Machine Learning & Mechanism Design: Dynamic and Discriminatory Pricing in Auctions

Jason D. Hartline Microsoft Research – Silicon Valley

(Joint with with Maria-Florina Balcan,

Avrim Blum, and Yishay Mansour)

August 5, 2005

Sellers can extract more of surplus with discriminatory pricing.

Sellers can extract more of surplus with discriminatory pricing.

Two approaches:

- Distinguish between products. (E.g., software versioning, airline tickets, etc.)
- Price discriminate with observable customer features.
 (E.g., college tuition, DVDs, car insurance, shipping)

Sellers can extract more of surplus with discriminatory pricing.

Two approaches:

- Distinguish between products.
 (E.g., software versioning, airline tickets, etc.)
- Price discriminate with observable customer features.
 (E.g., college tuition, DVDs, car insurance, shipping)

Goal: design mechanism to optimally price discriminate.

Typical Economic approach to optimal mechanism design:

- Assume valuations are from known distribution.
- Design optimal auction for distribution.

Typical Economic approach to optimal mechanism design:

- Assume valuations are from known distribution.
- Design optimal auction for distribution.

Notes on optimal mechanism design problem:

- Solved by Myerson (for single-parameter case).
- non-identical distributions \implies discriminatory pricing.

Typical Economic approach to optimal mechanism design:

- Assume valuations are from known distribution.
- Design optimal auction for distribution.

Notes on optimal mechanism design problem:

- Solved by Myerson (for single-parameter case).
- non-identical distributions \implies discriminatory pricing.
- Assumed known distribution ignores:
 - incentives (of acquiring distribution)
 - performance (from inaccurate distribution)

Typical Economic approach to optimal mechanism design:

- Assume valuations are from known distribution.
- Design optimal auction for distribution.

Notes on optimal mechanism design problem:

- Solved by Myerson (for single-parameter case).
- non-identical distributions \implies discriminatory pricing.
- Assumed known distribution ignores:
 - incentives (of acquiring distribution)
 - performance (from inaccurate distribution)

Goal: understand how quality and incentives of learning distribution affect profit.

1. Unlimited supply of stuff to sell.

2. bidders with private *valuations* for stuff.

3. make each bidder an offer.

4. revenue is *incentive compatible* function of offer and valuation.

- Unlimited supply of stuff to sell. (Example 1: MS Office Professional (PV) & Student Version (SV))
- 2. bidders with private *valuations* for stuff.

3. make each bidder an offer.

4. revenue is *incentive compatible* function of offer and valuation.

Setting

- Unlimited supply of stuff to sell. (Example 1: MS Office Professional (PV) & Student Version (SV))
- bidders with private *valuations* for stuff.
 (Example 1: Bidder: "PV worth \$400, SV worth \$300")
- 3. make each bidder an offer.

4. revenue is *incentive compatible* function of offer and valuation.

- Unlimited supply of stuff to sell. (Example 1: MS Office Professional (PV) & Student Version (SV))
- bidders with private valuations for stuff.
 (Example 1: Bidder: "PV worth \$400, SV worth \$300")
- make each bidder an offer.
 (Example 1: Seller: "PV costs \$369.88, SV costs \$124.99")
- 4. revenue is *incentive compatible* function of offer and valuation.

- Unlimited supply of stuff to sell. (Example 1: MS Office Professional (PV) & Student Version (SV))
- bidders with private valuations for stuff.
 (Example 1: Bidder: "PV worth \$400, SV worth \$300")
- make each bidder an offer.
 (Example 1: Seller: "PV costs \$369.88, SV costs \$124.99")
- revenue is *incentive compatible* function of offer and valuation. (Example 1: Sold: SV for \$124.99!)

- Unlimited supply of stuff to sell. (Example 1: MS Office Professional (PV) & Student Version (SV)) (Example 2: Tuition for in state (IS) and out of state (OS) students)
- bidders with private valuations for stuff.
 (Example 1: Bidder: "PV worth \$400, SV worth \$300")
- make each bidder an offer.
 (Example 1: Seller: "PV costs \$369.88, SV costs \$124.99")
- revenue is *incentive compatible* function of offer and valuation. (Example 1: Sold: SV for \$124.99!)

- Unlimited supply of stuff to sell.
 (Example 1: MS Office Professional (PV) & Student Version (SV))
 (Example 2: Tuition for in state (IS) and out of state (OS) students)
- 2. bidders with private *valuations* for stuff.
 (Example 1: Bidder: "PV worth \$400, SV worth \$300")
 (Example 2: Bidder (OS): "Tuition worth \$15,000")
- 3. make each bidder an *offer*.(Example 1: Seller: "PV costs \$369.88, SV costs \$124.99")
- 4. revenue is *incentive compatible* function of offer and valuation.
 (Example 1: Sold: SV for \$124.99!)

- Unlimited supply of stuff to sell. (Example 1: MS Office Professional (PV) & Student Version (SV)) (Example 2: Tuition for in state (IS) and out of state (OS) students)
- 2. bidders with private *valuations* for stuff.
 (Example 1: Bidder: "PV worth \$400, SV worth \$300")
 (Example 2: Bidder (OS): "Tuition worth \$15,000")
- 3. make each bidder an offer.

(Example 1: Seller: "PV costs \$369.88, SV costs \$124.99") (Example 2: Seller: "IS costs \$9,256.80, OS costs \$16,855.30,")

 revenue is *incentive compatible* function of offer and valuation. (Example 1: Sold: SV for \$124.99!)

- Unlimited supply of stuff to sell.
 (Example 1: MS Office Professional (PV) & Student Version (SV))
 (Example 2: Tuition for in state (IS) and out of state (OS) students)
- 2. bidders with private *valuations* for stuff.
 (Example 1: Bidder: "PV worth \$400, SV worth \$300")
 (Example 2: Bidder (OS): "Tuition worth \$15,000")
- 3. make each bidder an offer.

(Example 1: Seller: "PV costs \$369.88, SV costs \$124.99") (Example 2: Seller: "IS costs \$9,256.80, OS costs \$16,855.30,")

4. revenue is *incentive compatible* function of offer and valuation. (Example 1: Sold: SV for \$124.99!)
(Example 2: No Sale!)

- \implies 1. Auction Problem
 - (a) Random Sampling Solution
 - (b) Retrospective bounds.
 - (c) Software Versioning Example.
 - 2. Online Auction Problem
 - (a) Expert Learning based Auction.
 - (b) Expert Learning with non-uniform bounds.
 - 3. Conclusions

Auction Problem _____

The Unlimited Supply Auction Problem:

Given:

- unlimited supply of stuff.
- Set S of n bidders with valuations for stuff.
- $\bullet\,$ class ${\cal G}$ of reasonable offers.

Design: Auction with profit near that of optimal single offer.

Auction Problem _____

The Unlimited Supply Auction Problem:

Given:

- unlimited supply of stuff.
- Set S of n bidders with valuations for stuff.
- $\bullet\,$ class ${\cal G}$ of reasonable offers.

Design: Auction with profit near that of optimal single offer.

Notation:

•
$$g(i) = payoff$$
 from bidder i when offered g .

• $g(S) = \sum_{i \in S} g(i)$.

•
$$\operatorname{opt}_{\mathcal{G}}(S) = \operatorname{argmax}_{g \in \mathcal{G}} g(S).$$

•
$$\operatorname{OPT}_{\mathcal{G}}(S) = \max_{g \in \mathcal{G}} g(S).$$

Random Sampling Auction

Random Sampling Optimal Offer Auction, $RSOO_{\mathcal{G}}$

- 1. Randomly partition bidders into two sets: S_1 and S_2 .
- 2. compute g_1 (resp. g_2), optimal offer for S_1 (resp. S_2)
- 3. Offer g_1 to S_2 and g_2 to S_1 .

Random Sampling Auction

Random Sampling Optimal Offer Auction, $RSOO_{\mathcal{G}}$

- 1. Randomly partition bidders into two sets: S_1 and S_2 .
- 2. compute g_1 (resp. g_2), optimal offer for S_1 (resp. S_2)
- 3. Offer g_1 to S_2 and g_2 to S_1 .

Random Sampling Auction ____

Random Sampling Optimal Offer Auction, $RSOO_{\mathcal{G}}$

- 1. Randomly partition bidders into two sets: S_1 and S_2 .
- 2. compute g_1 (resp. g_2), optimal offer for S_1 (resp. S_2)
- 3. Offer g_1 to S_2 and g_2 to S_1 .

Random Sampling Auction ____

Random Sampling Optimal Offer Auction, $RSOO_{\mathcal{G}}$

- 1. Randomly partition bidders into two sets: S_1 and S_2 .
- 2. compute g_1 (resp. g_2), optimal offer for S_1 (resp. S_2)
- 3. Offer g_1 to S_2 and g_2 to S_1 .

Random Sampling Auction ____

Random Sampling Optimal Offer Auction, $RSOO_{\mathcal{G}}$

- 1. Randomly partition bidders into two sets: S_1 and S_2 .
- 2. compute g_1 (resp. g_2), optimal offer for S_1 (resp. S_2)
- 3. Offer g_1 to S_2 and g_2 to S_1 .

Question: when is $RSOO_{\mathcal{G}}$ good?

Performance Analysis

Lemma: For g and random partitions S_1 and S_2 :

 $\Pr[|g(S_1) - g(S_2)| > \epsilon \max(p, g(S))] \le 2e^{-\epsilon^2 p/2h}.$

Performance Analysis _____

Lemma: For g and random partitions S_1 and S_2 : $\Pr[|g(S_1) - g(S_2)| > \epsilon \max(p, g(S))] \le 2e^{-\epsilon^2 p/2h}.$

Consider:

- Use $p = OPT_{\mathcal{G}}$.
- If $|\mathcal{G}| e^{-\epsilon^2 \operatorname{OPT}_{\mathcal{G}}/2h} \leq \delta$,
- union bound probability any $g \in \mathcal{G}$ is bad by δ .

Performance Analysis _

Lemma: For g and random partitions S_1 and S_2 :

 $\Pr[|g(S_1) - g(S_2)| > \epsilon \max(p, g(S))] \le 2e^{-\epsilon^2 p/2h}.$

Consider:

• Use $p = OPT_{\mathcal{G}}$.

• If
$$|\mathcal{G}| e^{-\epsilon^2 \operatorname{OPT}_{\mathcal{G}}/2h} \leq \delta$$
,

• union bound probability any $g \in \mathcal{G}$ is bad by δ .

Theorem: With probability $1 - \delta$ profit from RSOO_G is at least

$$(1-\epsilon) \operatorname{OPT}_{\mathcal{G}} - O(\frac{h}{\epsilon^2} \log \frac{|\mathcal{G}|}{\delta})$$

Performance Analysis _

Lemma: For g and random partitions S_1 and S_2 :

 $\Pr[|g(S_1) - g(S_2)| > \epsilon \max(p, g(S))] \le 2e^{-\epsilon^2 p/2h}.$

Consider:

• Use $p = OPT_{\mathcal{G}}$.

• If
$$|\mathcal{G}| e^{-\epsilon^2 \operatorname{OPT}_{\mathcal{G}}/2h} \leq \delta$$
,

• union bound probability any $g \in \mathcal{G}$ is bad by δ .

Theorem: With probability $1 - \delta$ profit from RSOO_G is at least

$$(1-\epsilon) \operatorname{OPT}_{\mathcal{G}} - O(\frac{h}{\epsilon^2} \log \frac{|\mathcal{G}|}{\delta})$$

Interpretation: $O(h \log |\mathcal{G}|)$ is *convergence time*.

Example: Selling tee shirts. (discretized prices)

- Bidders with valuations in [1, h] for a tee shirt.
- Reasonable offers: $\mathcal{G} = \{ \text{price } 2^i \text{ for } i \in \{1, \dots, \log h\} \}.$
- Convergence Time: $O(h \log |\mathcal{G}|) = O(h \log \log h)$

- 1. Auction Problem
 - (a) Random Sampling Solution
- \implies (b) Retrospective bounds.
 - (c) Software Versioning Example.
 - 2. Online Auction Problem
 - (a) Expert Learning based Auction.
 - (b) Expert Learning with non-uniform bounds.
 - 3. Conclusions

Example: Selling tee shirts. (non-discretized prices)

- Bidders with valuations v_1, \ldots, v_n in [1, h] for a tee shirt.
- Reasonable offers: $\mathcal{G} = \{ \text{price } p \in [1, h] \}.$
- Convergence Time:

Example: Selling tee shirts. (non-discretized prices)

- Bidders with valuations v_1, \ldots, v_n in [1, h] for a tee shirt.
- Reasonable offers: $\mathcal{G} = \{ \text{price } p \in [1, h] \}.$
- Convergence Time:

Observation:

- Suppose $\mathsf{RSOO}_{\mathcal{G}}$ on S only offers $g \in \mathcal{G}_S \subset \mathcal{G}$.
- Then $\mathsf{RSOO}_{\mathcal{G}_S}(S)$ is same as $\mathsf{RSOO}_{\mathcal{G}}(S)$.
- Retrospectively perform analysis on \mathcal{G}_S instead of \mathcal{G} .

Example: Selling tee shirts. (non-discretized prices)

- Bidders with valuations v_1, \ldots, v_n in [1, h] for a tee shirt.
- Reasonable offers: $\mathcal{G} = \{ \text{price } p \in [1, h] \}.$
- Convergence Time:

Observation:

- Suppose $\mathsf{RSOO}_{\mathcal{G}}$ on S only offers $g \in \mathcal{G}_S \subset \mathcal{G}$.
- Then $\mathsf{RSOO}_{\mathcal{G}_S}(S)$ is same as $\mathsf{RSOO}_{\mathcal{G}}(S).$
- Retrospectively perform analysis on \mathcal{G}_S instead of \mathcal{G} .

Consider:
$$\mathcal{G}_S = \{$$
"offer v_i " : $i \in S \}$.

Example: Selling tee shirts. (non-discretized prices)

- Bidders with valuations v_1, \ldots, v_n in [1, h] for a tee shirt.
- Reasonable offers: $\mathcal{G} = \{ \text{price } p \in [1, h] \}.$
- Convergence Time: $O(h |\mathcal{G}_S|) = O(h \log n)$

Observation:

- Suppose $\mathsf{RSOO}_{\mathcal{G}}$ on S only offers $g \in \mathcal{G}_S \subset \mathcal{G}$.
- $\bullet \ {\rm Then} \ {\rm RSOO}_{{\mathcal G}_S}(S)$ is same as ${\rm RSOO}_{{\mathcal G}}(S).$
- Retrospectively perform analysis on \mathcal{G}_S instead of \mathcal{G} .

Consider:
$$\mathcal{G}_S = \{$$
"offer v_i " : $i \in S \}$.
Example: Software versioning.

- $\bullet\,$ Microsoft has M possible versions of MS Office,
- but can only package and sell $m \ll M$ distinct versions. (E.g., Student and Professional).

Example: Software versioning.

- $\bullet\,$ Microsoft has M possible versions of MS Office,
- but can only package and sell $m \ll M$ distinct versions. (E.g., Student and Professional).
- Reasonable offers: $\mathcal{G} = \{\mathbf{p} \in (\mathbb{R} \cup \{\infty\})^M \text{ with } p_j = \infty \text{ for all but } m \text{ items} \}.$

Example: Software versioning.

- $\bullet\,$ Microsoft has M possible versions of MS Office,
- but can only package and sell $m \ll M$ distinct versions. (E.g., Student and Professional).
- Reasonable offers: $\mathcal{G} = \{\mathbf{p} \in (\mathbb{R} \cup \{\infty\})^M \text{ with } p_j = \infty \text{ for all but } m \text{ items} \}.$
- What is $|\mathcal{G}_S|$?

Example: Software versioning.

- $\bullet\,$ Microsoft has M possible versions of MS Office,
- but can only package and sell $m \ll M$ distinct versions. (E.g., Student and Professional).
- Reasonable offers: $\mathcal{G} = \{\mathbf{p} \in (\mathbb{R} \cup \{\infty\})^M \text{ with } p_j = \infty \text{ for all but } m \text{ items} \}.$
- What is $|\mathcal{G}_S|$?

Lemma: $|\mathcal{G}_S| = O((nm^2M)^m).$

Example: Software versioning.

- $\bullet\,$ Microsoft has M possible versions of MS Office,
- but can only package and sell $m \ll M$ distinct versions. (E.g., Student and Professional).
- Reasonable offers: $\mathcal{G} = \{\mathbf{p} \in (\mathbb{R} \cup \{\infty\})^M \text{ with } p_j = \infty \text{ for all but } m \text{ items} \}.$
- What is $|\mathcal{G}_S|$?

Lemma: $|\mathcal{G}_S| = O((nm^2M)^m).$

Convergence time = $O(hm\log(nm^2M))$

Example: Software versioning.

- $\bullet\,$ Microsoft has M possible versions of MS Office,
- but can only package and sell $m \ll M$ distinct versions. (E.g., Student and Professional).
- Reasonable offers: $\mathcal{G} = \{\mathbf{p} \in (\mathbb{R} \cup \{\infty\})^M \text{ with } p_j = \infty \text{ for all but } m \text{ items} \}.$
- What is $|\mathcal{G}_S|$?

Lemma: $|\mathcal{G}_S| = O((nm^2M)^m).$

Convergence time = $O(hm \log(nm^2 M)) \approx O(hm \log n)$.

Lemma:
$$|\mathcal{G}_S| = O((nm^2M)^m).$$

- 1. Fix set of m items to sell.
- 2. Bidder *i*'s valuation divides price space into m + 1 convex regions.

- 1. Fix set of m items to sell.
- 2. Bidder *i*'s valuation divides price space into m + 1 convex regions.
- 3. Regions are joined by $(m+1)^2$ hyperplanes.

- 1. Fix set of m items to sell.
- 2. Bidder *i*'s valuation divides price space into m + 1 convex regions.
- 3. Regions are joined by $(m+1)^2$ hyperplanes.
- 4. n bidders total for $n(m+1)^2$ hyperplanes.

- 1. Fix set of m items to sell.
- 2. Bidder *i*'s valuation divides price space into m + 1 convex regions.
- 3. Regions are joined by $(m+1)^2$ hyperplanes.
- 4. *n* bidders total for $n(m+1)^2$ hyperplanes.
- 5. RSOO_G offer price must be at intersection of hyperplanes.

- 1. Fix set of m items to sell.
- 2. Bidder *i*'s valuation divides price space into m + 1 convex regions.
- 3. Regions are joined by $(m+1)^2$ hyperplanes.
- 4. *n* bidders total for $n(m+1)^2$ hyperplanes.
- 5. RSOO_G offer price must be at intersection of hyperplanes.
- 6. $K = n(m+1)^2$ hyperplanes in m dimensions intersect in K^m .

- 1. Fix set of m items to sell.
- 2. Bidder *i*'s valuation divides price space into m + 1 convex regions.
- 3. Regions are joined by $(m+1)^2$ hyperplanes.
- 4. *n* bidders total for $n(m+1)^2$ hyperplanes.
- 5. RSOO_G offer price must be at intersection of hyperplanes.
- 6. $K = n(m+1)^2$ hyperplanes in m dimensions intersect in K^m .
- 7. Sum over M^m possible *m*-item sets.

See paper for details on:

- Bounds for $RSOO_{\mathcal{G}}$ for item-pricing in combinatorial auctions.
- Bounds for $RSOO_{\mathcal{G}}$ on bidders with observable features.
- Better bounds with ϵ -covers of \mathcal{G} .
- Better random sampling auction with *structural risk minimization*.
- Using approximation algorithms in $RSOO_{\mathcal{G}}$.

- 1. Auction Problem
 - (a) Random Sampling Solution
 - (b) Retrospective bounds.
 - (c) Software Versioning Example.
- \implies 2. Online Auction Problem
 - (a) Expert Learning based Auction.
 - (b) Expert Learning with non-uniform bounds.
 - 3. Conclusions

Online Auction Problem:

- unlimited supply of stuff.
- $\bullet\,$ class ${\cal G}$ of reasonable offers.
- Bidders arrive one at a time and place bids, b_1, b_2, \ldots
- Auctioneer makes offer g from \mathcal{G} before next bidder arrives.
- Goal: Auction with profit close to optimal single offer.

Online Auction Problem:

- unlimited supply of stuff.
- $\bullet\,$ class ${\cal G}$ of reasonable offers.
- Bidders arrive one at a time and place bids, b_1, b_2, \ldots
- Auctioneer makes offer g from \mathcal{G} before next bidder arrives.
- Goal: Auction with profit close to optimal single offer.

Two Difficulties:

- 1. Incentive Compatibility requirement:
- 2. Online Requirement (do not know future):

Online Auction Problem:

- unlimited supply of stuff.
- $\bullet\,$ class ${\cal G}$ of reasonable offers.
- Bidders arrive one at a time and place bids, b_1, b_2, \ldots
- Auctioneer makes offer g from \mathcal{G} before next bidder arrives.
- Goal: Auction with profit close to optimal single offer.

Two Difficulties:

1. Incentive Compatibility requirement:

offer to bidder i not function of b_i .

2. Online Requirement (do not know future):

Online Auction Problem:

- unlimited supply of stuff.
- $\bullet\,$ class ${\cal G}$ of reasonable offers.
- Bidders arrive one at a time and place bids, b_1, b_2, \ldots
- Auctioneer makes offer g from ${\mathcal G}$ before next bidder arrives.
- Goal: Auction with profit close to optimal single offer.

Two Difficulties:

1. Incentive Compatibility requirement:

offer to bidder i not function of b_i .

2. Online Requirement (do not know future): price offered bidder i not function of future bids.

Online Auction Problem:

- unlimited supply of stuff.
- $\bullet\,$ class ${\cal G}$ of reasonable offers.
- Bidders arrive one at a time and place bids, b_1, b_2, \ldots
- Auctioneer makes offer g from ${\mathcal G}$ before next bidder arrives.
- Goal: Auction with profit close to optimal single offer.

Two Difficulties:

1. Incentive Compatibility requirement:

offer to bidder i not function of b_i .

2. Online Requirement (do not know future):

price offered bidder i not function of future bids.

Conclusion: offer for bidder *i* based only on prior bids: b_1, \ldots, b_{i-1} .

for partial information case see multi-armed bandit solutions: [Blum, Kumar, Rudra, Wu '03][Kleinberg, Leighton '03][Blum, Hartline 05]

for partial information case see multi-armed bandit solutions: [Blum, Kumar, Rudra, Wu '03][Kleinberg, Leighton '03][Blum, Hartline 05]

- 2. Bidders cannot come back.
- 3. Bidders cannot lie about their arrival time.

for partial information case see multi-armed bandit solutions: [Blum, Kumar, Rudra, Wu '03][Kleinberg, Leighton '03][Blum, Hartline 05]

- 2. Bidders cannot come back.
- 3. Bidders cannot lie about their arrival time.

for *temporal strategyproofness* see: [Hajiaghayi, Kleinberg, Parkes '04]

for partial information case see multi-armed bandit solutions: [Blum, Kumar, Rudra, Wu '03][Kleinberg, Leighton '03][Blum, Hartline 05]

- 2. Bidders cannot come back.
- 3. Bidders cannot lie about their arrival time.

for *temporal strategyproofness* see: [Hajiaghayi, Kleinberg, Parkes '04]

4. items in unlimited supply.

for partial information case see multi-armed bandit solutions: [Blum, Kumar, Rudra, Wu '03][Kleinberg, Leighton '03][Blum, Hartline 05]

- 2. Bidders cannot come back.
- 3. Bidders cannot lie about their arrival time.

for temporal strategyproofness see: [Hajiaghayi, Kleinberg, Parkes '04]

4. items in unlimited supply.

for *limited supply* see: [Hajiaghayi, Kleinberg, Parkes '04][Kleinberg '05]

Expert Online Learning Problem:

In round i:

- 1. Each of k experts propose a strategy.
- 2. We choose an expert's strategy.
- 3. Find out how each strategy performed (payoff)

Goal: Obtain payoff close to single best expert overall (in hindsight).

Online Learning _

Expert Online Learning Problem:

In round i:

- 1. Each of k experts propose a strategy.
- 2. We choose an expert's strategy.
- 3. Find out how each strategy performed (payoff)

Goal: Obtain payoff close to single best expert overall (in hindsight).

Weighted Majority Algorithm: (for round i)

Let h be maximum payoff. For expert j, let s_j be total payoff thus far.

Choose expert j's strategy with probability proportional to $(1+2\epsilon)^{s_j/h}$.

Online Learning _

Expert Online Learning Problem:

In round i:

- 1. Each of k experts propose a strategy.
- 2. We choose an expert's strategy.
- 3. Find out how each strategy performed (payoff)

Goal: Obtain payoff close to single best expert overall (in hindsight).

Weighted Majority Algorithm: (for round i)

Let h be maximum payoff. For expert j, let s_j be total payoff thus far.

Choose expert j's strategy with probability proportional to $(1+2\epsilon)^{s_j/h}$.

Result:
$$\mathbf{E}[\text{payoff}] = (1 - \epsilon) \operatorname{OPT} - \frac{h}{2\epsilon} \log k.$$

Application: (to online auctions) [Blum Kumar Rudra Wu 2003]

Application: (to online auctions) [Blum Kumar Rudra Wu 2003]

1. Expert for each $g \in \mathcal{G}$

Application to Online Auctions

Application: (to online auctions) [Blum Kumar Rudra Wu 2003]

- 1. Expert for each $g \in \mathcal{G}$
- 2. Best expert \Rightarrow best offer.

Application to Online Auctions

Application: (to online auctions) [Blum Kumar Rudra Wu 2003]

- 1. Expert for each $g \in \mathcal{G}$
- 2. Best expert \Rightarrow best offer.

Result: $\mathbf{E}[\text{profit}] = (1 - \epsilon) \operatorname{OPT}_{\mathcal{G}} - \frac{h}{\epsilon} \log |\mathcal{G}|.$

Application to Online Auctions

Application: (to online auctions) [Blum Kumar Rudra Wu 2003]

- 1. Expert for each $g \in \mathcal{G}$
- 2. Best expert \Rightarrow best offer.

Result: $\mathbf{E}[\text{profit}] = (1 - \epsilon) \operatorname{OPT}_{\mathcal{G}} - \frac{h}{\epsilon} \log |\mathcal{G}|.$

Note: Same convergence time as for $RSOO_{\mathcal{G}}$.

Example: Selling tee shirts. (discretized prices)

- Bidders with valuations in [1, h] for a tee shirt.
- Reasonable offers: $\mathcal{G} = \{ \text{price } 2^i \text{ for } i \in \{1, \dots, \log h\} \}.$
- Convergence Time: $O(h \log |\mathcal{G}|)$

Example: Selling tee shirts. (discretized prices)

- Bidders with valuations in [1, h] for a tee shirt.
- Reasonable offers: $\mathcal{G} = \{ \text{price } 2^i \text{ for } i \in \{1, \dots, \log h\} \}.$
- Convergence Time: $O(h \log |\mathcal{G}|) = O(h \log \log h)$.

Can we get better bounds?

Retrospective technique like using \mathcal{G}_S does not work.

- 1. Auction Problem
 - (a) Random Sampling Solution
 - (b) Retrospective bounds.
 - (c) Software Versioning Example.
- 2. Online Auction Problem
 - (a) Expert Learning based Auction.
- \implies (b) Expert Learning with non-uniform bounds.
 - 3. Conclusions

Non-uniform Bounds on Payoff

Expert Online Learning Problem: In round *i*:

- 1. Each of k experts propose a strategy.
- 2. We choose an expert's strategy.
- 3. Find out how each strategy performed (payoff)
- 4. Expert *i*'s payoff is always less than h_i .

Goal: Obtain payoff close to single best expert overall (in hindsight).

Non-uniform Bounds on Payoff

Expert Online Learning Problem: In round *i*:

- 1. Each of k experts propose a strategy.
- 2. We choose an expert's strategy.
- 3. Find out how each strategy performed (payoff)
- 4. Expert *i*'s payoff is always less than h_i .

Goal: Obtain payoff close to single best expert overall (in hindsight).

Non-uniform Experts Algorithm: [Kalai '01][Blum, Hartline '05]

1. (initialization) For each expert, j, add initial score, s_j , as:

 $h_i imes$ number of heads flipped in a row.

2. Run deterministic "go with best expert" algorithm.

Non-uniform Bounds on Payoff

Expert Online Learning Problem: In round *i*:

- 1. Each of k experts propose a strategy.
- 2. We choose an expert's strategy.
- 3. Find out how each strategy performed (payoff)
- 4. Expert *i*'s payoff is always less than h_i .

Goal: Obtain payoff close to single best expert overall (in hindsight).

Non-uniform Experts Algorithm: [Kalai '01][Blum, Hartline '05]

1. (initialization) For each expert, j, add initial score, s_j , as:

 $h_i imes$ number of heads flipped in a row.

2. Run deterministic "go with best expert" algorithm.

Result: $\mathbf{E}[\text{profit}] \ge \text{OPT}/2 - \sum_i h_i.$

Application: (to online auctions)

Application: (to online auctions)

- 1. Bound h_g for each $g \in \mathcal{G}$.
- 2. Expert for each $g \in \mathcal{G}$
- 3. Best expert \Rightarrow best offer.

Application: (to online auctions)

- 1. Bound h_g for each $g \in \mathcal{G}$.
- 2. Expert for each $g \in \mathcal{G}$
- 3. Best expert \Rightarrow best offer.

Result: $\mathbf{E}[\text{profit}] = \text{OPT}_{\mathcal{G}} / 2 - \sum_{g \in \mathcal{G}} h_g.$

Application: (to online auctions)

- 1. Bound h_g for each $g \in \mathcal{G}$.
- 2. Expert for each $g \in \mathcal{G}$
- 3. Best expert \Rightarrow best offer.
- **Result:** $\mathbf{E}[\text{profit}] = \text{OPT}_{\mathcal{G}} / 2 \sum_{g \in \mathcal{G}} h_g.$

Note: Convergence time = $\sum_{g \in \mathcal{G}} h_g$

- Bidders with valuations in [1, h] for a tee shirt.
- Reasonable offers: $\mathcal{G} = \{ \text{price } 2^i \text{ for } i \in \{1, \dots, \log h\} \}.$
- Convergence Time: $\sum_{g \in \mathcal{G}} h_g$

- Bidders with valuations in [1, h] for a tee shirt.
- Reasonable offers: $\mathcal{G} = \{ \text{price } 2^i \text{ for } i \in \{1, \dots, \log h\} \}.$
- Convergence Time: $\sum_{g \in \mathcal{G}} h_g = \sum_i^{\log h} 2^i$

- Bidders with valuations in [1, h] for a tee shirt.
- Reasonable offers: $\mathcal{G} = \{ \text{price } 2^i \text{ for } i \in \{1, \dots, \log h\} \}.$
- Convergence Time: $\sum_{g \in \mathcal{G}} h_g = \sum_i^{\log h} 2^i \le 2h.$

- Bidders with valuations in [1, h] for a tee shirt.
- Reasonable offers: $\mathcal{G} = \{ \text{price } 2^i \text{ for } i \in \{1, \dots, \log h\} \}.$
- Convergence Time: $\sum_{g \in \mathcal{G}} h_g = \sum_i^{\log h} 2^i \le 2h$.

Note: this is optimal up to constant factors.

Conclusions

- 1. Used machine learning techniques for auction design/analysis.
- 2. Prior-free discriminatory optimal mechanism design.
 - (a) distinguishing between products (and selecting products to sell).
 - (b) price discriminate based on observable customer features.
- 3. Similar bounds for offline and online auctions.
- 4. Retrospective analysis for offline auctions.

Conclusions _____

- 1. Used machine learning techniques for auction design/analysis.
- 2. Prior-free discriminatory optimal mechanism design.
 - (a) distinguishing between products (and selecting products to sell).
 - (b) price discriminate based on observable customer features.
- 3. Similar bounds for offline and online auctions.
- 4. Retrospective analysis for offline auctions.
- 5. **Open:** ϵ -cover arguments for online auctions?
- 6. **Open:** limited supply?
- 7. **Open:** general cost function on outcomes?