Multiple Antennas: A Network View

Pramod Viswanath University of Illinois, Urbana-Champaign

October 7, 2002

DIMACS Workshop on Wireless

Joint work with D. Tse at UCB and L. Zheng at MIT.

MIMO in Wireless Networks

- Explosion of research in recent years
 - information theory
 - coding
 - signal processing
- Much focus on point-to-point channels
- To understand impact of multiple antennas in wireless networks, need broader view

Multiple Access Example

Question: what does adding one more antenna at each mobile buy me?

Multiple Access Example

Question: what does adding one more antenna at each mobile buy me?

• Looking at each point-to-point link in isolation:

Example

Question: what does adding one more antenna at each mobile buy me?

- Looking at point-to-point link in isolation:
 - (roughly) doubles the link capacity.

Example

- Looking at the network:
 - number of users is greater than number of receive antennas
 - increase in overall system capacity negligible
- But does adding that antenna still buy me something?

Outline of Talk

- Review of diversity-multiplexing tradeoff in point-to-point channels.
- Extension to multiple access scenario.
- Speculation on a theory for general networks.

Point-to-Point MIMO Channel

M transmit and N receive antennas.

I.I.D. Rayleigh fading model.

Degrees of Freedom

- point-to-point link: *M* transmit, *N* receive antennas
- i.i.d. Rayleigh fading (Foschini 96):

 $C \sim \min\{M, N\} \log SNR$ bits/s/Hz.

- Multiple antennas provide $\min\{M, N\}$ degrees of freedom
- spatial multiplexing gain of $\min\{M, N\}$
- C is the ergodic capacity.

Diversity

- Ergodic capacity assumes infinite-depth interleaving
- Impossible in a slow fading environment
- Unreliability due to fading is a first-order issue.
- In 1 by 1 Rayleigh fading channel: very poor error probability.
- Example: for BPSK:

 $P_e \sim \mathrm{SNR}^{-1}$ at high SNR

• In M by N channel, however,

 $P_e \sim \mathrm{SNR}^{-MN}$ at high SNR

• Multiple antennas provide a maximum of *MN* diversity gain.

Diversity and Multiplexing

But each is only a single-dimensional view of the situation.

The right way to formulate the problem is a tradeoff between the two types of gains.

Fundamental Tradeoff

Focus on high SNR and slow fading situation.

A space-time coding scheme of block length ${\cal T}$ achieves

Spatial Multiplexing Gain r: if data rate $R = r \log SNR$ (bps/Hz)andDiversity Gain d: if error probability $P_e \sim SNR^{-d}$

Fundamental Tradeoff

Focus on high SNR and slow fading situation.

A space-time coding scheme of block length ${\cal T}$ achieves

Spatial Multiplexing Gain r: if data rate $R = r \log SNR$ (bps/Hz)andDiversity Gain d: if error probability $P_e \sim SNR^{-d}$

Fundamental tradeoff: for any r, the maximum diversity gain achievable: $d^*_{M,N}(r)$.

 $r \to d^*_{M,N}(r)$

Equivalently:

 $d \to r^*_{M,N}(d)$

A tradeoff between data rate and error probability.

Optimal Tradeoff

(Zheng, Tse 02) If block length $T \ge M + N - 1$:

Optimal Tradeoff

(Zheng, Tse 02) If block length $T \ge M + N - 1$:

For multiplexing gain of r (r integer), best diversity gain achievable is (M-r)(N-r).

Multiple Access

- For point-to-point, multiple antennas provide diversity and multiplexing gain.
- With K users, multiple antennas discriminate signals from different users too.
- i.i.d. Rayleigh fading, N receive, M transmit antennas per user.

Multiuser Diversity-Multiplexing Tradeoff

Suppose we want every user to achieve an error probability:

 $P_e \sim \mathrm{SNR}^{-d}$

and a data rate

 $R = r \log SNR$ bits/s/Hz.

What is the optimal tradeoff between d (diversity gain) and r (multiplexing gain)?

Assume a block length $T \ge KM + N - 1$.

Optimal Multiuser D-M Tradeoff

- For r = 0, diversity is MN
- For $r = \min\{M, \frac{N}{K}\}$, diversity is 0

Multiuser Tradeoff: M < N/(K+1)

- diversity-multiplexing tradeoff of each user is $d^{\ast}_{M,N}(r)$
- as though it is the only user in the system

Multiuser Tradeoff: M > N/(K+1)

• $r \leq N/(K+1)$: Single-user tradeoff curve

Multiuser Tradeoff: M > N/(K+1)

- $r \leq N/(K+1)$: Single-user tradeoff curve
- $r \text{ from } N/(K+1) \text{ to } \min\{M, N/K\}$:
 - tradeoff as though the K users are pooled together: KM antennas and rate Kr,

Back to Motivating Example

Question: what does adding one more antenna at each mobile buy me?

Scenario of 1 transmit antenna

Answer: Adding one more transmit antenna

- No increase in number of degrees of freedom
- However, increases the maximum diversity gain from N to 2N.
- Improves diversity gain d(r) for every r.

Tradeoff Between Users

- We have been looking at the symmetrical, equal rate case.
- More generally, we can ask:

What is the optimal tradeoff between the achievable multiplexing gains for a given diversity gain d?

• Given by the multiplexing gain region C(d) for a given d.

- Multiplexing gain region $\mathcal{C}(d)$ is a cube: $r_i \leq r^*_{M,N}(d)$
- Single user performance for every user
- Require:
 - $M \leq N/(K+1)$ (large number of receive antennas), or
 - M > N/(K+1) but $d \ge d^*_{KM,N}[N/(K+1)]$ (high diversity requirement)

Multiplexing Region: General Case

If
$$d \in \left[d^*_{(k-1)M,N}[N/k], d^*_{kM,N}[N/(k+1)]\right]$$
:

$$\mathcal{C}(d) = \left\{ (r_1, \dots, r_K) : \sum_{i \in \mathcal{S}} r_i < r^*_{|\mathcal{S}|M,N}(d), \qquad \forall \mathcal{S} \text{ with } |\mathcal{S}| = 1 \text{ or } |\mathcal{S}| \ge k \right\}$$

- $r^*_{|\mathcal{S}|M,N}(d)$ is point-to-point M-D tradeoff with $|\mathcal{S}|M$ Tx and N Rx antennas.
- As d decreases, more and more constraints become active
- Finally, $2^{K} 1$ constraints are active: C(d) is a polymatroid

2-user example

 $r^*_{2M,N}(d)$ is total multiplexing gain in system with 2M transmit antennas pooled together.

Suboptimal Receiver: the Decorrelator/Nuller

- Consider case of M = 1 transmit antenna for each user
- Number of users K < N

Tradeoff for the Decorrelator

- Maximum diversity gain is N K + 1
- "costs K 1 diversity to null out K 1 interferers" (Winters et al '93)

Tradeoff for the Decorrelator

- Maximum diversity gain is N K + 1
- "costs K 1 diversity to null out K 1 interferers" (Winters et al '93)
- Adding one receive antenna provides:
 - either more reliability per user
 - or accommodate 1 more user at the same reliability.

Tradeoff for the Decorrelator

- Optimal tradeoff curve also a straight line
 - but with a maximum diversity gain of N.
- Adding one receive antenna provides more reliability per user and accommodate 1 more user.

Multiple Antennas in General Networks

Multiple antennas serve multiple functions:

- diversity
- spatial multiplexing
- multiple access
- broadcast
- interference suppression
- cooperative relaying (distributed antennas)
- etc

What is the fundamental performance tradeoff in general?

Our approach may give a simple picture.