Formal Concept Analysis with GaLicia

Petko Valtchev

Université IIM
de Montréal

Petko.Valtchev@UMontreal.CA
\& The GaLicia team
http://www.iro.umontreal.ca/~galicia/

Overview

- Formal concept analysis (FCA): "application of lattice theory to data analysis"
- Theory:
- Back to work by O. Öre and by G. Birkhoff in 40s,
- M. Barbut \& B. Monjardet, R. Wille, B. Ganter, V. Duquenne...
- Practice:
- social sciences: Duquenne, Wille,...
- information retrieval: Godin, Carpineto and Romano,...
- software engineering: Godin, Snelting,...
- data mining: Missaoui \& Godin, Lakhal,...
- Now:
- rapidly growing community: "FCA" + "lattices" - couple of 10^{3} hits with Google,
- annual forums: 2 intl. conferences, 2+ workshops,
- Missing: a widely-shared software platform for FCA (ToscanaJ, ConExp, Galicia)

Outline of the Talk

- FCA: Galois connections, closures, lattices, min. generators ...
- Computational challenges
- Realization within Galicia + demo

Formal Contexts and Galois Connections

Lattices of Formal Concepts («de Galois »)s

Families of closed

$$
\begin{aligned}
& C^{o}{ }_{K}=\left\{X \mid X \subseteq O, X^{\prime \prime}=X\right\} \\
& C^{a}{ }_{K}=\left\{Y \mid Y \subseteq A, Y^{\prime \prime}=Y\right\}
\end{aligned}
$$

lattice (anti-)isomorphism
$\mathcal{L}_{\mathrm{O}}{ }_{\mathrm{K}}=\left(C^{0}{ }_{\mathrm{K}}, \subseteq\right) \equiv \mathcal{S}_{\mathrm{K}}=\left(C^{a_{K}}, \supseteq\right)$
with f and g as co-bijections
formal concept (X,Y)
$X \in C^{\circ}{ }_{K}$ (extent), $X=Y^{\prime} ;$
$Y \in C^{a}{ }_{K}$ (intent), $Y=X^{\prime}$.
partial order
(sub-concept of)

$$
\begin{aligned}
\left(X_{1}, Y_{1}\right) \leq\left(X_{2}, Y_{2}\right) & \text { iff } X_{1} \subseteq X_{2} \\
& \left(\Leftrightarrow Y_{2} \subseteq Y_{1}\right)
\end{aligned}
$$

lattice operators
[Wille 82], [Barbut \& Montjardet 70]
inf - $\bigcup_{j \in J}\left(X_{\mathrm{j}}, Y_{\mathrm{j}}\right)=\left(\bigcap_{\mathrm{j} \in \mathrm{J}} X_{\mathrm{j}},\left(\bigcup_{\mathrm{j} \in \mathrm{J}} Y_{\mathrm{j}}\right)^{\prime}\right)$
$\sup -\bigcup_{j \in J}\left(X_{j}, Y_{j}\right)=\left(\left(\bigcup_{j \in J} X_{j}\right)^{\prime}, \bigcap_{j \in J} Y_{j}\right)$

Equivalence Relation on 2^{A} Induced by $C^{a} K$

Boolean lattice 2^{A}

Minimal Generators

Why Are Min. Generators Interesting?

Minimal generators in...

- ...theory:
- related to minimal transversals in hypergraph theory [Berge 89]
- candidate keys of the tables in a relational database
-... practice:
- minimal sets of tests/exams/questions for a medical diagnosis
- ...algorithmic design:
- canonical representatives for concept intents:
- minimal generating prefixes in NextClosure [Ganter 84]
- "seeds" for the computation of intents:
- in general-purpose FCA algorithms: Titanic [Stumme et al 02]
- in FCA-flavored data mining algorithms: Close, Aclose [Pasquier $00]$

Implications

Given $K=(O, A, I), Y, Z \subseteq A$, $Y \rightarrow Z$ is an implication :

- Y premise,
- Z conclusion. (aka functional dependency in $D B$)
\sum_{K} is large and redundant!

	a	b	c	d	e	f	g	h	i
1	x	x					x		
2	x	x					x	x	
3	x	x	x				x	x	
4	x		x				x	x	x
5	x	x		x		x			
6	x	x	x	x		x			
7	x		x	x	x				
8	x		x	x		x			

Def. $\mathrm{Y} \rightarrow \mathrm{Z}$ valid in K if
$\forall o \in O, Y \subseteq o^{\prime}$ forces $Z \subseteq o^{\prime}$ (iff $Z \subseteq Y^{\prime \prime}$).
$\Sigma_{K}=$ all valid implications of K.

$$
\begin{aligned}
E x . \text { bd } & \rightarrow \text { af, ae } \rightarrow \text { cd : valid, } \\
\text { bc } & \rightarrow \text { agh : invalid (6-ctr-ex.). }
\end{aligned}
$$

```
Def. A maximally informative rule:
    - minimal premise,
    - maximal conclusion.
```

$$
\begin{aligned}
\text { Ex. bd } & \rightarrow \text { af : infromative } \\
\text { ae } & \rightarrow \text { cd : not }(\mathrm{e} \rightarrow \text { acd valid }) .
\end{aligned}
$$

Inference Axioms and Covers

Def. Armstrong's axioms for entailment $\vDash \subseteq 2 \Sigma \mathrm{~K} \times 2 \Sigma \mathrm{k}$
 inference model (calculi) over \sum_{K}

- $\emptyset \models Y \rightarrow Y$;
- $Y \rightarrow Z, U \rightarrow V \models Y \cup U \rightarrow Z \cup V$;
- $Y \rightarrow Z, U \rightarrow V, U \subseteq Z \models Y \rightarrow V$.

Ex.

$$
\text { bd } \rightarrow \text { af, e } \rightarrow \text { acd } \vDash \text { bde } \rightarrow \text { acdf }
$$

Def. Cover for a set of implications
For $\mathfrak{I}, \mathcal{J} \subseteq \Sigma_{k}, \mathcal{I}$ is a cover of \mathcal{J} iff $\mathfrak{I} \models \mathcal{J}$

Pseudo-closed Sets and Canonical Basis

Def. $\Phi C_{K} \subseteq 2^{A}$: the pseudo-closed sets of K :
-Y \neq Y', $^{\prime \prime}$

- for all Z pseudo-closed, Z \subset Y forces Z" \subset Y.

Def. (Duquenne \& Guigues 86)
Canonical basis of $K, \mathcal{B}_{K}=\left\{Z \rightarrow Z^{\prime \prime}-\mathrm{Z} \mid \mathrm{Z} \in \mathscr{Q}_{\mathrm{K}}\right\}$.

Ex. acdef in $\oint_{C_{K}}$: ae, af in $\oint^{6} C_{K}$; ae"=acde \subset acdef, af" $=$ afd \subset acdef.

Prop. For all K, \mathcal{B}_{K} is a cover of \sum_{K} of a minimal size ($n b$. of rules).

Ex. The basis of the example

adg \rightarrow bcefhi	acg $\rightarrow h$	$a h \rightarrow g$	$\rightarrow a$
acdef $\rightarrow b g h i$	$a b d \rightarrow f$	$a e \rightarrow c d$	$a f \rightarrow d$
abcghi \rightarrow def	$a i \rightarrow c g h$		

	a	b	c	d	e	f	g	h	i
1	x	x					x		
2	x	x					x	x	
3	x	x	x				x	x	
4	x		x				x	x	x
5	x	x		x		x			
6	x	x	x	x		x			
7	x		x	x	x				
8	x		x	x		x			

Partial Implications and Further Bases

Def. Partial implication $\mathrm{X} \rightarrow \mathrm{Y}$ (Luxenburger 92)
Not valid to 100% (exists object $0: X \subseteq 0^{\prime}$, but $Y \not \subset$ o' $^{\prime}$).

Two bases for partial implications, following the lattice structure [Luxenburger 92]

Def. Cover basis : $\left\{Z^{\prime \prime} \rightarrow Y^{\prime \prime}-Z^{\prime \prime} \mid Z^{\prime \prime}\right.$ minimal closed subset of $\left.Y^{\prime \prime}\right\}$.

Why Study the Pseudo-closed?

Pseudo-closed in...

- ...theory:
- related to the precedence relation in the lattice of all closures on a ground set A [Caspard \& Monjardet 03]
- minimal covers for functional dependencies in relational databases
[Maier 80]
- ...algorithmic design:
- alternative closure computation mechanism for intents:
- helps restrict usage of extents in large datasets [Valtchev \& Duquenne 03],
- ... practice:
- non-redundant sets of association rules in data mining [Kryszkiewicz 02]

Intriguing Properties

- Families not necessarily disjoint:
- Only $C_{K} \cap \Phi_{C_{K}}=\varnothing$
- Gen L_{K} may share elements with both other families

Prop. Gen L_{K} is an order ideal of the Boolean lattice 2^{A} :
$Z \in G_{K}$ forces $\forall Y \subseteq Z, Z \in \mathcal{G e n}_{K}$.
Prop. $\mathscr{D}^{2} C_{K} \cup C_{K}$ is closed for intersection (closure space): $\Phi C_{K} \cup C_{K}=\left(\Phi C_{K} \cup C_{K}\right)^{\cap}$.

Prop. Individual elements of \mathscr{Q}_{K} preserve the closure property:
$\forall Y \in \mathscr{P} C_{K}, \forall Z \in C_{K}, Y \cap Z \in C_{K} \cup\{Y\}$.

Outline of the Talk

- FCA: Galois connections, closures, lattices, min. generators ...
- Computational challenges
- Realization within Galicia

Algorithmic Problems in FCA

			Target structure			
			Concept set \mathcal{C}_{K}	Concept set + precedence $\mathcal{L}_{K}=\left(C_{K}, \leq\right)$	Min. generators Gen. $_{\text {K }}$	$\begin{gathered} \text { Canonical } \\ \text { basis } \\ \mathcal{B}_{K} \end{gathered}$
$\left\lvert\, \begin{aligned} & \frac{3}{0} \\ & \vdots \\ & \hline 0 \end{aligned}\right.$	-		NextClosure [Ganter 84], [Chein 69]	[Bordat 86], [Nourine \& Raynaud 99]	Titanic [Stumme et al 02], [Pfalz \& Taylor 02]	NextClosure for PC [Ganter 84]
	$\begin{aligned} & \frac{0}{2} \\ & \frac{1}{\xi} \end{aligned}$	0	[Norris 78]	[Godin et al 95], Romano 96], [Valtchev et al 02, 03]	[Valtchev et al 04],	
	${ }^{1}$	>		[Nehme et al 05]	[Nehme et al 05]	[Ob'edkov \& Duquenne 03]
	$\begin{aligned} & \mathbf{3} \\ & \mathbf{Q} \end{aligned}$	0		[Valtchev \& Missa oui 01]	[Frambourg et al, submitted]	
	$\stackrel{0}{\circ}$	>	[Valtchev \& Duquenne 03]	[Valtchev et al 02]		 Duquenne 03]

NextClosure

- Reference algorithm in FCA: [Ganter 84]

- Typical combinatorial generation (listing) procedure:
- Search for closed attribute sets throughout the Boolean lattice 2^{A},
- Attribute set A totally ordered,
- Closures of candidate sets computed,
- Closed sets listed in a lexicographic order:
» Implicit tree structure
- Looking for a canonical representative for each closed set:
» a minimal generating prefix = minimal prefix including a minimal generator
" pruning the search tree
- Uses no memory:
» moves from one candidate to the next one in the lexicographic order,
» hence suitable for large lattices,

On-line Maintenance of Lattices \& Co.

Why?

- Natural evolution in a dataset:
- organizations feed new data to their databases on a regular basis,
- reuse of current analysis results instead of computing the new ones from scratch,
- Explorative analysis:
- adding/removing input data elements,
- tracking the changes in the result,
- Potential efficiency gains:
- Incremental mode: much faster than batch reconstruction from scratch,
- Batch mode: provably faster for sparse data,

On-line Lattice Maintenance

The Approach Foundations

The Approach Foundations (cont'ed)

Lattice Update Method: Attribute-wise

```
Procedure Add-Attribute(
    Input: { a lattice, a an attribute;
    Output: { a lattice, updated)
for each c=(X,Y) in \mathcal{L}
    E}\leftarrowX\capa
    if c minimal for }E\mathrm{ then
        if }X=E\mathrm{ then // modified
        Update(c)
        else // genitor
            cc}\leftarrownew-concept(E,Y\cup{o}
            \mathcal{L}}\leftarrow\mathcal{L}U{cc
            UpdateOrder(c, cc)
```


computation to Add-Attribute (\mathcal{L}, a).

See [Nehme et al. 05]

> Problem 2 : Fit pseudo-closed $\mathscr{P}^{2} C_{K}$ computation to Add-Attribute ($\mathcal{L}, a)$.

See [Ob'edkov \& Duquenne 03]

Merge of Lattices \& Co.

Why?

- looking for the interactions among subsets of descriptors in a dataset:
- split the descriptor set,
- process the resulting subsets:
» first independently (factor lattices),
» then as a whole (global lattice),
- map the factor lattices into the global one,
- merge-based construction = last two steps carried out simultaneously.
- visualization (related to previous topic):
- present the global lattice as "projected" into the direct product of the factors,
- potential efficiency gains: take advantage of distributed/parallel architecture
- split the work into sub-problems,
- deal with them separately,
- put together the partial results,

Fragmentation of Contexts

Lattice Merge

The Problem

Notations

Contexts: factors $\mathrm{K}_{1}, \mathrm{~K}_{2}$, global $\mathrm{K}_{3}=\mathrm{K}_{1} \mid \mathrm{K}_{2}$.

- Closures: operators _ if (i=1,2,3).

Lattices, canonical bases, generators:

- factors $\mathcal{L}_{i} / \mathcal{B}_{i} / \operatorname{Gen}_{\mathrm{i}}(\mathrm{i}=1,2)$,
- global $\mathfrak{F}_{3} / \mathfrak{B}_{3} /$ Gen_ $_{3}$,
- direct product $\mathcal{E}_{1,2} / \mathcal{B}_{1,2}$.

Factor lattices
(OPT) canonical bases of factors: $\mathcal{B}_{1}, \mathcal{B}_{2}$
(OPT) min. generator families of factors: Gen 1_{1}, Gen 2_{2}
-Global lattice: \mathcal{L}
(OPT) global canonical base: \mathcal{B}_{3}
(OPT) global min. generator family: Gen-

Visualization Tool

The Nested Line Diagram of $\mathrm{L}_{1,2}$ [Wille 82]

Prop. \mathcal{S}_{3} is a sub-semi-lattice of $\left\{_{1,2}\right.$ hence may be embedded into it.

Approaching the Merge

Complete lattice merge, i.e., concepts and order

```
Key ideas:
-Mixture of extent families: }\mp@subsup{\textrm{C}}{3}{0}=\mathrm{ all pair-wise intersections on C C }\mp@subsup{0}{1}{}\times\mp@subsup{C}{}{\circ}\mp@subsup{}{2}{
* Each global extent (3-extent) Y : generated by a set of pairs.
- Canonical element of C}\mp@subsup{C}{1}{0}\times\mp@subsup{C}{2}{\circ
    - the minimum of all pairs ( }\mp@subsup{Y}{1}{1},\mp@subsup{\ddot{Y}}{2}{})\mathrm{ from }\mp@subsup{C}{1}{0}\times\mp@subsup{C}{2}{0}\mathrm{ generating a 3-extent }Y\mathrm{ .
* Completing the concept (Y, Y}\mp@subsup{}{3}{*})\mathrm{ : the intent }\mp@subsup{Y}{}{3}\mathrm{ is the union of canonical
intents:
    - Y
```


Merge: 3-step Construction Procedure

Outline of the Talk

- FCA: Galois connections, closures, lattices, min. generators ...
- Computational challenges
- Realization within Galicia

Goals of the Galicia project

Develop a tool set to support :

- Research on FCA theory and algorithms for the analysis of:
- structured data formats (data and meta-data):
" relational DB, UML models, image meta-data, etc.
- semi-structured data formats (data and meta-data):
" OWL, RDF(S), XMI, etc.
- volatile datasets,
- large databases,
- Practical applications of FCA techniques to:
- Data analysis and mining in:
» Software engineering,
» Bioinformatics,
» Image retrieval and mining,
» Ontology construction.

Member Teams

- Université de Montréal (Qc, CA)
- P. Valtchev (Assist. Prof.),
- Université du Québec à Montréal (CA)
- R. Godin (Prof.)
- Université du Québec en Outaouais (CA)
- R. Missaoui (Prof.)
- LIRMM, Montpellier (FR)
- M. Huchard (Prof.)
- Université de la Réunion (FR)
- D. Grosser (Assist. Prof.)
- LORIA, Nancy (FR)
- A. Napoli (Sen. Res.)

Life-cycle of a Lattice/Rule Set

1. Prepare data
2. Visualize results

The Galicia Platform

Rich set of tools for lattices, semi-lattices, general posets, rule bases, etc. :

- Open-source
http://www.iro.umontreal.ca/~galicia (Home Page of the platform)
https://sourceforge.net/projects/galicia/ (Home Page of the SF project)
- Portable: developed in Java,
- Generic: abstract types, implementations easily exchangeable.
- Supports different input data formats:
- Binary data
- Categorical data
- Relational Context Families: entities + relations

Key Functions of Galicia

Context import/export and edition:

- binary,
- relational and multi-valued

Construction of lattices and derived structures:

- Lattice construction:
» Batch mode
" Incremental: object- and attribute-wise
" Merge-based: object- and attribute-wise
- Galois sub-hierarchies
- Iceberg lattices

Association rule extraction from the lattice of intents:

- Exact rules (valid implications): Duquenne-Guigues basis [Guidues \& Duquenne 86], generic basis [Pasquier et al. 99].
- Approximate rules (partial implications): Luxenburger bases [Luxenburger 92], informative basis [Pasquier et al. 99].

Exploration of FCA Results

Structure visualization and navigation services:

- Diagram types:
- Standard Hasse diagrams,
- Nested Line Diagrams (work in progres),
- Layout mechanisms for layered diagrams:
- Static/dynamic formatting,
- Layered,
- Magnetism (attraction - repulsion model).
- Views: 2D, 3D, 3D + rotation.
- Navigation:
- hierarchy overview.

I/O operations for various formats:

- dedicated data formats: SLF (in-house), IBM,
- XML-based formats: XML DTDs for input data and posets, RCF (in-house).

Demo

 ofCadicia

Research Perspective

On-going research projects:

- Relational FCA: bring FCA and conceptual data models (UML, E-R, etc.) closer:
- Recursive and circular links in data,
- Co-definition of concepts on different sorts of objects:
» Ex. Customer, Transaction, Product,
- Iterative (fixed-point) construction of a set of related lattices
- ... and a bunch of unresolved problems...
- Evolution of association rule bases:
- Merge of factor bases along:
» the object dimension,
" the attribute dimension,
- Decomposition of lattices/posets along different operators

Application Perspective

On-going application projects involving Galicia:

- Re-engineering of software analysis-level models: extracting high level abstractions from existing conceptual models described in UML;
- Image retrieval and mining: lattice products to detect and visualize interactions between lower level and higher level image characteristics,
- Information (text) retrieval: query analysis and expansion
- Bio-informatics: mining 3D structure of proteins (initial stage),

