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Motivation

◦ For many retail operations “capacity” is measured by store/shelf
space.

◦ A key performance measure in the industry is

Average Sales per Square Foot per Unit Time.

◦ Trade-off between short-term benefits and the opportunity cost of
assets.

Margin vs. Rotation.

◦ As opposed to the airline or hospitality industries, selling horizons
are flexible.

◦ In general, most profitable/unprofitable products are new items for
which there is little demand information.
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Outline

X Model Formulation.

X Perfect Demand Information.

X Incomplete Demand Information.

- Inventory Clearance

- Optimal Stopping (“outlet option”)

X Conclusion.
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Model Formulation
I) Stochastic Setting:

- A probability space (Ω,F, P).

- A standard Poisson process D(t) under P and its filtration Ft = σ(D(s) : 0 ≤ s ≤ t).

- A collection {Pα : α > 0} such that D(t) is a Poisson process with intensity α under Pα.

- For a process ft, we define If(t) :=
∫ t

0
fs ds.

II) Demand Process:

- Pricing strategy, a nonnegative (adapted) process pt.

- A price-sensitive unscaled demand intensity

λt := λ(pt) ⇐⇒ pt = p(λt).

- A (possibly unknown) demand scale factor θ > 0.

- Cumulative demand process D(Iλ(t)) under Pθ.

- Select λ ∈ A the set of admissible (adapted) policies

λt : R+ → [0, Λ].
Price (p)

θλ(p)

Demand Intensity

Exponential Demand Model 
λ(p) = Λ exp(− α p) 

Increasing θ 
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Model Formulation

III) Revenues:

- Unscaled revenue rate c(λ) := λ p(λ), λ∗ := argmaxλ∈[0,Λ]{c(λ)}, c∗ := c(λ∗).

- Terminal value (opportunity cost): R Discount factor: r

- Normalization: c∗ = r R.

IV) Selling Horizon:

- Inventory position: Nt = N0 −D(Iλ(t)).

- τ0 = inf{t ≥ 0 : Nt = 0}, T := {Ft − stopping times τ such that τ ≤ τ0}

V) Retailer’s Problem:

max
λ∈A, τ∈T

Eθ

[∫ τ

0

e
−r t

p(λt) dD(Iλ(t)) + e
−r τ

R

]

subject to Nt = N0 −D(Iλ(t)).
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Full Information

Suppose θ > 0 is known at t = 0 and an inventory clearance strategy is used, i.e., τ = τ0.

Define the value function

W (n; θ) = max
λ∈A

Eθ

[∫ τ0

0

e
−r t

p(λt) dD(Iλ(t)) + e
−r τ

R

]

subject to Nt = n−D(Iλ(t)) and τ0 = inf{t ≥ 0 : Nt = 0}.

The solution satisfies the recursion
r W (n; θ)

θ
= Ψ(W (n−1; θ)−W (n; θ)) and W (0; θ) = R,

where Ψ(z) , max
0≤λ≤Λ

{λ z + c(λ)}.

Proposition. For every θ > 0 and R ≥ 0 there is a unique solution {W (n) : n ∈ N}.

◦ If θ ≥ 1 then the value function W is increasing and concave as a function of n.

◦ If θ ≤ 1 then the value function W is decreasing and convex as a function of n.

◦ limn→∞ W (n) = θR.
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Full Information
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Value function for two values of θ and an exponential demand rate λ(p) = Λ exp(−α p).
The data used is Λ = 10, α = 1, r = 1, θ1 = 1.2, θ2 = 0.8, R = Λ exp(−1)/(α r) ≈ 3.68.
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Full Information

Corollary. Suppose c(λ) is strictly concave.

The optimal sales intensity satisfies:

λ
∗
(n; θ) = argmax

0 ≤ λ ≤ Λ
{λ (W (n−1; θ)−W (n; θ))+c(λ)}.

- If θ ≥ 1 then λ∗(n; θ) ↑ n.

- If θ ≤ 1 then λ∗(n; θ) ↓ n.

- λ∗(n; θ) ↓ θ.

- limn→∞ λ∗(n, θ) = λ∗.
5 10 15 20 25
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Inventoty Level (n)

λ*(n)

Optimal Demand Intensity

θ
1
 > 1 

θ
2
< 1 

λ* 

Exponential Demand λ(p) = Λ exp(−α p).
Λ = 10, α = r = 1, θ1 = 1.2, θ2 = 0.8, R = 3.68.

What about inventory turns (rotation)?

Proposition. Let s(n, θ) , θ λ∗(n, θ) be the optimal sales rate for a given θ and n.

If
d

dλ
(λ p

′
(λ)) ≤ 0, then s(n, θ) ↑ θ.
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Full Information
Summary:

◦ A tractable dynamic pricing formulation for the inventory clearance model.

◦ W (n; θ) satisfies a simple recursion based on the Fenchel-Legendre transform
of c(λ).

◦ With full information products are divided in two groups:

– High Demand Products with θ ≥ 1: W (n, θ) and λ∗(n) increase with n.

– Low Demand Products with θ ≤ 1: W (n, θ) and λ∗(n) decrease with n.

◦ High Demand products are sold at a higher price and have a higher selling rate.

◦ If the retailer can stop selling the product at any time at no cost then:

– If θ < 1 stop immediately (τ = 0).

– If θ > 1 never stop (τ = τ0).

◦ In practice, a retailer rarely knows the value of θ at t = 0!
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Incomplete Information: Inventory Clearance

Setting:

- The retailer does not know θ at t = 0 but knows θ ∈ {θL, θH} with θL ≤ 1 ≤ θH.

- The retailer has a prior belief q ∈ (0, 1) that θ = θL.

- We introduce the probability measure Pq = q PθL
+ (1− q) PθH

.

- We assume an inventory clearance model, i.e., τ = τ0.

Retailer’s Beliefs:

Define the belief process qt := Pq[θ | Ft].

Proposition. qt is a Pq-martingale that satisfies the SDE

dqt = −η(qt−) [dDt − λt θ̄(qt−)dt],

where θ̄(q) := θL q + θH (1− q)

and η(q) :=
q (1− q) (θH − θL)

θLq + θH (1− q)
.
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Incomplete Information: Inventory Clearance

Retailer’s Optimization:

V (N0, q) = sup
λ∈A

Eq

[∫ τ0

0

e
−r t

p(λt) dD(Iλ(s)) + e
−r τ0 R

]

subject to Nt = N0 −
∫ t

0

dD(Iλ(s)),

dqt = −η(qt−) [dDt − λt θ̄(qt−)dt], q0 = q,

τ0 = inf{t ≥ 0 : Nt = 0}.
HJB Equation:

rV (n, q) = max
0≤λ≤Λ

[
λ θ̄(q)[V (n− 1, q − η(q))− V (n, q) + η(q)Vq(n, q)] + θ̄(q) c(λ)

]
,

with boundary condition V (0, q) = R, V (n, 0) = W (n; θH), and V (n, 1) = W (n; θL).

Recursive Solution:

V (0, q) = R, V (n, q) + Φ

(
r V (n, q)

θ̄(q)

)
− η(q) Vq(n, q) = V (n− 1, q − η(q)).
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Incomplete Information: Inventory Clearance

Proposition.

-) The value function V (n, q) is

a) monotonically decreasing and convex in q,

b) bounded by

W (n; θL) ≤ V (n, q) ≤ W (n; θH), and

c) uniformly convergent as n ↑ ∞,

V (n, q)
n→∞−→ R θ̄(q), uniformly in q.

-) The optimal demand intensity satisfies

lim
n→∞

λ
∗
(n, q) = λ

∗
.

Conjecture:

The optimal sales rate θ̄(q) λ∗(n, q) ↓ q.
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Incomplete Information: Inventory Clearance

Asymptotic Approximation: Since

lim
n→∞

V (n, q) = R θ̄(q) = lim
n→∞

{q W (n, θL) + (1− q) W (n, θH)},

we propose the following approximation for V (n, q)

Ṽ (n, q) := q W (n, θL) + (1− q) W (n, θH).

Some Properties of Ṽ (n, q):

- Linear approximation easy to compute.

- Asymptotically optimal as n →∞.

- Asymptotically optimal as q → 0+ or q → 1−.

- Ṽ (n, q) = Eq[W (n, θ)] 6= W (n,Eq[θ]) =:V CE(n, q) = Certainty Equivalent.
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Incomplete Information: Inventory Clearance

Relative Error (%) :=
V approx(n, q)− V (n, q)

V (n, q)
× 100%.
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Exponential Demand λ(p) = Λ exp(−α p): Inventory = 5, Λ = 10, α = r = 1, θH = 5.0, θL = 0.5.
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Incomplete Information: Inventory Clearance

For any approximation V approx(n, q), define the corresponding demand intensity using the HJB

λ
approx

(n, q) := arg max
0≤λ≤Λ

[λ θ̄(q)[V
approx

(n−1, q−η(q))−V
approx

(n, q)]+λ κ(q)V
approx

q (n, q)+θ̄(q) c(λ)].

Relative Price Error (%) :=
p(λ approx)− p(λ∗)

p(λ∗)
× 100%.

Asymptotic Approximation (%)

Inventory (n)

q 1 5 10 25 100

0.0 0.0 0.0 0.0 0.0 0.0
0.2 2.7 -0.2 -0.3 -0.6 -0.5
0.4 6.9 0.8 -0.6 -0.9 -0.7
0.6 12.5 2.4 -0.2 -0.7 -1.0
0.8 19.4 3.3 0.1 -0.4 -0.6
1.0 0.0 0.0 0.0 0.0 0.0

Certainty Equivalent (%)

Inventory (n)

q 1 5 10 25 100

0.0 0.0 0.0 0.0 0.0 0.0
0.2 5.3 2.6 2.7 2.4 -0.4
0.4 14.4 11.6 12.0 10.1 -0.5
0.6 29.9 28.2 28.0 17.6 -1.0
0.8 54.6 46.2 37.4 11.1 -0.7
1.0 0.0 0.0 0.0 0.0 0.0

Relative price error for the exponential demand model λ(p) = Λ exp(−α p), with Λ = 20 and α = 1.
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Incomplete Information: Inventory Clearance
When should the retailer engage in selling a given product?

When V (n, q) ≥ R.

Using the asymptotic approximation Ṽ (n, q), this is equivalent to

q ≤ q̃(n) :=
W (n; θH)− R

[W (n; θH)− R] + [R−W (n; θL)]
.
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Exponential demand rate λ(p) = Λ exp(−α p).
Data: Λ = 10, α = 1, r = 1, θH = 1.2, θL = 0.8.

q̃(n) → q̃∞ :=
θH − 1

θH − θL

, as n →∞.
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Incomplete Information: Inventory Clearance

Summary:

◦ Uncertainty in market size (θ) is captured by a new state variable qt (a jump
process).

◦ V (n, q) can be computed using a recursive sequence of ODEs.

◦ Asymptotic approximation Ṽ (n, q) := Eq[W (n, θ)] performs quite well.

– Linear approximation easy to compute.
– Value function: V (n, q) ≈ Ṽ (n, q).
– Pricing strategy: p∗(n, q) ≈ p̃(n, q).

◦ Products are divided in two groups as a function of (n, q):

– Profitable Products with q < q̃(n) and
– Non-profitable Products with q > q̃(n).

◦ The threshold q̃(n) increases with n, that is, the retailer is willing to take more
risk for larger orders.
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Incomplete Information: Optimal Stopping

Setting:

- Retailer does not know θ at t = 0 but knows θ ∈ {θL, θH} with θL ≤ 1 ≤ θH.

- Retailer has the option of removing the product at any time, “Outlet Option”.

Retailer’s Optimization:

U(N0, q) = max
λ∈A, τ∈T

Eq

[∫ τ

0

e−r t p(λt) dD(Iλ(t)) + e−r τ R

]

subject to Nt = N0 −D(Iλ(t)),

dqt = −η(qt−) [dD(Iλ(t))− λt θ̄(qt−)dt], q0 = q.

Optimality Conditions:

{
U(n, q) + Φ(r U(n,q)

θ̄(q)
)− η(q)Uq(n, q) = U(n− 1, q − η(q)) if U ≥ R

U(n, q) + Φ(r U(n,q)

θ̄(q)
)− η(q)Uq(n, q) ≤ U(n− 1, q − η(q)) if U = R.
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Incomplete Information: Optimal Stopping

Proposition.

a) There is a unique continuously differentiable solution U(n, ·) defined on [0, 1] so that
U(n, q) > R on [0, q∗n) and U(n, q) = R on [q∗n, 1], where q∗n is the unique solution of

R + Φ

(
r R

θ̄(q)

)
= U(n− 1, q − η(q)).

b) q∗n is increasing in n and satisfies

θH − 1

θH − θL
≤ q

∗
n

n→∞−→ q
∗
∞ ≤ Root

{
Φ

(
r R

θ̄(q)

)
=

η(q)

q
(θH − 1) R

}
< 1.

c) The value function U(n, q)

– Is decreasing and convex in q on [0, 1]

– Increases in n for all q ∈ [0, 1] and satisfies

max{R, V (n, q)} ≤ U(n, q) ≤ max{R, m(q)} for all q ∈ [0, 1],

where m(q) := W (n, θH)− (W (n, θH)− R)

q∗n
q.

– Converges uniformly (in q) to a continuously differentiable function, U∞(q).

Dynamic Pricing with Demand Learning 21



Incomplete Information: Optimal Stopping
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Exponential demand rate λ(p) = Λ exp(−α p). Data: Λ = 10, α = 1, r = 1, θH = 1.2, θL = 0.8.
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Incomplete Information: Optimal Stopping
Approximation:

Ũ(n, q) := max{R, W (n, θH)− (W (n, θH)− R)

q̃n

q}

where q̃n is the unique solution of R + Φ

(
r R

θ̄(q)

)
= Ũ(n− 1, q − η(q)).
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Exponential demand rate λ(p) = Λ exp(−α p). Data: Λ = 10, α = 1, r = 1, θH = 1.2, θL = 0.8.
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Incomplete Information: Optimal Stopping

Summary:

◦ U(n, q) can be computed using a recursive sequence of ODEs with free-boundary conditions.

◦ For every n there is a critical belief q∗n above which it is optimal to stop.

◦ Again, the sequence q∗n is increasing with n, that is, the retailer is willing to take more risk for
larger orders.

◦ The sequence q∗n is bounded by

θH − 1

θH − θL

≤ q
∗
n ≤ q̂ := Root

{
Φ

(
r R

θ̄(q)

)
=

η(q)

q
(θH − 1) R

}

◦ The “outlet option” increases significantly the expected profits and the range of products (n, q)
that are profitable.

0 ≤ U(n, q)− V (n, q) ≤ (1− θL)
+

R.

◦ A simple piece-wise linear approximation works well.

Ũ(n, q) := max{R, W (n, θH)− (W (n, θH)− R)

q̃n

q}
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Concluding Remarks

◦ A simple dynamic pricing model for a retailer selling non-perishable products.

◦ Captures two common sources of uncertainty:

– Market size measured by θ ∈ {θH, θL}.
– Stochastic arrival process of price sensitive customers.

◦ Analysis gets simpler using the Fenchel-Legendre transform of c(λ) and its
properties.

◦ We propose a simple approximation (linear and piecewise linear) for the value
function and corresponding pricing policy.

◦ Some properties of the optimal solution are:

– Value functions V (n, q) and U(n, q) are decreasing and convex in q.

– The retailer is willing to take more risk (↑ q) for higher orders (↑ n).

– The optimal demand intensity λ∗(n, q) ↑ q and the optimal sales rate θ̄(q) λ∗(n, q) ↓ q.

◦ Extension: R(n) = R + ν n−K 11(n > 0).
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