to the bottom through the colored (open) edges? If you
can, then your graph percolated.

Did your random graph percolate? (Can you find a path from the top to the bottom through
the colored (open) edges?)

What do you think is the bond percolation threshold?
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3.3 Site Percolation Simulation Example

Use the spinner for each of the 36 blocks on the graph. If you spin and land on black,
fill in the block. You must go in order (top to bottom, left to right). An example is done for
you.

Can you find a path from the top to the bottom through the black boxes (open sites)? You
may not go diagonal. If you can, then your graph percolated.

What do you think is the site percolation threshold?
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4 Proofs

4.1 Discussion and Background

Question: How do we find the percolation threshold?

Finding the percolation threshold on a square lattice is quite difficult. However we can
understand the percolation threshold for an infinite complete binary tree which has some
similarities to the square lattice structure.

See background in section ??.

In order for students to understand the proof, they will need a little background in:

• Probability: independent events, addition law, basic counting techniques

• Calculus: limits

• Proof techniques: induction (optional for homework assignment)

• Graph theory: See below definitions

We will now consider a complete binary tree. First we need a few definitions.

• Tree: A tree is an graph in which any two vertices are connected by a unique simple
path.

• Rooted Tree: A rooted tree is a tree with a designated root vertex. All vertices have
‘parent’ vertices except the root vertex.

• Full Binary Tree: A full binary tree is a tree in which each node has exactly two
children, except for leaf nodes which have no children.

• Complete Binary Tree: A complete binary tree (or a perfect binary tree) is a full
binary tree such that at level n, there are 2n vertices, where n = 0 is the root vertex.

• Infinite Complete Binary Tree: A complete binary tree with countable infinite
number of levels.
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4.2 Proof for infinite complete binary tree

Theorem 1. Let Tn be a complete binary tree with n levels (not including the root vertex).
Let fn(p) denote the probability there is a path from the root vertex, 0, to level n if the
probability of an edge is p. Then

lim
n→∞

fn(p) = f(p) =

{
0 if p ≤ 1

2
2p−1
p2

if p > 1
2

Proof. Consider the following definition:

Let 0 be the root vertex of our complete binary tree. Let 11 and 12 be the first sub-row of
the tree etc..

Let fn(p) denote the probability there is a path from the root vertex of Tn to level n if the
probability of an edge is p.

p p

pppppppp

p p

pp

etc.

We are interested in finding lim
n→∞

fn(p) = f(p).

Big picture of the proof:

Step 1: Show fn+1(p) = 2pfn(p) − (pfn(p))2. Thus f(p) = 2pf(p) − (pf(p))2. Thus f(p) = 0
or f(p) = 2p−1

p2
.

Step 2: Show if p ≤ 1
2
, then f(p) = 0.

Step 3: Show if p ≥ 1
2
, then f(p) = 2p−1

p2
.

Step 1: Let A1 be the event there is a path from 0 to level n+ 1 which goes through vertex
11. Let A2 be the event there is a path from 0 to level n + 1 which goes through vertex 12.
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Notice that
fn+1(p) = P(A1 ∪ A2)

By using the addition law for events we see that

P(A1 ∪ A2) = P(A1) + P(A2)− P(A1 ∩ A2).

Now we will compute each of the probabilities on the right hand side.

If the event A1 is going to occur, we have to have the edge from 0 to 11 and a path from 11 to
level n+1. The probability there is a path from 11 to level n+1 is P(A1) = pfn(p). Similarly,
if the event A2 is going to occur, we have to have the edge from 0 to 12 and a path from 12

to level n + 1. The probability there is a path from 12 to level n + 1 is P(A2) = pfn(p).

Also notice that the events A1 and the events A2 are independent because they involve
disjoint pieces of the binary tree. Thus

P(A1 ∪ A2) = P(A1)P(A2) = (pfn(p))2 .

Combining the above statements, we see:

fn+1(p) = P(A1 ∪ A2)

= P(A1) + P(A2)− P(A1 ∩ A2)

= pfn(p) + pfn(p)− (pfn(p))2

= pfn(p) (2− pfn(p))

Taking limits as n approaches infinity on both sides gives the quadratic equation:

f(p) = 2pf(p)− (pf(p))2 , (1)

which is a quadratic in f(p) and thus has two solutions: f(p) = 0 or f(p) = 2p−1
p2

.

This completes step 1.

Step 2:

If p ≤ 1
2

we see that 2p−1
p2
≤ 0, therefore the only plausible solution to (1) is f(p) = 0.

(Note: This step can also be easily proved by overestimating the number of paths from 0 to
level n and assuming the paths are independent. There are 2n paths from 0 to level n, and
the probability of one of these paths being open is pn. Therefore

fn(p) ≤ 2npn,
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which, if p < 1
2
, goes to zero as n goes to infinity. This alternate approach can be applied to

a homework problem. )

Step 3:

We will need to make two simple observation: (The first observation can be easily proved
by induction - Homework!)

• In order to percolate to the (n+ 1)st level, you need to percolate to the nth level. Thus
fn+1(p) ≤ fn(p).

• Since there is at least one path from the root to level n, we see fn(p) ≥ pn > 0.

Therefore, we know from our recursion fn+1(p) = pfn(p) (2− pfn(p)) that

p (2− pfn(p)) ≤ 1.

Solving this inequality for fn(p), we see

2p− 1

p2
≤ fn(p).

Taking limits as n goes to infinity on both sides shows

2p− 1

p2
≤ f(p).

Notice if p > 1
2
, then

0 <
2p− 1

p2
≤ f(p).

Therefore since f(p) = 0 or f(p) = 2p−1
p2

by (1), we know f(p) = 2p−1
p2

for all p > 1
2
.
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5 Other Applications and Resources

Other Applications: You may use the following as discussion, handouts, or an assignment.
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5.1 Other Applications

• Spread of disease in trees:
Consider a farmer who would like to plant the trees in an orchard in order to minimize
the spread of disease between trees, yet maximize the yield from the orchard. The
increased distance between trees represents a smaller probability of the spread of a
disease. What is the optimal distance and lattice structure desired?

• Forest Fires:
Often forest rangers would like to be able to predict how far and how quickly a fire
would be able to spread. Giving a time component to a simple percolation model
allows forest rangers to make these predictions based on wind speed and density of the
forest.

• Oil Field:
Often gas or oil is found insides porous rocks. The pores in rock form a network in
which the oil or gas flows. Percolation models are used to predict how much oil or gas
can be found in rocks of different porosity.

• Electrical network grid:
Electricity is passed from one component to another through connections (edges) which
could represent power lines. For example, there is a nice structure for the power grid
in a neighborhood of houses, or they may represent larger power lines connecting
neighborhoods in a particular city. In order for power to pass from one city to the
next, the power must percolate through the connections. What configuration should
we use for the network in order to make it reliable yet cost effective?

• Communication network and social media:
Recently information has been able to spread through the use of social media and
communication networks. Often the spread of text messages, tweets, etc can be ana-
lyzed through the use of a percolation network on graphs which model social network
structures. The model percolates as information is passed from one person to another.

• Epidemiology:
The transmission of disease through a particular species is of great importance. If a
particular individual or group becomes infected, how long will the disease propagate?
Transmitability and virulent are two key factors in this model. The big question: Will
there be an epidemic?

• Child immunization:
Children that get immunizations for particular diseases act as a buffer for the spread
of disease. If the percentage of children who receive a particular vaccine drops below a
particular point, then the probability of an outbreak in children who are not immune
increases dramatically.
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• Gelatinous substance:
As a substance forms, bonds are made between neighboring chemicals. This formation
allows the liquid to become a gelatinous substance. For example: the process of boil-
ing an egg. These small clusters eventually bond together to form larger and larger
molecules.

• Structural integrity of material:
Most materials have imperfections in them. These imperfections or impurities often
make a substance weaker. Under a large amount of stress a crack often forms between
these impurities. To percolate, the substance would have a crack from one end to the
other, thus breaking the substance. How ‘pure’ must we make our material in order to
have a particular strength?

• Groundwater flow:
As water flows through the soil, it percolates through the soil layers by moving through
cracks and capillaries. This flow of water can be studies by a percolation model for
different types of soils.

• Rumors:
Given a social network structure, if a rumor is started with an individual how far is will
it percolate? The social network structure would be highly dependent on the number
of friends each person has and the strength of the friendship.

• Others: Lightning, Brine Ice Formation, underground lava flow.
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5.2 Other Resources

References:

For more information on percolation we suggest the following texts. This list is not meant
to be an extensive list, but serve as a beginners reference list.

1. ‘Introduction to Percolation Theory’ - Dietrich Stauffer and Ammon Aharony

2. ‘Percolation’ - Bela Bollobas and Oliver Riordan

3. ‘Percolation’ - Geoffrey Grimmett

4. ‘Applications of Percolation Theory’ - M Sahimi

In addition, you can find several apps online which demonstrate different percolation models.
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6 Homework

Homework 1 is designed for high school, non-mathematics majors, or beginner level college
courses.

Homework 2 is designed for a proof based course with a little in probability.
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6.1 Homework 1

1. Suppose that a new invasive species, the Ruby Oak Chomper, is mistakenly introduced
in Texas. The Ruby Oak Chomper spreads by attaching itself to car hubcaps. Sup-
pose that every state in the USA introduces border checks to inspect the hubcaps of
all vehicles crossing the border and this procedure succeeds in stopping transmission
from an infected state to a neighboring uninfected state with probability 70%. Will
Washington’s Oaks become infected by the Ruby Oak Chomper?

Use the following map of the USA to model this situation as a percolation problem in
a graph.

• What is the right graph (what are the nodes, edges)?

• What are the transmission probabilities?

• How many states are in the shortest path the Ruby Oak Chomper can take from
Texas to Washington?

• What is the probability that the Ruby Oak Chomper infestation will travel this
path?
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2. In this problem you’ll compare the percolation threshholds for two special types of
graphs.

The first kind of graph is a binary tree (the word binary means 2). Starting from a
single node at the top, each node has two child nodes in the level below it, each of
these child nodes also has two child nodes of its own in the level below it, etc:

p p

pppppppp

p p

pp

etc.

The second kind of graph is a ternary tree (the word ternary means 3). Starting from
a single node at the top, each node has three child nodes in the level below it, each of
these child nodes also has three child nodes of its own in the level below it, etc:

p pp

ppppppppp

etc.

Suppose that you have a binary tree and a ternary tree which each have the same
number of levels. Each tree becomes infected at its single top node, and the probability
of transmission along each edge is a value p. We’ll say that a tree percolates when a
node in its lowest level gets infected.

• Think about slowly increasing p from 0 to 1: in which tree will the infection
percolate first? Why?

• Which tree has the lower percolation threshhold?
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6.2 Homework 2

1. Consider the percolation function defined by fn+1(p) = 2pfn(p)− (pfn(p))2 . If f0(p) =
1, prove

fn+1(p) ≤ fn(p).

2. If we did not require the binary tree to be complete, how might this change the value
of the percolation threshold? Support your answer.

3. Assume we consider a infinite complete ternary tree (each vertex has degree 4 except
the root vertex. Prove that if p < 1

3
, then the probability of the graph percolating is

zero. (i.e. f(p) = 0 for p < 1/3).

4. Find a generalization of the previous problem for any infinite complete m-ary tree.

5. Based on the previous problem, why does finding the exact value of f(p) for a complete
m-ary tree for all values of p become increasingly difficult as m increases?
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7 Teacher’s Notes

7.1 Generalizations and Brief History

Bond Percolation:

The mathematical concepts of percolation were first introduced by Broadbent and Hammer-
sley (1957: “Percolation processes I. Crystals and mazes.”) Given a n × n lattice, what is
the probability a path forms from the top of the lattice to the bottom of the lattice if each
edge is present with probability p independent of the other edges? As is often the case, it
is easier to compute the probability of percolation (forming an infinite cluster) assuming an
infinite lattice structure, i.e. n tends to infinity. Based on this model, for any given value of
p, Kolmogorov’s zero-one law tells us that the lattice either percolates with probability 1 or
0. Therefore there is some critical value pc so that if p < pc, then the model will percolate
with probability 0, and if p > pc, then the model will percolate with probability 1. In a very
celebrated result, Harry Kesten (1982 - Percolation theory for mathematicians) proved that
the critical value for the square lattice Z2 was pc = 1/2.

Site Percolation:

A similar questions can be asked for site percolation; each site is open with probability p
and closed with probability 1− p. Is there a path from the top of the lattice to the bottom
through open sites? For the square lattice Z2, bounds have been able to show that pc ≈ .59,
although an exact answer is still unknown! (This is a great way to show students that math-
ematics is alive and people are still working on very interesting and useful problems.)

Other Lattice Structures:

Other generalizations include different lattice structures. Many of these lattice structures
have exact results while others do not. In most simple cases, if the number of neighbors
increases, this implies there are a larger number of possible percolation paths, and there-
fore the value of pc tends to decrease. However this may not be the case on lattice struc-
tures which have some vertices have very few neighbors. The wikipedia page on percolation
threshold has a very comprehensive list of 2D lattice structures and bond and site percola-
tion thresholds and bounds. (http://en.wikipedia.org/wiki/Percolation_threshold#
Thresholds_on_other_2d_lattices)

Higher Dimensional Variants:

Percolation models have also been studied in higher dimensional variants. For example,
consider the 3D square lattice where each vertex on the interior has 6 neighbors. Although
exact values and bounds are more difficult to prove, there have been some results for simple
structures. In almost all cases, the higher dimensional percolation thresholds pc decrease sig-
nificantly because of the increased number of possible paths because of the lattice structure.



DIMACS Percolation Module

7.2 Homework 1 solutions

1. The Ruby Oak Chomper:

The graph has a node for each state and an edge between each two state nodes which
are adjacent. (Drawing the graph on top of the map is fine).

Each edge has transmission probability 0.7 (or 70%).

The shortest path I can find has four states (in addition to Texas and Washington).
For example, a four state path would be: Texas to Arizona, Arizona to New Mexico,
New Mexico to California, California to Oregon, Oregon to Washington. (Students
may just draw a path on the map).

Each edge in the path transmits with probability 0.7, so the probability that the path
transmits is (0.7)5.

2. Binary vs. Ternary:
As p increases, the ternary tree will percolate first because it has more potential paths
to transmit along than the binary tree does.

Thus, the ternary tree has a lower percolation threshold.
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7.3 Homework 2 Solutions

1. Consider the percolation function defined by fn+1(p) = 2pfn(p)− (pfn(p))2 for 0 < p <
1. If f0(p) = 1, prove

fn+1(p) ≤ fn(p).

Solution: Base Case: Since f0(p) = 1, then we can see that f1(p) = 2p − p2. Notice
that 0 ≤ (1− p)2. If we expand (1− p)2 we see f1(p) = 2p− p2 ≤ 1 = f0(p).

Induction. Assume fn+1(p) ≤ fn(p). Show fn+2(p) ≤ fn+1(p).

Simple algebra shows fk+1(p) = 1 − (1− pfk(p))2. Since fn+1(p) ≤ fn(p), we can
multiply both sides by −p and add 1 to get

1− pfn+1(p) ≥ 1− pfn(p).

Since both of these quantities are negative, we can square both sides and preserve the
inequality:

(1− pfn+1(p))2 ≥ (1− pfn(p))2 .

Multiplying by (-1) and adding one gives

1− (1− pfn+1(p))2 ≤ 1− (1− pfn(p))2 .

However the left hand side is exactly fn+2(p) and the right hand side is fn+1(p), thus
completing the proof.

2. If we did not require the binary tree to be complete, how might this change the value
of the percolation threshold? Support your answer.

Solution: If you decrease the number degree of a particular vertex, you are decreasing
the total number of possible paths from the root vertex to the bottom. Therefore it
would be harder to percolate. Thus more edges would have to be open to have a path
from the top down. Thus we would expect pc to increase since there are fewer possible
percolation paths.

3. Assume we consider a infinite complete ternary tree (each vertex has degree 4 except
the root vertex. Prove that if p < 1

3
, then the probability of the graph percolating is

zero. (i.e. f(p) = 0 for p < 1/3).

Solution: Let fn(p) denotes the probability of reaching the nth level in a complete
ternary tree where each edges is independently open with probability p. In a complete
ternary tree, there are 3n possible paths from the root vertex to the nth level. For any
one particular path, the probability that path is open is pn. Therefore

fn(p) ≤ 3npn.

So taking limits on both sides as n goes to infinity shows if p < 1
3
, then f(p) = 0.
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4. Find a generalization of the previous problem for any infinite complete m-ary tree.

Solution: Similarly you can show fn(p) ≤ mnpn. So if p ≤ 1
m

, we can see f(p) = 0.

5. Based on the previous problem, why does finding the exact value of f(p) for a complete
m-ary tree for all values of p become increasingly difficult as m increases?

Solution: The recursive structure makes it increasingly difficult to solve. You will
have to imply the inclusions exclusion principle inorder to effectively solve for larger
values of p.


