Dynamic Pricing for Non-Perishable Products with Demand Learning

VICTOR F. ARAMAN RENÉ A. CALDENTEY Stern School of Business New York University

DIMACS Workshop on Yield Management and Dynamic Pricing Rutgers University

August, 2005

- \circ For many retail operations "capacity" is measured by store/shelf space.
- A key performance measure in the industry is

Average Sales per Square Foot per Unit Time.

 Trade-off between short-term benefits and the opportunity cost of assets.

Margin vs. Rotation.

- $\circ\,$ As opposed to the airline or hospitality industries, selling horizons are flexible.
- In general, most profitable/unprofitable products are new items for which there is little demand information.

Outline

- ✓ Model Formulation.
- ✓ Perfect Demand Information.
- ✓ Incomplete Demand Information.
 - Inventory Clearance
 - Optimal Stopping ("outlet option")

✓ Conclusion.

Model Formulation

I) STOCHASTIC SETTING:

- A probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
- A standard Poisson process D(t) under \mathbb{P} and its filtration $\mathcal{F}_t = \sigma(D(s) : 0 \le s \le t)$.
- A collection $\{\mathbb{P}_{\alpha} : \alpha > 0\}$ such that D(t) is a Poisson process with intensity α under \mathbb{P}_{α} .
- For a process f_t , we define $I_f(t) := \int_0^t f_s \, \mathrm{d}s$.

II) DEMAND PROCESS:

- Pricing strategy, a nonnegative (adapted) process p_t .
- A price-sensitive unscaled demand intensity

$$\lambda_t := \lambda(p_t) \iff p_t = p(\lambda_t).$$

- A (possibly unknown) demand scale factor $\theta > 0$. $\theta \lambda \theta$
- Cumulative demand process $D(I_{\lambda}(t))$ under \mathbb{P}_{θ} .
- Select $\lambda \in \mathcal{A}$ the set of admissible (adapted) policies

 $\lambda_t : \mathbb{R}_+ \to [0, \Lambda].$

Demand Intensity Exponential Demand Model $<math>\lambda(p) = \Lambda \exp(-\alpha p)$ $\theta\lambda(p)$ Increasing θ S Price (p)

Model Formulation

III) REVENUES:

- Unscaled revenue rate $c(\lambda) := \lambda p(\lambda)$, $\lambda^* := \operatorname{argmax}_{\lambda \in [0,\Lambda]} \{ c(\lambda) \}$, $c^* := c(\lambda^*)$.
- Terminal value (opportunity cost): R

Discount factor: r

- Normalization: $c^* = r R$.

IV) SELLING HORIZON:

- Inventory position:
$$N_t = N_0 - D(I_\lambda(t))$$
.

- $\tau_0 = \inf\{t \ge 0 : N_t = 0\}, \quad \mathcal{T} := \{\mathcal{F}_t - \text{stopping times } \tau \text{ such that } \tau \le \tau_0\}$

V) RETAILER'S PROBLEM:

$$\max_{\lambda \in \mathcal{A}, \ \tau \in \mathcal{T}} \qquad \mathbb{E}_{\theta} \left[\int_{0}^{\tau} e^{-rt} p(\lambda_{t}) \, \mathrm{d}D(I_{\lambda}(t)) + e^{-r\tau} R \right]$$
subject to
$$N_{t} = N_{0} - D(I_{\lambda}(t)).$$

Suppose $\theta > 0$ is known at t = 0 and an inventory clearance strategy is used, *i.e.*, $\tau = \tau_0$. Define the value function

$$\begin{split} W(n;\theta) &= \max_{\lambda \in \mathcal{A}} \qquad \mathbb{E}_{\theta} \left[\int_{0}^{\tau_{0}} e^{-rt} \, p(\lambda_{t}) \, \mathrm{d}D(I_{\lambda}(t)) + e^{-r\tau} \, R \right] \\ &\text{subject to} \qquad N_{t} = n - D(I_{\lambda}(t)) \text{ and } \tau_{0} = \inf\{t \geq 0 \ : \ N_{t} = 0\}. \end{split}$$

The solution satisfies the recursion
$$\frac{r W(n; \theta)}{\theta} = \Psi(W(n-1; \theta) - W(n; \theta)) \text{ and } W(0; \theta) = R,$$

where
$$\Psi(z) \triangleq \max_{0 \le \lambda \le \Lambda} \{\lambda \, z + c(\lambda)\}.$$

Proposition. For every $\theta > 0$ and $R \ge 0$ there is a unique solution $\{W(n) : n \in \mathbb{N}\}$.

If θ ≥ 1 then the value function W is increasing and concave as a function of n.
If θ ≤ 1 then the value function W is decreasing and convex as a function of n.
lim_{n→∞} W(n) = θR.

Value function for two values of θ and an exponential demand rate $\lambda(p) = \Lambda \exp(-\alpha p)$. The data used is $\Lambda = 10$, $\alpha = 1$, r = 1, $\theta_1 = 1.2$, $\theta_2 = 0.8$, $R = \Lambda \exp(-1)/(\alpha r) \approx 3.68$.

Corollary. Suppose $c(\lambda)$ is strictly concave. The optimal sales intensity satisfies: $\lambda^*(n; \theta) = \underset{0 \le \lambda \le \Lambda}{\operatorname{argmax}} \{\lambda (W(n-1; \theta) - W(n; \theta)) + c(\lambda)\}.$ - If $\theta \ge 1$ then $\lambda^*(n; \theta) \uparrow n$. - If $\theta \le 1$ then $\lambda^*(n; \theta) \downarrow n$. - $\lambda^*(n; \theta) \downarrow \theta$. - $\lim_{n \to \infty} \lambda^*(n, \theta) = \lambda^*$.

What about inventory turns (rotation)?

Proposition. Let $s(n, \theta) \triangleq \theta \lambda^*(n, \theta)$ be the optimal sales rate for a given θ and n.

If
$$\frac{\mathrm{d}}{\mathrm{d}\lambda}(\lambda p'(\lambda)) \leq 0$$
, then $s(n,\theta) \uparrow \theta$.

SUMMARY:

- A tractable dynamic pricing formulation for the inventory clearance model.
- $\circ~W(n;\theta)$ satisfies a simple recursion based on the Fenchel-Legendre transform of $c(\lambda).$
- $\circ~$ With full information products are divided in two groups:
 - High Demand Products with $\theta \geq 1$: $W(n, \theta)$ and $\lambda^*(n)$ increase with n.
 - Low Demand Products with $\theta \leq 1$: $W(n, \theta)$ and $\lambda^*(n)$ decrease with n.
- $\circ~{\rm High}~{\rm Demand}~{\sf products}$ are sold at a higher price and have a higher selling rate.
- $\circ~$ If the retailer can stop selling the product at any time at no cost then:
 - If $\theta < 1$ stop immediately ($\tau = 0$).
 - If $\theta > 1$ never stop $(\tau = \tau_0)$.
- $\circ~$ In practice, a retailer rarely knows the value of θ at t=0!

SETTING:

- The retailer does not know θ at t = 0 but knows $\theta \in \{\theta_L, \theta_H\}$ with $\theta_L \leq 1 \leq \theta_H$.
- The retailer has a prior belief $q \in (0, 1)$ that $\theta = \theta_L$.
- We introduce the probability measure $\mathbb{P}_q = q \mathbb{P}_{\theta_L} + (1 q) \mathbb{P}_{\theta_H}$.
- We assume an inventory clearance model, *i.e.*, $au = au_0$.

RETAILER'S BELIEFS:

Define the belief process $q_t := \mathbb{P}_q[heta \mid \mathcal{F}_t].$

Proposition. q_t is a \mathbb{P}_q -martingale that satisfies the SDE

$$\mathrm{d}q_t = -\eta(q_{t-}) \left[\mathrm{d}D_t - \lambda_t \,\bar{\theta}(q_{t-})\mathrm{d}t\right],$$

where
$$\overline{\theta}(q) := \theta_L q + \theta_H (1-q)$$

and $\eta(q) := \frac{q (1-q) (\theta_H - \theta_L)}{\theta_L q + \theta_H (1-q)}.$

RETAILER'S OPTIMIZATION:

$$\begin{split} V(N_0,q) &= \sup_{\lambda \in \mathcal{A}} \mathbb{E}_q \left[\int_0^{\tau_0} e^{-rt} p(\lambda_t) \, \mathrm{d}D(I_\lambda(s)) + e^{-r\tau_0} R \right] \\ \text{subject to} & N_t = N_0 - \int_0^t \mathrm{d}D(I_\lambda(s)), \\ & \mathrm{d}q_t = -\eta(q_{t-}) \left[\mathrm{d}D_t - \lambda_t \, \bar{\theta}(q_{t-}) \mathrm{d}t \right], \quad q_0 = q, \\ & \tau_0 = \inf\{t \ge 0 \ : \ N_t = 0\}. \end{split}$$

HJB EQUATION:

$$rV(n,q) = \max_{0 \le \lambda \le \Lambda} \left[\lambda \,\overline{\theta}(q) \left[V(n-1,q-\eta(q)) - V(n,q) + \eta(q) V_q(n,q) \right] + \overline{\theta}(q) \, c(\lambda) \right],$$

with boundary condition V(0,q) = R, $V(n,0) = W(n;\theta_H)$, and $V(n,1) = W(n;\theta_L)$.

RECURSIVE SOLUTION:

$$V(0,q) = R,$$
 $V(n,q) + \Phi\left(\frac{r V(n,q)}{\bar{\theta}(q)}\right) - \eta(q) V_q(n,q) = V(n-1,q-\eta(q)).$

Proposition.

- -) The value function V(n,q) is
- a) monotonically decreasing and convex in q,
- b) bounded by

 $W(n; \theta_L) \leq V(n, q) \leq W(n; \theta_H)$, and

c) uniformly convergent as $n \uparrow \infty$,

 $V(n,q) \xrightarrow{n \to \infty} R \overline{\theta}(q)$, uniformly in q.

-) The optimal demand intensity satisfies

$$\lim_{n\to\infty}\lambda^*(n,q)=\lambda^*.$$

Conjecture:

The optimal sales rate $\bar{\theta}(q) \lambda^*(n,q) \downarrow q$.

ASYMPTOTIC APPROXIMATION: Since

$$\lim_{n \to \infty} V(n,q) = R \,\overline{\theta}(q) = \lim_{n \to \infty} \{ q \, W(n,\theta_L) + (1-q) \, W(n,\theta_H) \},\$$

we propose the following approximation for V(n,q)

$$\widetilde{V}(n,q) := q W(n,\theta_L) + (1-q) W(n,\theta_H).$$

Some Properties of $\widetilde{V}(n,q)$:

- Linear approximation easy to compute.
- Asymptotically optimal as $n \to \infty$.
- Asymptotically optimal as $q \to 0^+$ or $q \to 1^-$.
- $\widetilde{V}(n,q) = \mathbb{E}_q[W(n,\theta)] \neq W(n,\mathbb{E}_q[\theta]) =: V^{\mathsf{CE}}(n,q) = \mathsf{Certainty Equivalent}.$

Exponential Demand $\lambda(p) = \Lambda \exp(-\alpha p)$:

Inventory = 5, $\Lambda = 10$, $\alpha = r = 1$, $\theta_H = 5.0$, $\theta_L = 0.5$.

For any approximation $V^{\text{approx}}(n,q)$, define the corresponding demand intensity using the HJB

 $\lambda^{\operatorname{approx}}(n,q) := \underset{0 \leq \lambda \leq \Lambda}{\operatorname{arg\,max}} \ [\lambda \, \bar{\theta}(q) [V^{\operatorname{approx}}(n-1,q-\eta(q)) - V^{\operatorname{approx}}(n,q)] + \lambda \, \kappa(q) V_q^{\operatorname{approx}}(n,q) + \bar{\theta}(q) \, c(\lambda)].$

Relative Price Error (%) :=
$$rac{p(\lambda^{ ext{approx}}) - p(\lambda^{st})}{p(\lambda^{st})} imes 100\%.$$

Asymptotic Approximation	N $(\%)$	
--------------------------	----------	--

	Inventory (n)					
q	1	5	10	25	100	
0.0	0.0	0.0	0.0	0.0	0.0	
0.2	2.7	-0.2	-0.3	-0.6	-0.5	
0.4	6.9	0.8	-0.6	-0.9	-0.7	
0.6	12.5	2.4	-0.2	-0.7	-1.0	
0.8	19.4	3.3	0.1	-0.4	-0.6	
1.0	0.0	0.0	0.0	0.0	0.0	

CERTAINTY EQUIVALENT (%)

	Inventory (n)					
q	1	5	10	25	100	
0.0	0.0	0.0	0.0	0.0	0.0	
0.2	5.3	2.6	2.7	2.4	-0.4	
0.4	14.4	11.6	12.0	10.1	-0.5	
0.6	29.9	28.2	28.0	17.6	-1.0	
0.8	54.6	46.2	37.4	11.1	-0.7	
1.0	0.0	0.0	0.0	0.0	0.0	

Relative price error for the exponential demand model $\lambda(p) = \Lambda \exp(-\alpha p)$, with $\Lambda = 20$ and $\alpha = 1$.

When should the retailer engage in selling a given product?

When $V(n,q) \ge R$.

Using the asymptotic approximation $\widetilde{V}(n,q),$ this is equivalent to

$$q \leq \widetilde{q}(n) := \frac{W(n; \theta_H) - R}{[W(n; \theta_H) - R] + [R - W(n; \theta_L)]}.$$

$$\widetilde{q}(n)
ightarrow \widetilde{q}_{\infty} := rac{ heta_H - 1}{ heta_H - heta_L}, \ \ {
m as} \ n
ightarrow \infty.$$

SUMMARY:

- \circ Uncertainty in market size (θ) is captured by a new state variable q_t (a jump process).
- $\circ V(n,q)$ can be computed using a recursive sequence of ODEs.
- Asymptotic approximation $\widetilde{V}(n,q) := \mathbb{E}_q[W(n,\theta)]$ performs quite well.
 - Linear approximation easy to compute.
 - Value function: $V(n,q) \approx \widetilde{V}(n,q)$.
 - Pricing strategy: $p^*(n,q) \approx \widetilde{p}(n,q)$.
- \circ Products are divided in two groups as a function of (n,q):
 - Profitable Products with $q < \widetilde{q}(n)$ and
 - Non-profitable Products with $q > \tilde{q}(n)$.
- The threshold $\widetilde{q}(n)$ increases with n, that is, the retailer is willing to take more risk for larger orders.

SETTING:

- Retailer does not know θ at t = 0 but knows $\theta \in \{\theta_L, \theta_H\}$ with $\theta_L \leq 1 \leq \theta_H$.
- Retailer has the option of removing the product at any time, "Outlet Option".

RETAILER'S OPTIMIZATION:

$$U(N_0, q) = \max_{\lambda \in \mathcal{A}, \ \tau \in \mathcal{T}} \mathbb{E}_q \left[\int_0^\tau e^{-r t} p(\lambda_t) \, \mathrm{d}D(I_\lambda(t)) + e^{-r \tau} R \right]$$

subject to
$$N_t = N_0 - D(I_\lambda(t)),$$
$$\mathrm{d}q_t = -\eta(q_{t-1}) \left[\mathrm{d}D(I_\lambda(t)) - \lambda_t \, \bar{\theta}(q_{t-1}) \mathrm{d}t \right], \ q_0 = q.$$

OPTIMALITY CONDITIONS:

$$\left\{ \begin{array}{ll} U(n,q) + \Phi(\frac{r U(n,q)}{\bar{\theta}(q)}) - \eta(q) U_q(n,q) = U(n-1,q-\eta(q)) & \text{if } U \ge R \\ U(n,q) + \Phi(\frac{r U(n,q)}{\bar{\theta}(q)}) - \eta(q) U_q(n,q) \le U(n-1,q-\eta(q)) & \text{if } U = R. \end{array} \right.$$

Proposition.

a) There is a unique continuously differentiable solution $U(n, \cdot)$ defined on [0, 1] so that U(n, q) > R on $[0, q_n^*)$ and U(n, q) = R on $[q_n^*, 1]$, where q_n^* is the unique solution of

$$R + \Phi\left(\frac{r R}{\overline{\theta}(q)}\right) = U(n - 1, q - \eta(q)).$$

b) q_n^* is increasing in n and satisfies

$$\frac{\theta_H - 1}{\theta_H - \theta_L} \le q_n^* \xrightarrow{n \to \infty} q_\infty^* \le \operatorname{Root} \left\{ \Phi\left(\frac{r\,R}{\bar{\theta}(q)}\right) = \frac{\eta(q)}{q} \left(\theta_H - 1\right) R \right\} < 1.$$

- c) The value function U(n,q)
 - Is decreasing and convex in q on [0, 1]
 - Increases in n for all $q \in [0, 1]$ and satisfies

$$\max\{R, V(n,q)\} \le U(n,q) \le \max\{R, m(q)\} \quad \text{for all } q \in [0,1],$$

where
$$m(q) := W(n, \theta_H) - \frac{(W(n, \theta_H) - R)}{q_n^*} q$$

- Converges uniformly (in q) to a continuously differentiable function, $U_{\infty}(q)$.

Exponential demand rate $\lambda(p) = \Lambda \exp(-\alpha p)$. Data: $\Lambda = 10, \alpha = 1, r = 1, \theta_H = 1.2, \theta_L = 0.8$.

APPROXIMATION:

$$\widetilde{U}(n,q) := \max\{R, W(n,\theta_H) - \frac{(W(n,\theta_H) - R)}{\widetilde{q}_n}q\}$$

where \widetilde{q}_n is the unique solution of $R + \Phi\left(\frac{rR}{\overline{\theta}(q)}\right) = \widetilde{U}(n-1,q-\eta(q)).$

Exponential demand rate $\lambda(p) = \Lambda \exp(-\alpha p)$.

Data: $\Lambda = 10, \, \alpha = 1, \, r = 1, \, \theta_H = 1.2, \, \theta_L = 0.8.$

SUMMARY:

- $\circ U(n,q)$ can be computed using a recursive sequence of ODEs with free-boundary conditions.
- For every n there is a critical belief q_n^* above which it is optimal to stop.
- $\circ\,$ Again, the sequence q_n^* is increasing with n, that is, the retailer is willing to take more risk for larger orders.
- $\circ~$ The sequence q_n^* is bounded by

$$\frac{\theta_H - 1}{\theta_H - \theta_L} \le q_n^* \le \hat{q} := \operatorname{Root}\left\{\Phi\left(\frac{r\,R}{\bar{\theta}(q)}\right) = \frac{\eta(q)}{q}\left(\theta_H - 1\right)R\right\}$$

• The "outlet option" increases significantly the expected profits and the range of products (n, q) that are *profitable*.

$$0 \leq U(n,q) - V(n,q) \leq (1-\theta_L)^+ R.$$

• A simple piece-wise linear approximation works well.

$$\widetilde{U}(n,q) := \max\{R, W(n, heta_H) - rac{(W(n, heta_H) - R)}{\widetilde{q}_n}q\}$$

Concluding Remarks

- A simple dynamic pricing model for a retailer selling non-perishable products.
- Captures two common sources of uncertainty:
 - Market size measured by $\theta \in \{\theta_H, \theta_L\}$.
 - Stochastic arrival process of price sensitive customers.
- \circ Analysis gets simpler using the Fenchel-Legendre transform of $c(\lambda)$ and its properties.
- We propose a simple approximation (linear and piecewise linear) for the value function and corresponding pricing policy.
- Some properties of the optimal solution are:
 - Value functions V(n,q) and U(n,q) are decreasing and convex in q.
 - The retailer is willing to take more risk $(\uparrow q)$ for higher orders $(\uparrow n)$.
 - The optimal demand intensity $\lambda^*(n,q) \uparrow q$ and the optimal sales rate $\overline{\theta}(q) \lambda^*(n,q) \downarrow q$.

• Extension:
$$R(n) = R + \nu n - K \mathbb{1}(n > 0).$$