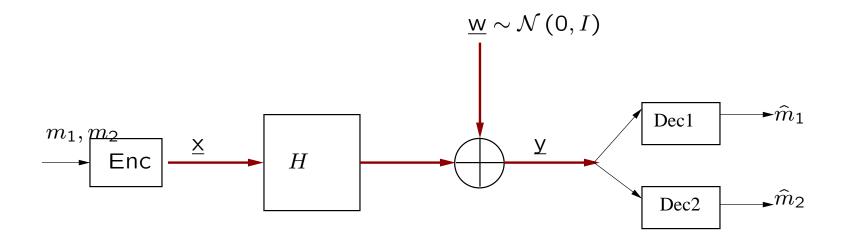
Capacity of Multiantenna Gaussian Broadcast Channel

Pramod Viswanath

Joint Work with David Tse, UC Berkeley

Oct 8, 2002

Multiple Antenna Broadcast Channel

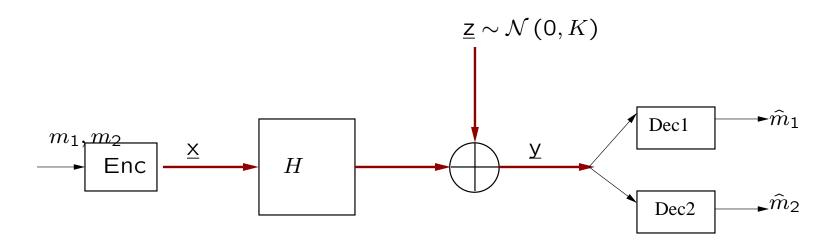


 $\underline{\mathbf{y}} = H\underline{\mathbf{x}} + \underline{\mathbf{w}}$

Overview

- Nondegraded Broadcast channel
 - Capacity region unknown
- Known Result:
 - Sum Capacity for 2 users (Caire, Shamai '00)
- Our Result:
 - Sum Capacity for general number of users and antennas
 - Simple proof and interpretation
 - The Capacity region

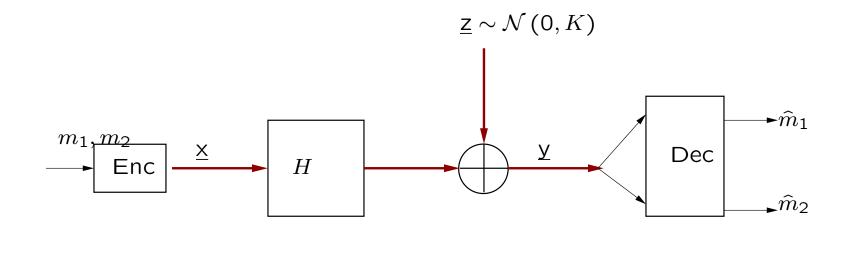
Multiple Antenna Broadcast Channel



$$\begin{array}{rcl} \underline{\vee} & = & H\underline{\times} + \underline{z} \\ K_{ii} & = & 1 \end{array}$$

- Only marginal channels matter
- Noise correlation arbitrary

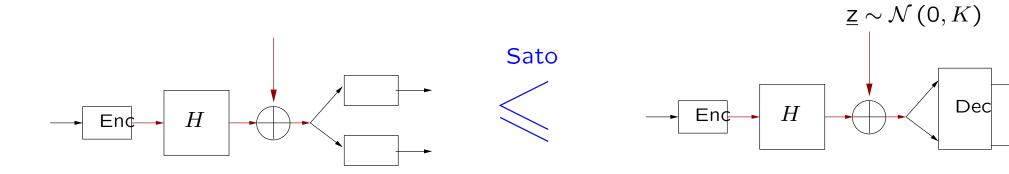
Sato Upper Bound



 $K_{ii} = 1$

• Receivers cooperate

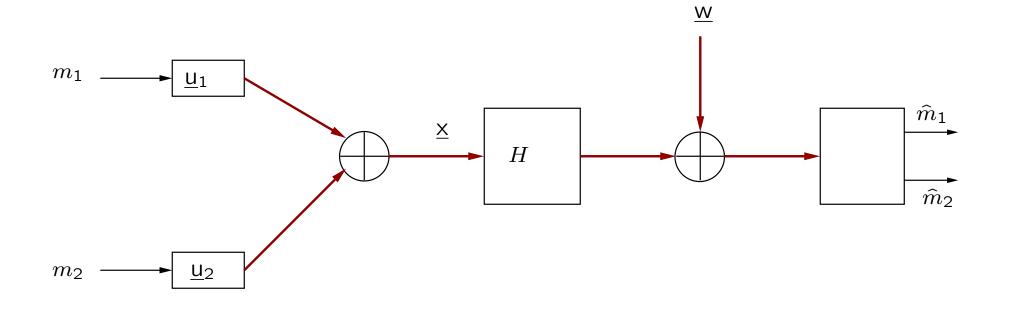
Upper Bound



Broadcast channel

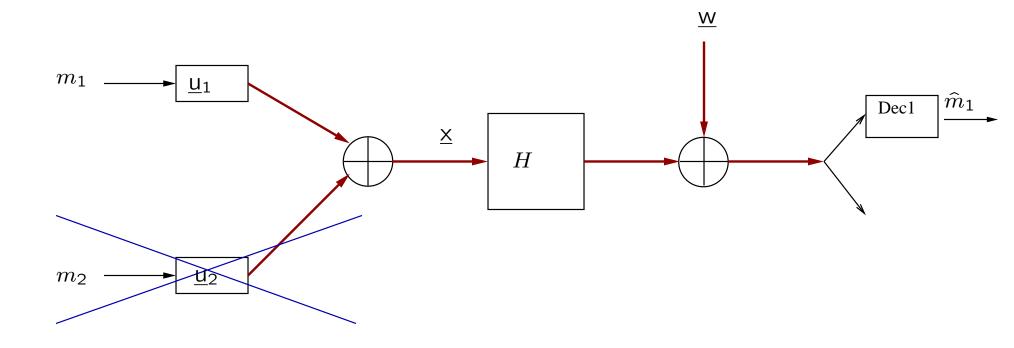
Cooperating Receivers

Achievable Rates: Costa Precoding

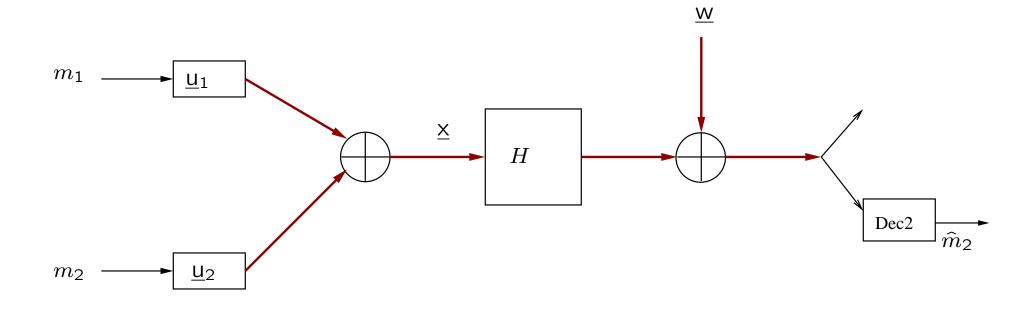


• Users' data modulated onto spatial signatures $\underline{u}_1, \underline{u}_2$

Stage 1: Costa Precoding

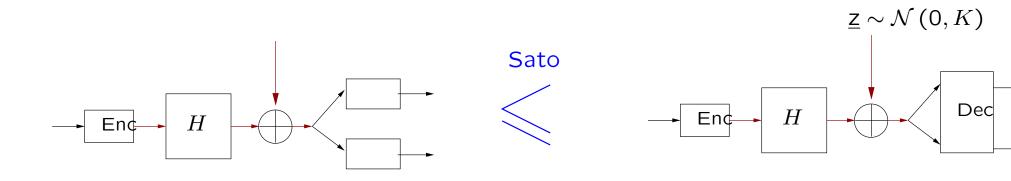


• Encoding for user 1 treating signal from user 2 as known interference at transmitter



• Encode user 2 treating signal for user 1 as noise

Costa Strategy and Upper Bound



• Want to find K such that sum rate with Costa precoding is same as capacity of cooperating receivers channel

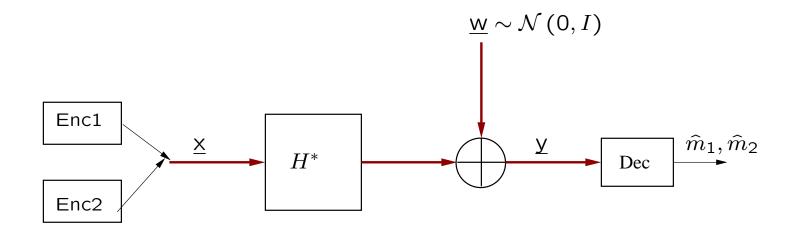
DL-UL Duality

- A representation of sum rate achievable by Costa strategy
- Present a form of duality in multiantenna channels
 - a change of variable and a conservation law
- Applications of this observation

Applications

- Unifies duality observations under various guises
 - Reciprocity Telatar (99)
 - Virtual Uplink channel R-Farrokhi (97), Visotsky (99)
 - Duality between MAC and BC Jindal et al (01)
- Extension of results on uplink to downlink
 - Performance of linear receivers Tse and Hanly (99)
- Achievable rate region for multiantenna broadcast channel
 - Marton Region for Gaussian inputs

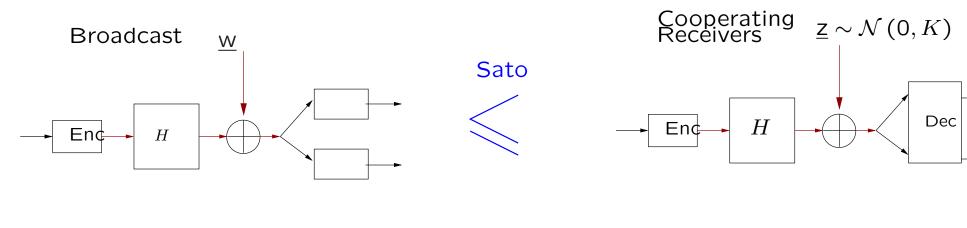
DL-UL Duality



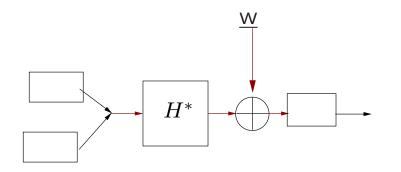
• Costa precoding over all $\underline{u}_1, \underline{u}_2$ achieves same region as uplink

- Jindal and Goldsmith ('00)

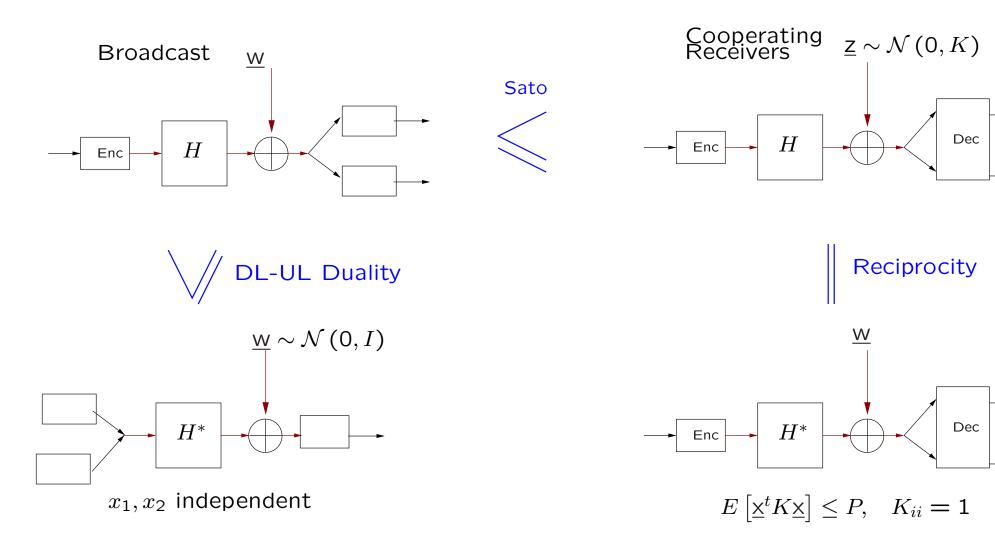
Summary



DL-UL Duality



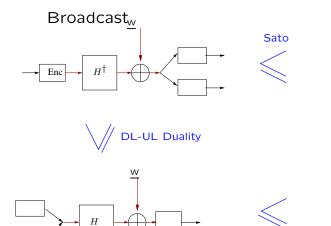
Reciprocity



Multiple Access

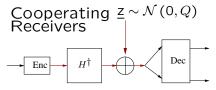
Cooperating Transmitters

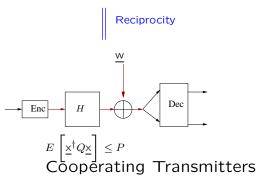
Summary



 x_1, x_2 independent

Multiple Access





Multiple Access

Cooperating Transmitters

MAC and Cooperating Transmitters Channel

Multiple Access

Cooperating Transmitters Channel

 $E\left[\underline{\mathbf{x}}^{t}\underline{\mathbf{x}}\right] \le P \qquad \qquad E\left[\underline{\mathbf{x}}^{t}K\underline{\mathbf{x}}\right] \le P$

 x_1, x_2 independent

 $K_{ii} \leq 1$

MAC and Cooperating Transmitters Channel

Multiple Access

Cooperating Transmitters Channel

 $\operatorname{tr}\left[\boldsymbol{\Sigma}_{x}\right] \leq P \qquad \qquad \qquad \operatorname{tr}\left[\boldsymbol{\Sigma}_{x}K\right] \leq P$

 $(\Sigma_x)_{ii} \ge 0, \ (\Sigma_x)_{ij} = 0, \ i \ne j$ $K_{ii} \le 1$

MAC Problem:

 $\max_{\Sigma_x} [I(\underline{x} ; \underline{y})] \quad \text{such that} \quad \text{tr} [\Sigma_x] \le P, \quad (\Sigma_x)_{ij} = 0, \ (\Sigma_x)_{ii} \ge 0$

MAC Problem:

 $\max_{\Sigma_x} [I(\underline{x} ; \underline{y})] \quad \text{such that } \operatorname{tr} [\Sigma_x] \leq P, \quad (\Sigma_x)_{ij} = 0, \ (\Sigma_x)_{ii} \geq 0$

Convex Dual:

$$\min_{\lambda \ge 0, \lambda_{ii} \ge 0, \lambda_{ij}} \max_{\Sigma_x} \left[I\left(\underline{x} \; ; \; \underline{y}\right) - \lambda\left(\text{tr}\left[\Sigma_x\right] - P\right) - \sum_{i,j} \lambda_{ij}\left(\Sigma_x\right)_{ij} \right]$$

MAC Problem:

 $\max_{\Sigma_x} [I(\underline{x} ; \underline{y})] \quad \text{such that } \text{tr} [\Sigma_x] \le P, \quad (\Sigma_x)_{ij} = 0, \ (\Sigma_x)_{ii} \ge 0$

Convex Dual:

$$\min_{\lambda \ge 0, \lambda_{ii} \ge \lambda_{ij}} \max_{\Sigma_x} \left[I\left(\underline{x} \; ; \; \underline{y}\right) - \lambda\left(\text{tr}\left[\Sigma_x\right] - P\right) - \sum_{i,j} \lambda_{ij} \left(\Sigma_x\right)_{ij} \right]$$

In Matrix Form: $K_{ii} = 1 - \lambda_{ii}/\lambda, K_{ij} = \lambda_{ij}/\lambda$

 $\min_{K,K_{ii} \leq 1,\lambda \geq 0} \max_{\Sigma_x} \left[I\left(\underline{x} ; \underline{y}\right) - \lambda\left(\text{tr}\left[K\Sigma_x\right] - P \right) \right]$

MAC Problem:

 $\max_{\Sigma_x} [I(\underline{x} ; \underline{y})] \quad \text{such that} \quad \text{tr} [\Sigma_x] \leq P, \quad (\Sigma_x)_{ij} = 0$

Convex Dual:

$$\min_{\lambda \ge 0, \lambda_{ii} \ge 0, \lambda_{ij}} \max_{\Sigma_x} \left[I\left(\underline{x} \; ; \; \underline{y}\right) - \lambda\left(\operatorname{tr}\left[\Sigma_x\right] - P\right) - \sum_{i,j} \lambda_{ij}\left(\Sigma_x\right)_{ij} \right]$$

In Matrix Form:
$$K_{ii} = 1 - \lambda_{ii}/\lambda, K_{ij} = \lambda_{ij}/\lambda$$

$$\min_{\substack{K,K_{ii} \leq 1, \lambda \geq 0, \ \Sigma_x}} \max \left[I\left(\underline{x} ; \underline{y}\right) - \lambda\left(\text{tr}\left[K\Sigma_x\right] - P \right) \right]$$

Finally: $K_{ii} \leq 1$, tr $[K\Sigma_x] \leq P$ min max $\begin{bmatrix} I(\underline{x}; \underline{y}) \end{bmatrix}$

Convex Duality: Positive Semidefinite Constraints

Convex Dual of MAC Problem: $K_{ii} \leq 1$, tr $[K\Sigma_x] \leq P$

 $\min_{K} \max_{\Sigma_{x}} \left[I\left(\underline{x} \; ; \; \underline{y} \right) \right]$

Cooperating Transmitters Channel: $K_{ii} \leq 1$, tr $[K\Sigma_x] \leq P$ min max $\begin{bmatrix} I(X; Y) \end{bmatrix}$ $K \succeq 0 \Sigma_x \succeq 0$

Convex Duality: Positive Semidefinite Constraints

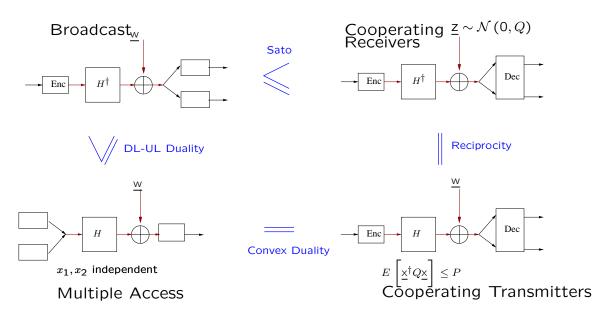
Convex Dual of MAC Problem: $K_{ii} \leq 1$, tr $[K\Sigma_x] \leq P$

 $\min_{K} \max_{\Sigma_{x}} \left[I\left(\underline{x} \; ; \; \underline{y} \right) \right]$

p.s.d. constraints

Cooperating Transmitters Channel: $K_{ii} \leq 1$, tr $[K\Sigma_x] \leq P$ min max $[I(\underline{x}; \underline{y})]$ $K \succeq 0 \Sigma_x \succeq 0$

Main Result



Multiple Access

Cooperating Transmitters

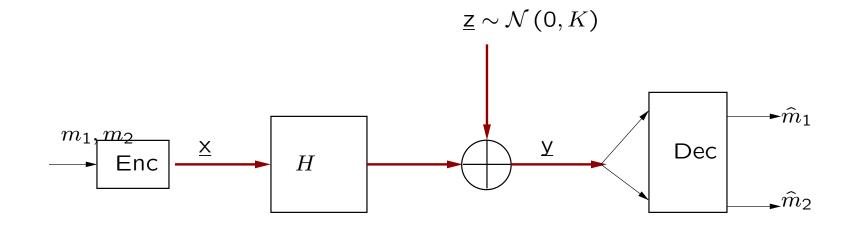
Capacity Region

• Focus on

 $aR_1 + R_2$

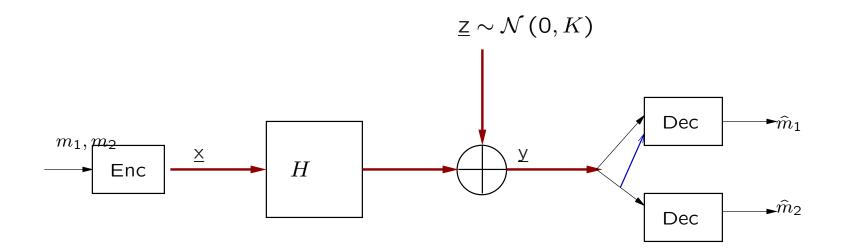
- R_1 = rate of user 1
- R_2 = rate of user 2
- a < 1: user 1 has less weight

Cooperating Upper Bound Doesnt Work



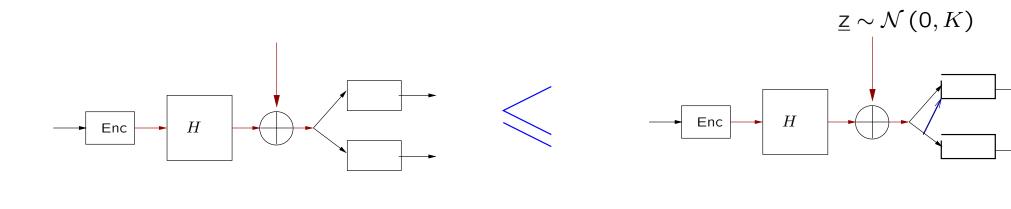
- No separation of rates R_1, R_2
- Hence no control over $aR_1 + R_2$

Degraded Receivers



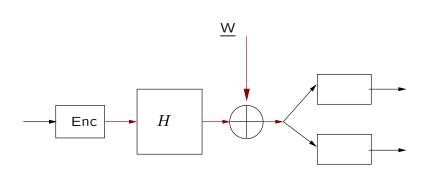
- User 1 is privy to signal of user 2
- Now a degraded Gaussian broadcast channel

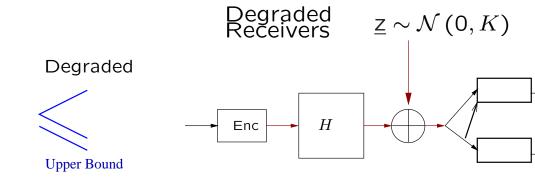
Degraded Upper Bound

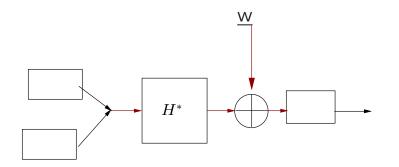


$$K_{ii} = 1$$

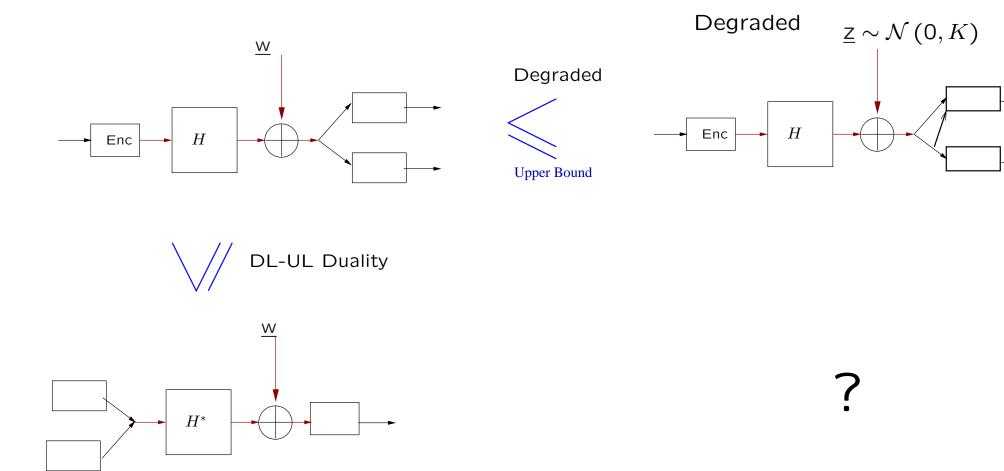
Costa Coding Achievability



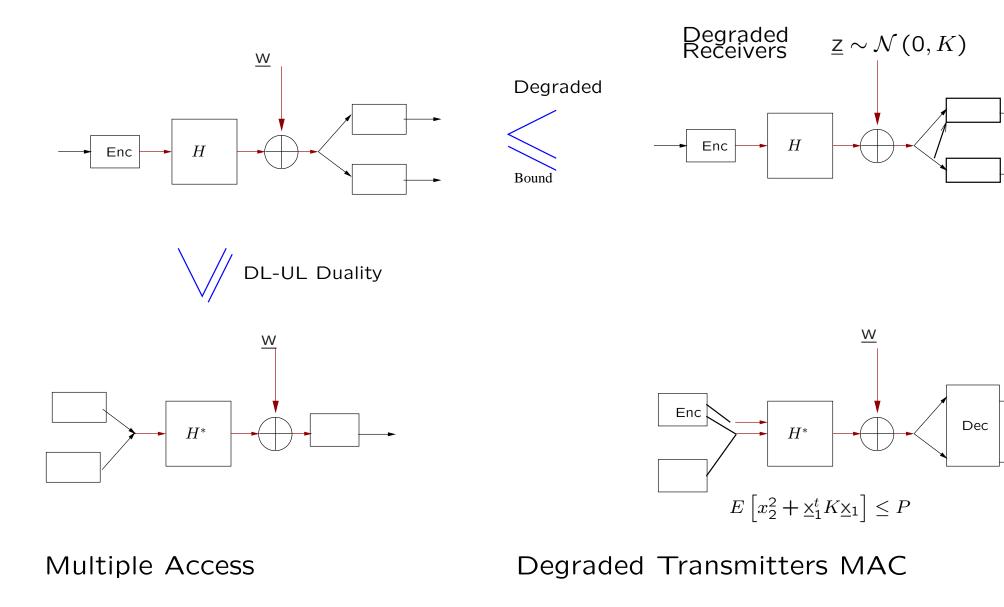




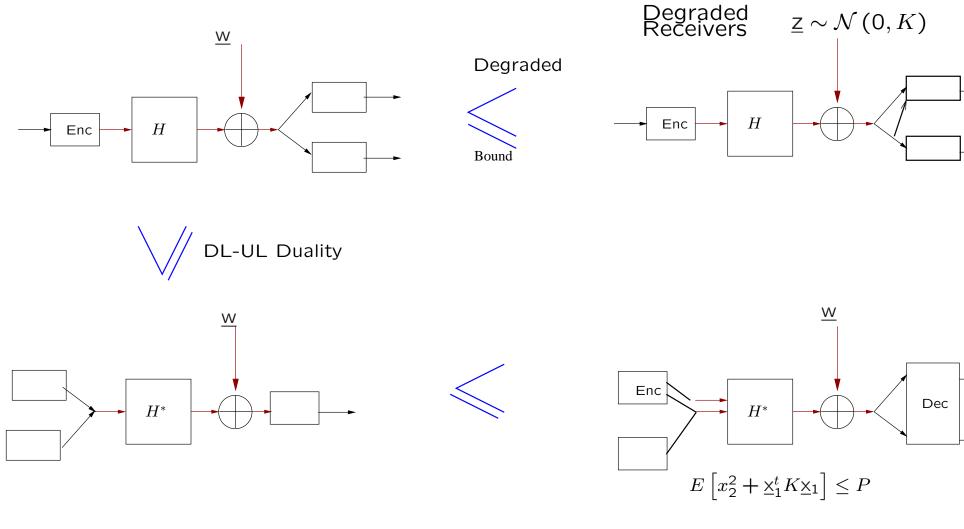
What is the 4th System?



Degraded Transmitters MAC



Degraded Transmitters Bound

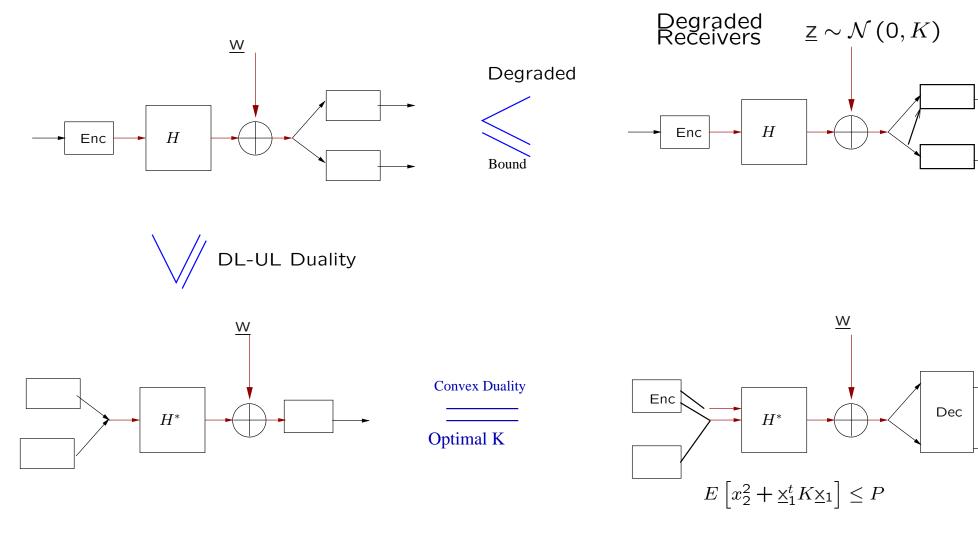


Degraded Transmitters MAC

• Choose cost function K such that

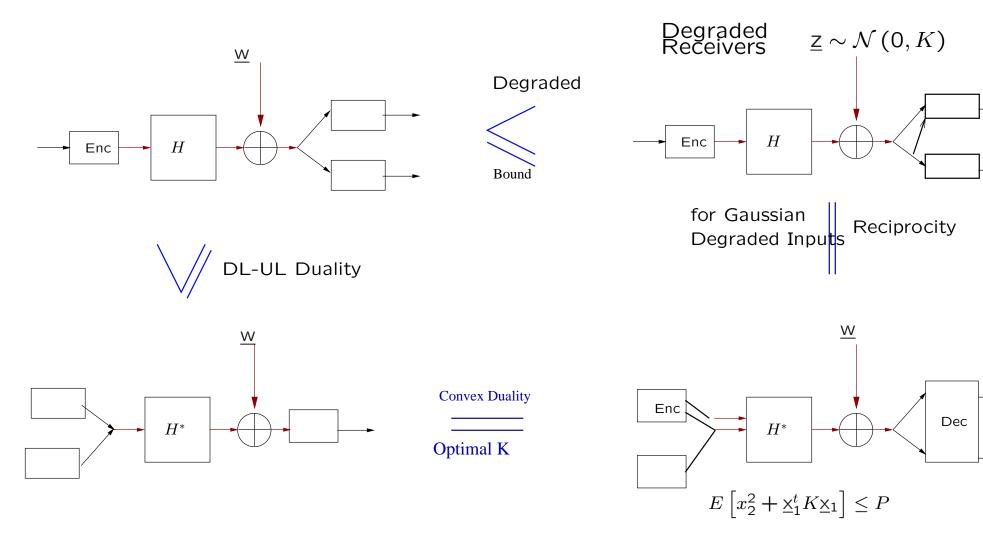
User 1 (stronger one) does not use user 2's input.

• for input that maximizes $aR_1 + R_2$



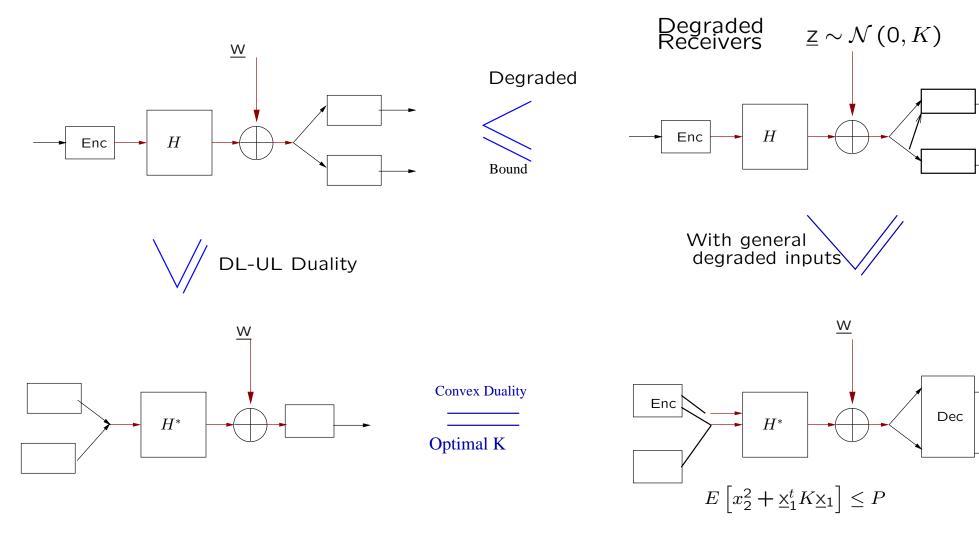
Degraded Transmitters MAC

Reciprocity: Almost There



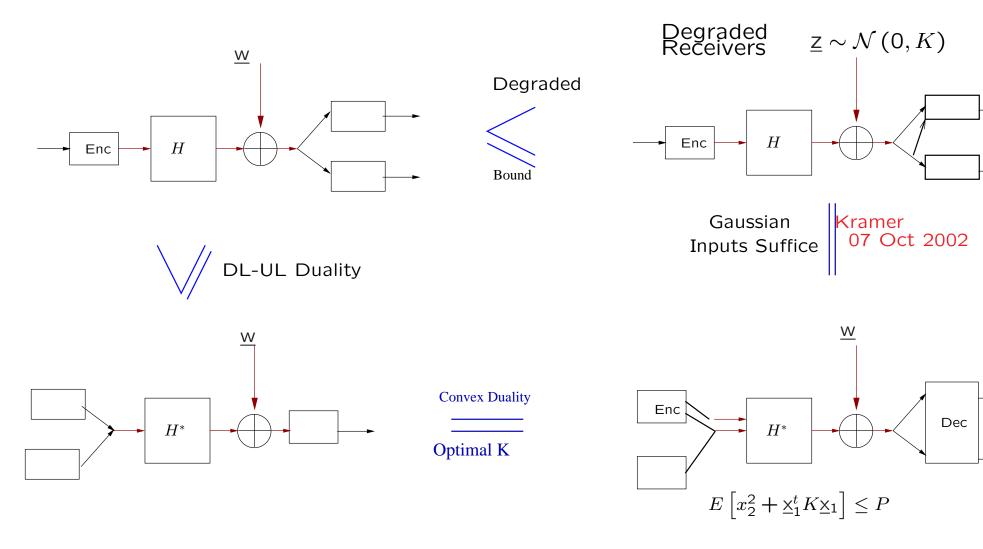
Degraded Transmitters MAC

Inequalities Not in the Correct Direction



Degraded Transmitters MAC

The Final Step



Degraded Transmitters MAC