Finding Frequent Items in Data Streams

Graham Cormode
graham@research.att.com

Marios Hadjieleftheriou (AT&T)
S. Muthukrishnan (Rutgers)
Radu Berinde & Piotr Indyk (MIT)
Martin Strauss (U. Michigan)
Data Streams

- Many large sources of data are best modeled as data streams
 - E.g. streams of network packets, defining traffic distributions
- Impractical and undesirable to store and process all data exactly
- Instead, seek algorithms to find approximate answers
 - With one pass over data, quickly build a small summary
- Active research area for last decade, history goes back 30 years
The Frequent Items Problem

- The **Frequent Items Problem** (aka Heavy Hitters): given stream of N items, find those that occur most frequently
- E.g. Find all items occurring more than 1% of the time
- Formally “hard” in small space, so allow approximation
- Find all items with count $\geq \phi N$, none with count $<(\phi-\varepsilon)N$
 - Error $0 < \varepsilon < 1$, e.g. $\varepsilon = 1/1000$
 - Related problem: estimate each frequency with error $\pm \varepsilon N$
Why Frequent Items?

♦ A natural question on streaming data
 – Track bandwidth hogs, popular destinations etc.
♦ The subject of much streaming research
 – Scores of papers on the subject
♦ A core streaming problem
 – Many streaming problems connected to frequent items
 (itemset mining, entropy estimation, compressed sensing)
♦ Many practical applications
 – Search log mining, network data analysis, DBMS optimization
This Talk

♦ A brief history of the frequent items problem
♦ A tour of some of the most popular algorithms
 – Counter-based algorithms: Frequent, LossyCounting, SpaceSaving
 – Sketch algorithms: Count-Min Sketch, Count Sketch
♦ Experimental comparison of algorithms
♦ Extensions, new results and future directions
Data Stream Models

- We model data streams as sequences of simple tuples
- Complexity arises from massive length of streams
- Arrivals only streams:
 - Example: \((x, 3), (y, 2), (x, 2)\) encodes the arrival of 3 copies of item \(x\), 2 copies of \(y\), then 2 copies of \(x\).
 - Could represent eg. packets on a network; power usage
- Arrivals and departures:
 - Example: \((x, 3), (y, 2), (x, -2)\) encodes final state of \((x, 1), (y, 2)\).
 - Can represent fluctuating quantities, measure differences between two distributions, or represent general signals
The Start of The Problem?

[J.Alg 2, P208-209] Suppose we have a list of \(n \) numbers, representing the “votes” of \(n \) processors on the result of some computation. We wish to decide if there is a majority vote and what the vote is.

- Does not require a streaming solution, but first solutions were
MAJORITY algorithm

- **MAJORITY** algorithm solves the problem in arrivals only model
- **Start** with a counter set to zero. For each item:
 - If counter is zero, pick up the item, set counter to 1
 - Else, if item is same as item in hand, increment counter
 - Else, decrement counter
- If there is a majority item, it is in hand
 - **Proof outline**: each decrement pairs up two different items and cancels them out
 - Since majority occurs > \(\frac{N}{2} \) times, not all of its occurrences can be canceled out.
“Frequent” algorithm

♦ FREQUENT generalizes MAJORITY to find up to k items that occur more than $1/k$ fraction of the time

♦ Keep k different candidates in hand. For each item in stream:
 – If item is monitored, increase its counter
 – Else, if $< k$ items monitored, add new item with count 1
 – Else, decrease all counts by 1
Frequent Analysis

- **Analysis:** each decrease can be charged against k arrivals of different items, so no item with frequency N/k is missed
- Moreover, $k = \frac{1}{\varepsilon}$ counters estimate frequency with error εN
 - Not explicitly stated until later [Bose et al., 2003]

- **Some history:** First proposed in 1982 by Misra and Gries, rediscovered twice in 2002
 - Later papers showed how to make fast implementations
Lossy Counting

- **LossyCounting** algorithm proposed in [Manku, Motwani ’02]
- **Simplified version:**
 - Track items and counts
 - For each block of $\frac{1}{\epsilon}$ items, merge with stored items and counts
 - Decrement all counts by one, delete items with zero count
- Easy to see that counts are accurate to ϵN
- Analysis shows $O(\frac{1}{\epsilon} \log \epsilon N)$ items are stored
- Full version keeps extra information to reduce error
“SpaceSaving” algorithm [Metwally, Agrawal, El Abaddi 05] merges Lossy Counting and FREQUENT algorithms

Keep $k = 1/\varepsilon$ item names and counts, initially zero
Count first k distinct items exactly

On seeing new item:
- If it has a counter, increment counter
- If not, replace item with least count, increment count
SpaceSaving Analysis

♦ Smallest counter value, \min, is at most εn
 – Counters sum to n by induction
 – $1/\varepsilon$ counters, so average is εn: smallest cannot be bigger

♦ True count of an uncounted item is between 0 and \min
 – Proof by induction, true initially, \min increases monotonically
 – Hence, the count of any item stored is off by at most εn

♦ Any item x whose true count $> \varepsilon n$ is stored
 – By contradiction: x was evicted in past, with count $\leq \min_t$
 – Every count is an overestimate, using above observation
 – So est. count of $x > \varepsilon n \geq \min \geq \min_t$, and would not be evicted

So: Find all items with count $> \varepsilon n$, error in counts $\leq \varepsilon n$
Experimental Comparison

♦ Implementations of all these algorithms (and more!) at
 http://www.research.att.com/~marioh/frequent-items

♦ Experimental comparison highlights some differences not apparent from analytic study
 – All counter algorithms seem to have similar worst-case performance ($O(1/\varepsilon)$ space to give εN guarantee)
 – Algorithms are often more accurate than analysis would imply

♦ Compared on a variety of web, network and synthetic data
Two implementations of SpaceSaving (SSL, SSH) achieve perfect accuracy in small space (10KB – 1MB)

Very fast: 20M – 30M updates per second
Counter Algorithms Summary

♦ Counter algorithms very efficient for arrivals-only case
 – Use $O(1/\varepsilon)$ space, guarantee εN accuracy
 – Very fast in practice (many millions of updates per second)

♦ Similar algorithms, but a surprisingly clear “winner”
 – Over many data sets, parameter settings, SpaceSaving algorithm gives appreciably better results

♦ Many implementation details even for simple algorithms
 – “Find if next item is monitored”: search tree, hash table…?
 – “Find item with smallest count”: heap, linked lists…?

♦ Not much room left for improvement in core problem?
Outline

♦ Problem definition and background
♦ “Counter-based” algorithms and analysis
♦ “Sketch-based” algorithms and analysis
♦ Further Results
♦ Conclusions
Sketch Algorithms

- Counter algorithms are for the “arrivals only” model, do not handle “arrivals and departures”
 - Deterministic solutions not known for the most general case
- Sketch algorithms compute a summary that is a linear transform of the frequency vector
 - Departures are naturally handled by such algorithms
- Sketches solve core problem of estimating item frequencies
 - Can then use to find frequent items via search algorithm
Count-Min Sketch

- Count-Min Sketch proposed in [C, Muthukrishnan ’04]
- Model input stream as a vector x of dimension U
 - $x[i]$ is frequency of item i
- Creates a small summary as an array of $w \times d$ in size
- Use d hash function to map vector entries to $[1..w]$
Count-Min Sketch Structure

- Each entry in vector x is mapped to one bucket per row.
- Estimate $x[j]$ by taking $\min_k \text{CM}[k,h_k(j)]$
 - Guarantees error less than $\epsilon \|x\|_1$ in size $O(1/\epsilon \log 1/\delta)$
 - Probability of more error is less than $1-\delta$
Count-Min Sketch Analysis

Approximate \(x'[j] = \min_k \text{CM}[k,h_k(j)] \)

- **Analysis**: In \(k \)'th row, \(\text{CM}[k,h_k(j)] = x[j] + X_{k,j} \)
 - \(X_{k,j} = \sum x[i] | h_k(i) = h_k(j) \)
 - \(E(X_{k,j}) = \sum x[k]*\Pr[h_k(i)=h_k(j)] \leq \Pr[h_k(i)=h_k(k)] \cdot \sum a[i] = \varepsilon \|x\|_1/2 \) by pairwise independence of \(h \)
 - \(\Pr[X_{k,j} \geq \varepsilon \|x\|_1] = \Pr[X_{k,j} \geq 2E(X_{k,j})] \leq 1/2 \) by Markov inequality

- So, \(\Pr[x'[j] \geq x[j] + \varepsilon \|x\|_1] = \Pr[\forall \; k. \; X_{k,j} > \varepsilon \|x\|_1] \leq 1/2^{\log 1/\delta} = \delta \)

- **Final result**: with certainty \(x[j] \leq x'[j] \) and with probability at least \(1-\delta \), \(x'[j] < x[j] + \varepsilon \|x\|_1 \)
 - Estimate is biased, can correct easily
Count Sketch

- **Count Sketch** proposed in [Charikar, Chen, Farach-Colton ’02]
- Uses extra hash functions $g_1 \ldots g_{\log \frac{1}{\delta}} \{1 \ldots U\} \rightarrow \{+1, -1\}$
- Now, given update $(j, +c)$, set $CM[k, h_k(j)] += c \cdot g_k(j)$
Count Sketch Analysis

- Estimate $x'_k[j] = CM[k, h_k(j)] * g_k(j)$
- Analysis shows estimate is correct in expectation
- Bound error by analyzing the variance of the estimator
 - Apply Chebyshev inequality on the variance
- With probability $1 - \delta$, error is at most $\varepsilon \|x\|_2 < \varepsilon N$
 - $\|x\|_2$ could be much smaller than N, at cost of $1/\varepsilon^2$
Hierarchical Search

- Sketches estimate the frequency of a single item
 - How to find frequent items without trying all items?
- **Divide-and-conquer** approach limits search cost
 - Impose a binary tree over the domain
 - Keep a sketch of each level of the tree
 - Descend if a node is heavy, else stop
- **Correctness**: all ancestors of a frequent item are also frequent
- Alternate approach based on “**group testing**”
 - Use sketches to determine identities of frequent items by running multiple tests.
Sketch Algorithms Experiments

Less clear which sketch is best: depends on data, parameters
Speed less by factor of 10, size more by factor 10:
 - A necessary trade off for flexibility to handle departures?
Outline

- Problem definition and background
- “Counter-based” algorithms and analysis
- “Sketch-based” algorithms and analysis
- Further Results
- Conclusions
Tighter Bounds

♦ **Observation**: algorithms outperform worst case guarantees

♦ **Analysis**: can prove stronger guarantees than εN

 – Define n_1 = highest frequency, n_2 = second highest, etc.

 – Then define $F_{1,\text{res}(k)} = N - (n_1 + n_2 + \ldots n_k)$, $\ll N$ for skewed dbns

 – Result [Berinde, C, Indyk, Strauss, ’09]: Frequent, SpaceSaving (and others) guarantee $\varepsilon F_{1,\text{res}(k)}$ error

♦ **Similar bounds for sketch algorithms**

 – **CountMin sketch** also has $F_{1,\text{res}(k)}$ bound

 – **Count sketch** has $(F_{2,\text{res}(k)})^{1/2} = (\sum_{i=k+1}^{m} n_i^2)^{1/2}$ bound

 – Related to results in Compressed Sensing for signal recovery
Weighted Updates

- **Weighted case**: find items whose total weight is high
 - Sketch algorithms adapt easily, counter algs with effort
- **Simple solution**: all weights are integer multiples of small δ
- **Full solution**: define appropriate generalizations of counter algs to handle real valued weights [Berinde et al ’09]
 - Straightforward to extend SpaceSaving analysis to weighted case
 - Frequent more complex, action depends on smallest counter value
 - No positive results known for LossyCounting
Mergability of Summaries

- Want to **merge** summaries, to summarize the union of streams
- Sketches with shared hash fns are easy to merge together
 - Via linearity, sum of sketches = sketch of sums
- Counter-based algorithms need new analysis [Berinde et al’09]
 - Merging two summaries preserves accuracy, but space may grow
 - With pruning of the summary, can merge indefinitely
 - Space remains bounded, accuracy degrades by at most a constant
Other Extensions

♦ Heavy Changers
 – Which items have largest (absolute, relative) change over two streams?

♦ Assumptions on frequency distribution, order
 – Give tighter space/accuracy tradeoff for skewed distributions
 – Worst case arrival order vs. random arrival order

♦ Distinct Heavy Hitters
 – E.g. which sources contact the most distinct addresses?

♦ Time Decay
 – “Weight” of items decay (exponentially, polynomially) with age
Conclusions

♦ Finding the frequent items is one of the most studied problems in data streams
 – Continues to intrigue researchers
 – Many variations proposed
 – Algorithms have been deployed in Google, AT&T, elsewhere...
♦ Still some room for innovation, improvements

♦ Survey and experiments in VLDB [C, Hadjieleftheriou ’08]
 – Code, synthetic data and test scripts at http://www.research.att.com/~marioh/frequent-items
 – Shorter, broader write up in CACM 2009