Capacity of Multiantenna Gaussian Broadcast Channel

Pramod Viswanath
Joint Work with David Tse, UC Berkeley

Oct 8, 2002

Multiple Antenna Broadcast Channel

$$
\underline{v}=H \underline{x}+\underline{w}
$$

Overview

- Nondegraded Broadcast channel
- Capacity region unknown
- Known Result:
- Sum Capacity for 2 users (Caire,Shamai '00)
- Our Result:
- Sum Capacity for general number of users and antennas
- Simple proof and interpretation
- The Capacity region

Multiple Antenna Broadcast Channel

- Only marginal channels matter
- Noise correlation arbitrary

Sato Upper Bound

- Receivers cooperate

Upper Bound

Broadcast channel

Cooperating Receivers

Achievable Rates: Costa Precoding

- Users' data modulated onto spatial signatures $\underline{u}_{1}, \underline{u}_{2}$

Stage 1: Costa Precoding

- Encoding for user 1 treating signal from user 2 as known interference at transmitter

Stage 2

- Encode user 2 treating signal for user 1 as noise

Costa Strategy and Upper Bound

- Want to find K such that sum rate with Costa precoding is same as capacity of cooperating receivers channel

DL-UL Duality

- A representation of sum rate achievable by Costa strategy
- Present a form of duality in multiantenna channels
- a change of variable and a conservation law
- Applications of this observation

Applications

- Unifies duality observations under various guises
- Reciprocity - Telatar (99)
- Virtual Uplink channel - R-Farrokhi (97), Visotsky (99)
- Duality between MAC and BC - Jindal et al (01)
- Extension of results on uplink to downlink
- Performance of linear receivers - Tse and Hanly (99)
- Achievable rate region for multiantenna broadcast channel
- Marton Region for Gaussian inputs

DL-UL Duality

- Costa precoding over all $\underline{u}_{1}, \underline{u}_{2}$ achieves same region as uplink
- Jindal and Goldsmith ('00)

Summary

V// DL-UL Duality

Multiple Access

Reciprocity

Cooperating Transmitters

Summary

Multiple Access
Cooperating Transmitters

MAC and Cooperating Transmitters Channel

Multiple Access
Cooperating Transmitters Channel
$\max _{\Sigma_{x}} I(\underline{\mathrm{x}} ; \underline{\mathrm{y}})$
$E\left[\underline{\mathrm{x}}^{t} \underline{\mathrm{x}}\right] \leq P$

$$
E\left[\underline{x}^{t} K \underline{x}\right] \leq P
$$

x_{1}, x_{2} independent
$K_{i i} \leq 1$

MAC and Cooperating Transmitters Channel

Multiple Access
Cooperating Transmitters Channel

$$
\max _{\Sigma_{x}} I(\underline{\mathrm{x}} ; \underline{\mathrm{y}})
$$

$\operatorname{tr}\left[\Sigma_{x}\right] \leq P$
$\max _{\Sigma_{x}} I(\underline{\mathrm{x}} ; \underline{\mathrm{y}})$

$$
\operatorname{tr}\left[\Sigma_{x} K\right] \leq P
$$

$\left(\Sigma_{x}\right)_{i i} \geq 0, \quad\left(\Sigma_{x}\right)_{i j}=0, i \neq j$

$$
K_{i i} \leq 1
$$

Convex Duality

MAC Problem:

$$
\max _{\Sigma_{x}}[I(\underline{\mathrm{x}} ; \underline{\mathrm{y}})] \quad \text { such that } \operatorname{tr}\left[\Sigma_{x}\right] \leq P, \quad\left(\Sigma_{x}\right)_{i j}=0,\left(\Sigma_{x}\right)_{i i} \geq 0
$$

Convex Duality

MAC Problem: $\max _{\Sigma_{x}}[I(\underline{\mathrm{x}} ; \underline{\mathrm{y}})] \quad$ such that $\operatorname{tr}\left[\Sigma_{x}\right] \leq P, \quad\left(\Sigma_{x}\right)_{i j}=0,\left(\Sigma_{x}\right)_{i i} \geq 0$

Convex Dual:

$$
\min _{\lambda \geq 0, \lambda_{i i} \geq 0, \lambda_{i j}} \max _{\Sigma_{x}}\left[I(\underline{x} ; \underline{\mathrm{y}})-\lambda\left(\operatorname{tr}\left[\Sigma_{x}\right]-P\right)-\sum_{i, j} \lambda_{i j}\left(\Sigma_{x}\right)_{i j}\right]
$$

Convex Duality

MAC Problem:

$$
\max _{x}[I(\underline{\mathrm{x}} ; \underline{\mathrm{y}})] \quad \text { such that } \operatorname{tr}\left[\Sigma_{x}\right] \leq P, \quad\left(\Sigma_{x}\right)_{i j}=0,\left(\Sigma_{x}\right)_{i i} \geq 0
$$

Convex Dual:

$$
\min _{\lambda \geq 0, \lambda_{i i} \geq, \lambda_{i j}} \max _{x}\left[I(\underline{\mathrm{x}} ; \underline{\mathrm{y}})-\lambda\left(\operatorname{tr}\left[\Sigma_{x}\right]-P\right)-\sum_{i, j} \lambda_{i j}\left(\Sigma_{x}\right)_{i j}\right]
$$

In Matrix Form: $K_{i i}=1-\lambda_{i i} / \lambda, K_{i j}=\lambda_{i j} / \lambda$

$$
\min _{K, K_{i i} \leq 1, \lambda \geq 0} \max _{\Sigma_{x}}\left[I(\underline{\mathrm{x}} ; \underline{\mathrm{y}})-\lambda\left(\operatorname{tr}\left[K \Sigma_{x}\right]-P\right)\right]
$$

Convex Duality

MAC Problem:

$$
\max _{\Sigma_{x}}[I(\underline{\mathrm{x}} ; \underline{\mathrm{y}})] \quad \text { such that } \operatorname{tr}\left[\Sigma_{x}\right] \leq P, \quad\left(\Sigma_{x}\right)_{i j}=0
$$

Convex Dual:

$$
\min _{\lambda \geq 0, \lambda_{i i} \geq 0, \lambda_{i j}} \max _{x}\left[I(\underline{\mathrm{x}} ; \underline{\mathrm{y}})-\lambda\left(\operatorname{tr}\left[\Sigma_{x}\right]-P\right)-\sum_{i, j} \lambda_{i j}\left(\Sigma_{x}\right)_{i j}\right]
$$

In Matrix Form: $K_{i i}=1-\lambda_{i i} / \lambda, K_{i j}=\lambda_{i j} / \lambda$

$$
\min _{K, K_{i i} \leq 1, \lambda \geq 0,} \max _{\Sigma_{x}}\left[I(\underline{\mathrm{x}} ; \underline{\mathrm{y}})-\lambda\left(\operatorname{tr}\left[K \Sigma_{x}\right]-P\right)\right]
$$

Finally: $K_{i i} \leq 1, \quad \operatorname{tr}\left[K \Sigma_{x}\right] \leq P$

$$
\min _{K} \max _{\Sigma_{x}}[I(\underline{x} ; \underline{y})]
$$

Convex Duality: Positive Semidefinite Constraints

Convex Dual of MAC Problem: $K_{i i} \leq 1, \quad \operatorname{tr}\left[K \Sigma_{x}\right] \leq P$

$$
\min _{K} \max _{\Sigma_{x}}[I(\underline{\mathrm{x}} ; \underline{\mathrm{y}})]
$$

Cooperating Transmitters Channel: $K_{i i} \leq 1, \operatorname{tr}\left[K \Sigma_{x}\right] \leq P$

$$
\min _{K \succeq 0} \max _{\Sigma_{x \succeq 0}}[I(\underline{\mathrm{x}} ; \underline{\mathrm{y}})]
$$

Convex Duality: Positive Semidefinite

Constraints

Convex Dual of MAC Problem: $K_{i i} \leq 1, \quad \operatorname{tr}\left[K \Sigma_{x}\right] \leq P$

$$
\min _{K} \max _{\Sigma_{x}}[I(\underline{\mathrm{x}} ; \underline{\mathrm{y}})]
$$

p.s.d. constraints

Cooperating Transmitters Channel: $K_{i i} \leq 1, \operatorname{tr}\left[K \Sigma_{x}\right] \leq P$

$$
\min _{K \succeq 0} \max _{\Sigma_{x \succeq 0}}[I(\underline{\mathrm{x}} ; \underline{\mathrm{y}})]
$$

Main Result

Cooperating Transmitters

Capacity Region

- Focus on

$$
a R_{1}+R_{2}
$$

- $R_{1}=$ rate of user 1
- $R_{2}=$ rate of user 2
- $a<1$: user 1 has less weight

Cooperating Upper Bound Doesnt Work

- No separation of rates R_{1}, R_{2}
- Hence no control over $a R_{1}+R_{2}$

Degraded Receivers

- User 1 is privy to signal of user 2
- Now a degraded Gaussian broadcast channel

Degraded Upper Bound

$$
K_{i i}=1
$$

Costa Coding Achievability

V// DL-UL Duality

Multiple Access

Degraded

What is the 4th System?

V// DL-UL Duality

Multiple Access

Degraded

$$
\underline{Z} \sim \mathcal{N}(0, K)
$$

Degraded

Upper Bound
$?$

Degraded Transmitters MAC

Multiple Access

Degraded Transmitters Bound

V// DL-UL Duality

\leq

Degraded Transmitters MAC

Convex Duality

- Choose cost function K such that

$$
\text { User } 1 \text { (stronger one) does not use user 2's input. }
$$

- for input that maximizes $a R_{1}+R_{2}$

Convex Duality

Multiple Access
Degraded Transmitters MAC

Reciprocity: Almost There

Convex Duality
Optimal K

Multiple Access

Degraded

Degraded Transmitters MAC

Inequalities Not in the Correct Direction

Multiple Access
Degraded Transmitters MAC

The Final Step

Multiple Access
Degraded Transmitters MAC

