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The Problem

Sellers can extract more of surplus with discriminatory pricing.
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The Problem

Sellers can extract more of surplus with discriminatory pricing.

Two approaches:

1. Distinguish between products.
(E.g., software versioning, airline tickets, etc.)

2. Price discriminate with observable customer features.
(E.g., college tuition, DVDs, car insurance, shipping)
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The Problem

Sellers can extract more of surplus with discriminatory pricing.

Two approaches:

1. Distinguish between products.
(E.g., software versioning, airline tickets, etc.)

2. Price discriminate with observable customer features.
(E.g., college tuition, DVDs, car insurance, shipping)

Goal: design mechanism to optimally price discriminate.
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Optimal Mechanism Design

Typical Economic approach to optimal mechanism design:

• Assume valuations are from known distribution.

• Design optimal auction for distribution.
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Typical Economic approach to optimal mechanism design:

• Assume valuations are from known distribution.

• Design optimal auction for distribution.

Notes on optimal mechanism design problem:

• Solved by Myerson (for single-parameter case).

• non-identical distributions =⇒ discriminatory pricing.
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Optimal Mechanism Design

Typical Economic approach to optimal mechanism design:

• Assume valuations are from known distribution.

• Design optimal auction for distribution.

Notes on optimal mechanism design problem:

• Solved by Myerson (for single-parameter case).

• non-identical distributions =⇒ discriminatory pricing.

• Assumed known distribution ignores:

– incentives (of acquiring distribution)

– performance (from inaccurate distribution)
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Optimal Mechanism Design

Typical Economic approach to optimal mechanism design:

• Assume valuations are from known distribution.

• Design optimal auction for distribution.

Notes on optimal mechanism design problem:

• Solved by Myerson (for single-parameter case).

• non-identical distributions =⇒ discriminatory pricing.

• Assumed known distribution ignores:

– incentives (of acquiring distribution)

– performance (from inaccurate distribution)

Goal: understand how quality and incentives of learning distribution
affect profit.
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Setting

1. Unlimited supply of stuff to sell.

2. bidders with private valuations for stuff.

3. make each bidder an offer.

4. revenue is incentive compatible function of offer and valuation.
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Setting

1. Unlimited supply of stuff to sell.
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Setting

1. Unlimited supply of stuff to sell.
(Example 1: MS Office Professional (PV) & Student Version (SV))

2. bidders with private valuations for stuff.
(Example 1: Bidder: “PV worth $400, SV worth $300”)

3. make each bidder an offer.

4. revenue is incentive compatible function of offer and valuation.
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1. Unlimited supply of stuff to sell.
(Example 1: MS Office Professional (PV) & Student Version (SV))

2. bidders with private valuations for stuff.
(Example 1: Bidder: “PV worth $400, SV worth $300”)

3. make each bidder an offer.
(Example 1: Seller: “PV costs $369.88, SV costs $124.99”)

4. revenue is incentive compatible function of offer and valuation.
(Example 1: Sold: SV for $124.99!)
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Setting

1. Unlimited supply of stuff to sell.
(Example 1: MS Office Professional (PV) & Student Version (SV))
(Example 2: Tuition for in state (IS) and out of state (OS) students)

2. bidders with private valuations for stuff.
(Example 1: Bidder: “PV worth $400, SV worth $300”)

3. make each bidder an offer.
(Example 1: Seller: “PV costs $369.88, SV costs $124.99”)

4. revenue is incentive compatible function of offer and valuation.
(Example 1: Sold: SV for $124.99!)
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Setting

1. Unlimited supply of stuff to sell.
(Example 1: MS Office Professional (PV) & Student Version (SV))
(Example 2: Tuition for in state (IS) and out of state (OS) students)

2. bidders with private valuations for stuff.
(Example 1: Bidder: “PV worth $400, SV worth $300”)
(Example 2: Bidder (OS): “Tuition worth $15,000”)

3. make each bidder an offer.
(Example 1: Seller: “PV costs $369.88, SV costs $124.99”)

4. revenue is incentive compatible function of offer and valuation.
(Example 1: Sold: SV for $124.99!)
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Setting

1. Unlimited supply of stuff to sell.
(Example 1: MS Office Professional (PV) & Student Version (SV))
(Example 2: Tuition for in state (IS) and out of state (OS) students)

2. bidders with private valuations for stuff.
(Example 1: Bidder: “PV worth $400, SV worth $300”)
(Example 2: Bidder (OS): “Tuition worth $15,000”)

3. make each bidder an offer.
(Example 1: Seller: “PV costs $369.88, SV costs $124.99”)
(Example 2: Seller: “IS costs $9,256.80, OS costs $16,855.30,”)

4. revenue is incentive compatible function of offer and valuation.
(Example 1: Sold: SV for $124.99!)
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Setting

1. Unlimited supply of stuff to sell.
(Example 1: MS Office Professional (PV) & Student Version (SV))
(Example 2: Tuition for in state (IS) and out of state (OS) students)

2. bidders with private valuations for stuff.
(Example 1: Bidder: “PV worth $400, SV worth $300”)
(Example 2: Bidder (OS): “Tuition worth $15,000”)

3. make each bidder an offer.
(Example 1: Seller: “PV costs $369.88, SV costs $124.99”)
(Example 2: Seller: “IS costs $9,256.80, OS costs $16,855.30,”)

4. revenue is incentive compatible function of offer and valuation.
(Example 1: Sold: SV for $124.99!)
(Example 2: No Sale!)
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Overview

1.=⇒ Auction Problem

(a) Random Sampling Solution

(b) Retrospective bounds.

(c) Software Versioning Example.

2. Online Auction Problem

(a) Expert Learning based Auction.

(b) Expert Learning with non-uniform bounds.

3. Conclusions
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Auction Problem

The Unlimited Supply Auction Problem:

Given:

• unlimited supply of stuff.

• Set S of n bidders with valuations for stuff.

• class G of reasonable offers.

Design: Auction with profit near that of optimal single offer.
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Auction Problem

The Unlimited Supply Auction Problem:

Given:

• unlimited supply of stuff.

• Set S of n bidders with valuations for stuff.

• class G of reasonable offers.

Design: Auction with profit near that of optimal single offer.

Notation:

• g(i) = payoff from bidder i when offered g.

• g(S) =
∑

i∈S g(i).

• optG(S) = argmaxg∈G g(S).

• OPTG(S) = maxg∈G g(S).
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Random Sampling Auction

Random Sampling Optimal Offer Auction, RSOOG

1. Randomly partition bidders into two sets: S1 and S2.

2. compute g1 (resp. g2), optimal offer for S1 (resp. S2)

3. Offer g1 to S2 and g2 to S1.

S

(Random Sampling Auction from [Goldberg, Hartline, Wright 2001])
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Random Sampling Auction

Random Sampling Optimal Offer Auction, RSOOG

1. Randomly partition bidders into two sets: S1 and S2.

2. compute g1 (resp. g2), optimal offer for S1 (resp. S2)

3. Offer g1 to S2 and g2 to S1.

S
S1

S2

(Random Sampling Auction from [Goldberg, Hartline, Wright 2001])
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Random Sampling Auction

Random Sampling Optimal Offer Auction, RSOOG

1. Randomly partition bidders into two sets: S1 and S2.

2. compute g1 (resp. g2), optimal offer for S1 (resp. S2)

3. Offer g1 to S2 and g2 to S1.

S
S1

S2

g1 = opt(S1)

g2 = opt(S2)
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Random Sampling Auction

Random Sampling Optimal Offer Auction, RSOOG

1. Randomly partition bidders into two sets: S1 and S2.

2. compute g1 (resp. g2), optimal offer for S1 (resp. S2)

3. Offer g1 to S2 and g2 to S1.

S
S1

S2

g1 = opt(S1)

g2 = opt(S2)

g1 = opt(S1)

g2 = opt(S2)

Question: when is RSOOG good?

(Random Sampling Auction from [Goldberg, Hartline, Wright 2001])
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Performance Analysis

Lemma: For g and random partitions S1 and S2:

Pr[|g(S1) − g(S2)| > εmax(p, g(S))] ≤ 2e−ε2p/2h.
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Performance Analysis

Lemma: For g and random partitions S1 and S2:

Pr[|g(S1) − g(S2)| > εmax(p, g(S))] ≤ 2e−ε2p/2h.

Consider:

• Use p = OPTG .

• If |G| e−ε2 OPTG /2h ≤ δ,

• union bound probability any g ∈ G is bad by δ.
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Performance Analysis

Lemma: For g and random partitions S1 and S2:

Pr[|g(S1) − g(S2)| > εmax(p, g(S))] ≤ 2e−ε2p/2h.

Consider:

• Use p = OPTG .

• If |G| e−ε2 OPTG /2h ≤ δ,

• union bound probability any g ∈ G is bad by δ.

Theorem: With probability 1 − δ profit from RSOOG is at least

(1 − ε)OPTG −O( h
ε2 log |G|

δ )
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Performance Analysis

Lemma: For g and random partitions S1 and S2:

Pr[|g(S1) − g(S2)| > εmax(p, g(S))] ≤ 2e−ε2p/2h.

Consider:

• Use p = OPTG .

• If |G| e−ε2 OPTG /2h ≤ δ,

• union bound probability any g ∈ G is bad by δ.

Theorem: With probability 1 − δ profit from RSOOG is at least

(1 − ε)OPTG −O( h
ε2 log |G|

δ )

Interpretation: O(h log |G|) is convergence time.
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Example

Example: Selling tee shirts. (discretized prices)

• Bidders with valuations in [1, h] for a tee shirt.

• Reasonable offers: G = {price 2i for i ∈ {1, . . . , log h}}.

• Convergence Time: O(h log |G|) = O(h log log h)
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Overview

1. Auction Problem

(a) Random Sampling Solution

(b)=⇒ Retrospective bounds.

(c) Software Versioning Example.

2. Online Auction Problem

(a) Expert Learning based Auction.

(b) Expert Learning with non-uniform bounds.

3. Conclusions
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|G| = ∞?

What if |G| = ∞?
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Example: Selling tee shirts. (non-discretized prices)

• Bidders with valuations v1, . . . , vn in [1, h] for a tee shirt.

• Reasonable offers: G = {price p ∈ [1, h]}.
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|G| = ∞?

What if |G| = ∞?

Example: Selling tee shirts. (non-discretized prices)

• Bidders with valuations v1, . . . , vn in [1, h] for a tee shirt.

• Reasonable offers: G = {price p ∈ [1, h]}.

• Convergence Time:

Observation:

• Suppose RSOOG on S only offers g ∈ GS ⊂ G.

• Then RSOOGS
(S) is same as RSOOG(S).

• Retrospectively perform analysis on GS instead of G.
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|G| = ∞?

What if |G| = ∞?

Example: Selling tee shirts. (non-discretized prices)

• Bidders with valuations v1, . . . , vn in [1, h] for a tee shirt.

• Reasonable offers: G = {price p ∈ [1, h]}.

• Convergence Time: O(h |GS |) = O(h log n)

Observation:

• Suppose RSOOG on S only offers g ∈ GS ⊂ G.

• Then RSOOGS
(S) is same as RSOOG(S).

• Retrospectively perform analysis on GS instead of G.

Consider: GS = {“offer vi” : i ∈ S}.
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Example: Software Versioning

Example: Software versioning.

• Microsoft has M possible versions of MS Office,

• but can only package and sell m � M distinct versions.
(E.g., Student and Professional).
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Example: Software Versioning

Example: Software versioning.

• Microsoft has M possible versions of MS Office,

• but can only package and sell m � M distinct versions.
(E.g., Student and Professional).

• Reasonable offers: G = {p ∈ (R ∪ {∞})M with pj = ∞ for all
but m items}.
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Example: Software Versioning

Example: Software versioning.

• Microsoft has M possible versions of MS Office,

• but can only package and sell m � M distinct versions.
(E.g., Student and Professional).
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Example: Software Versioning

Example: Software versioning.

• Microsoft has M possible versions of MS Office,

• but can only package and sell m � M distinct versions.
(E.g., Student and Professional).

• Reasonable offers: G = {p ∈ (R ∪ {∞})M with pj = ∞ for all
but m items}.

• What is |GS |?

Lemma: |GS | = O((nm2M)m).
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Example: Software Versioning

Example: Software versioning.

• Microsoft has M possible versions of MS Office,

• but can only package and sell m � M distinct versions.
(E.g., Student and Professional).

• Reasonable offers: G = {p ∈ (R ∪ {∞})M with pj = ∞ for all
but m items}.

• What is |GS |?

Lemma: |GS | = O((nm2M)m).

Convergence time = O(hm log(nm2M)) .
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Example: Software Versioning

Example: Software versioning.

• Microsoft has M possible versions of MS Office,

• but can only package and sell m � M distinct versions.
(E.g., Student and Professional).

• Reasonable offers: G = {p ∈ (R ∪ {∞})M with pj = ∞ for all
but m items}.

• What is |GS |?

Lemma: |GS | = O((nm2M)m).

Convergence time = O(hm log(nm2M)) ≈ O(hm log n).
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Proof of Lemma

Lemma: |GS | = O((nm2M)m).
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Proof of Lemma

Lemma: |GS | = O((nm2M)m).

Proof:

1. Fix set of m items to sell.

2. Bidder i’s valuation divides price space into m + 1 convex regions.
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Proof:

1. Fix set of m items to sell.

2. Bidder i’s valuation divides price space into m + 1 convex regions.

3. Regions are joined by (m + 1)2 hyperplanes.

4. n bidders total for n(m + 1)2 hyperplanes.

5. RSOOG offer price must be at intersection of hyperplanes.
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Proof of Lemma

Lemma: |GS | = O((nm2M)m).

Proof:

1. Fix set of m items to sell.

2. Bidder i’s valuation divides price space into m + 1 convex regions.

3. Regions are joined by (m + 1)2 hyperplanes.

4. n bidders total for n(m + 1)2 hyperplanes.

5. RSOOG offer price must be at intersection of hyperplanes.

6. K = n(m + 1)2 hyperplanes in m dimensions intersect in Km.
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Proof of Lemma

Lemma: |GS | = O((nm2M)m).

Proof:

1. Fix set of m items to sell.

2. Bidder i’s valuation divides price space into m + 1 convex regions.

3. Regions are joined by (m + 1)2 hyperplanes.

4. n bidders total for n(m + 1)2 hyperplanes.

5. RSOOG offer price must be at intersection of hyperplanes.

6. K = n(m + 1)2 hyperplanes in m dimensions intersect in Km.

7. Sum over Mm possible m-item sets.
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Other Results

See paper for details on:

• Bounds for RSOOG for item-pricing in combinatorial auctions.

• Bounds for RSOOG on bidders with observable features.

• Better bounds with ε-covers of G.

• Better random sampling auction with structural risk minimization.

• Using approximation algorithms in RSOOG .
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Overview

1. Auction Problem

(a) Random Sampling Solution

(b) Retrospective bounds.

(c) Software Versioning Example.

2.=⇒ Online Auction Problem

(a) Expert Learning based Auction.

(b) Expert Learning with non-uniform bounds.

3. Conclusions
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Online Auction Problem

Online Auction Problem:

• unlimited supply of stuff.

• class G of reasonable offers.

• Bidders arrive one at a time and place bids, b1, b2, . . .

• Auctioneer makes offer g from G before next bidder arrives.

• Goal: Auction with profit close to optimal single offer.
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• Goal: Auction with profit close to optimal single offer.

Two Difficulties:

1. Incentive Compatibility requirement:

2. Online Requirement (do not know future):

DISCRIMINATORY AUCTIONS – AUGUST 5, 2005
15



Online Auction Problem

Online Auction Problem:

• unlimited supply of stuff.

• class G of reasonable offers.

• Bidders arrive one at a time and place bids, b1, b2, . . .

• Auctioneer makes offer g from G before next bidder arrives.

• Goal: Auction with profit close to optimal single offer.

Two Difficulties:

1. Incentive Compatibility requirement:

offer to bidder i not function of bi.

2. Online Requirement (do not know future):

DISCRIMINATORY AUCTIONS – AUGUST 5, 2005
15



Online Auction Problem

Online Auction Problem:

• unlimited supply of stuff.

• class G of reasonable offers.

• Bidders arrive one at a time and place bids, b1, b2, . . .

• Auctioneer makes offer g from G before next bidder arrives.

• Goal: Auction with profit close to optimal single offer.

Two Difficulties:

1. Incentive Compatibility requirement:

offer to bidder i not function of bi.

2. Online Requirement (do not know future):

price offered bidder i not function of future bids.

DISCRIMINATORY AUCTIONS – AUGUST 5, 2005
15



Online Auction Problem

Online Auction Problem:

• unlimited supply of stuff.

• class G of reasonable offers.

• Bidders arrive one at a time and place bids, b1, b2, . . .

• Auctioneer makes offer g from G before next bidder arrives.

• Goal: Auction with profit close to optimal single offer.

Two Difficulties:

1. Incentive Compatibility requirement:

offer to bidder i not function of bi.

2. Online Requirement (do not know future):

price offered bidder i not function of future bids.

Conclusion: offer for bidder i based only on prior bids: b1, . . . , bi−1.
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Assumptions

1. We learn each bidders full valuation.

DISCRIMINATORY AUCTIONS – AUGUST 5, 2005
16



Assumptions

1. We learn each bidders full valuation.

for partial information case see multi-armed bandit solutions:
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2. Bidders cannot come back.

3. Bidders cannot lie about their arrival time.
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Assumptions

1. We learn each bidders full valuation.

for partial information case see multi-armed bandit solutions:
[Blum, Kumar, Rudra, Wu ’03][Kleinberg, Leighton ’03][Blum, Hartline 05]

2. Bidders cannot come back.

3. Bidders cannot lie about their arrival time.

for temporal strategyproofness see: [Hajiaghayi, Kleinberg, Parkes ’04]

4. items in unlimited supply.

for limited supply see:
[Hajiaghayi, Kleinberg, Parkes ’04][Kleinberg ’05]
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Online Learning

Expert Online Learning Problem:

In round i:

1. Each of k experts propose a strategy.

2. We choose an expert’s strategy.

3. Find out how each strategy performed (payoff)

Goal: Obtain payoff close to single best expert overall (in hindsight).
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Online Learning

Expert Online Learning Problem:

In round i:

1. Each of k experts propose a strategy.

2. We choose an expert’s strategy.

3. Find out how each strategy performed (payoff)

Goal: Obtain payoff close to single best expert overall (in hindsight).

Weighted Majority Algorithm: (for round i)

Let h be maximum payoff. For expert j, let sj be total payoff thus far.

Choose expert j ’s strategy with probability proportional to (1+2ε)sj/h.
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Online Learning

Expert Online Learning Problem:

In round i:

1. Each of k experts propose a strategy.

2. We choose an expert’s strategy.

3. Find out how each strategy performed (payoff)

Goal: Obtain payoff close to single best expert overall (in hindsight).

Weighted Majority Algorithm: (for round i)

Let h be maximum payoff. For expert j, let sj be total payoff thus far.

Choose expert j ’s strategy with probability proportional to (1+2ε)sj/h.

Result: E[payoff] = (1 − ε)OPT− h
2ε log k.
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Application to Online Auctions

Application: (to online auctions) [Blum Kumar Rudra Wu 2003]
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Application: (to online auctions) [Blum Kumar Rudra Wu 2003]

1. Expert for each g ∈ G

2. Best expert ⇒ best offer.
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Application to Online Auctions

Application: (to online auctions) [Blum Kumar Rudra Wu 2003]

1. Expert for each g ∈ G

2. Best expert ⇒ best offer.

Result: E[profit] = (1 − ε)OPTG −h
ε log |G|.
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Application to Online Auctions

Application: (to online auctions) [Blum Kumar Rudra Wu 2003]

1. Expert for each g ∈ G

2. Best expert ⇒ best offer.

Result: E[profit] = (1 − ε)OPTG −h
ε log |G|.

Note: Same convergence time as for RSOOG .

DISCRIMINATORY AUCTIONS – AUGUST 5, 2005
18



Example

Example: Selling tee shirts. (discretized prices)

• Bidders with valuations in [1, h] for a tee shirt.

• Reasonable offers: G = {price 2i for i ∈ {1, . . . , log h}}.

• Convergence Time: O(h log |G|)
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Example

Example: Selling tee shirts. (discretized prices)

• Bidders with valuations in [1, h] for a tee shirt.

• Reasonable offers: G = {price 2i for i ∈ {1, . . . , log h}}.

• Convergence Time: O(h log |G|)= O(h log log h).
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Better Bounds?

Can we get better bounds?

Retrospective technique like using GS does not work.
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Overview

1. Auction Problem

(a) Random Sampling Solution

(b) Retrospective bounds.

(c) Software Versioning Example.

2. Online Auction Problem

(a) Expert Learning based Auction.

(b)=⇒ Expert Learning with non-uniform bounds.

3. Conclusions
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Non-uniform Bounds on Payoff

Expert Online Learning Problem: In round i:

1. Each of k experts propose a strategy.

2. We choose an expert’s strategy.

3. Find out how each strategy performed (payoff)

4. Expert i’s payoff is always less than hi.

Goal: Obtain payoff close to single best expert overall (in hindsight).
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Non-uniform Bounds on Payoff

Expert Online Learning Problem: In round i:

1. Each of k experts propose a strategy.

2. We choose an expert’s strategy.

3. Find out how each strategy performed (payoff)

4. Expert i’s payoff is always less than hi.

Goal: Obtain payoff close to single best expert overall (in hindsight).

Non-uniform Experts Algorithm: [Kalai ’01][Blum, Hartline ’05]

1. (initialization) For each expert, j, add initial score, sj , as:

hi × number of heads flipped in a row.

2. Run deterministic “go with best expert” algorithm.

DISCRIMINATORY AUCTIONS – AUGUST 5, 2005
22



Non-uniform Bounds on Payoff

Expert Online Learning Problem: In round i:

1. Each of k experts propose a strategy.

2. We choose an expert’s strategy.

3. Find out how each strategy performed (payoff)

4. Expert i’s payoff is always less than hi.

Goal: Obtain payoff close to single best expert overall (in hindsight).

Non-uniform Experts Algorithm: [Kalai ’01][Blum, Hartline ’05]

1. (initialization) For each expert, j, add initial score, sj , as:

hi × number of heads flipped in a row.

2. Run deterministic “go with best expert” algorithm.

Result: E[profit] ≥ OPT /2 −
∑

i hi.
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Application to Online Auctions

Application: (to online auctions)
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1. Bound hg for each g ∈ G.
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Application to Online Auctions

Application: (to online auctions)

1. Bound hg for each g ∈ G.

2. Expert for each g ∈ G

3. Best expert ⇒ best offer.

Result: E[profit] = OPTG /2 −
∑

g∈G hg .
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Application to Online Auctions

Application: (to online auctions)

1. Bound hg for each g ∈ G.

2. Expert for each g ∈ G

3. Best expert ⇒ best offer.

Result: E[profit] = OPTG /2 −
∑

g∈G hg .

Note: Convergence time =
∑

g∈G hg
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Example

Example: Selling tee shirts. (discretized prices)

• Bidders with valuations in [1, h] for a tee shirt.

• Reasonable offers: G = {price 2i for i ∈ {1, . . . , log h}}.

• Convergence Time:
∑

g∈G hg .
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Example

Example: Selling tee shirts. (discretized prices)

• Bidders with valuations in [1, h] for a tee shirt.

• Reasonable offers: G = {price 2i for i ∈ {1, . . . , log h}}.

• Convergence Time:
∑

g∈G hg =
∑log h

i 2i .
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Example

Example: Selling tee shirts. (discretized prices)

• Bidders with valuations in [1, h] for a tee shirt.

• Reasonable offers: G = {price 2i for i ∈ {1, . . . , log h}}.

• Convergence Time:
∑

g∈G hg =
∑log h

i 2i ≤ 2h.
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Example

Example: Selling tee shirts. (discretized prices)

• Bidders with valuations in [1, h] for a tee shirt.

• Reasonable offers: G = {price 2i for i ∈ {1, . . . , log h}}.

• Convergence Time:
∑

g∈G hg =
∑log h

i 2i ≤ 2h.

Note: this is optimal up to constant factors.
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Conclusions

1. Used machine learning techniques for auction design/analysis.

2. Prior-free discriminatory optimal mechanism design.

(a) distinguishing between products (and selecting products to sell).

(b) price discriminate based on observable customer features.

3. Similar bounds for offline and online auctions.

4. Retrospective analysis for offline auctions.
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Conclusions

1. Used machine learning techniques for auction design/analysis.

2. Prior-free discriminatory optimal mechanism design.

(a) distinguishing between products (and selecting products to sell).

(b) price discriminate based on observable customer features.

3. Similar bounds for offline and online auctions.

4. Retrospective analysis for offline auctions.

5. Open: ε-cover arguments for online auctions?

6. Open: limited supply?

7. Open: general cost function on outcomes?
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