

Overview

• Formal concept analysis (FCA): "application of lattice theory to data analysis"

- Theory:
 - Back to work by O. Öre and by G. Birkhoff in 40s,
 - M. Barbut & B. Monjardet, R. Wille, B. Ganter, V. Duquenne...
- Practice:
 - ◆ social sciences: Duquenne, Wille,...
 - information retrieval: Godin, Carpineto and Romano,...
 - software engineering: Godin, Snelting,...
 - data mining: Missaoui & Godin, Lakhal,...
- Now:
 - rapidly growing community: "FCA" + "lattices" couple of 10³ hits with Google,
 - annual forums: 2 intl. conferences, 2+ workshops,

Missing: a widely-shared software platform for FCA (ToscanaJ, ConExp, Galicia)

Outline of the Talk

Computational challenges

Realization within Galicia + demo

Formal Contexts and Galois Connections ⁴

 $f(X) = X' = \{y \in A \mid \forall x \in X, (x, y) \in I \}$ $g(Y) = Y' = \{x \in O \mid \forall y \in Y, (x, y) \in I \}$

Lattices of Formal Concepts (« de Galois ») 5

Families of closed

 $C^{\mathbf{o}}_{\mathsf{K}} = \{ \mathsf{X} \mid \mathsf{X} \subseteq \mathsf{O}, \mathsf{X}'' = \mathsf{X} \}$ $C^{\mathbf{a}}_{\mathsf{K}} = \{ \mathsf{Y} \mid \mathsf{Y} \subseteq \mathsf{A}, \mathsf{Y}'' = \mathsf{Y} \}$

lattice (anti-)isomorphism

 $\mathcal{L}^{\mathbf{o}}_{\mathsf{K}} = (\mathcal{C}^{\mathbf{o}}_{\mathsf{K}}, \subseteq) \equiv \mathcal{L}^{\mathbf{a}}_{\mathsf{K}} = (\mathcal{C}^{\mathbf{a}}_{\mathsf{K}}, \supseteq)$

with f and g as co-bijections

formal concept (X,Y)

 $X \in C^{o}_{K}$ (extent), X = Y';

 $Y \in C^{a}_{K}$ (intent), Y = X'.

partial order (sub-concept of)

$$(X_1, Y_1) \le (X_2, Y_2) \quad iff \quad X_1 \subseteq X_2$$
$$(\Leftrightarrow Y_2 \subseteq Y_1)$$

lattice operators [Wille 82], [Barbut & Montjardet 70]

$$inf - U_{j \in J}(X_j, Y_j) = (\bigcap_{j \in J} X_j, (\bigcup_{j \in J} Y_j)'')$$

sup - $\bigcup_{j \in J} (X_j, Y_j) = ((\bigcup_{j \in J} X_j)'', \bigcap_{j \in J} Y_j)$

Equivalence Relation on 2^A Induced by C^aK

Minimal Generators

7

Why Are Min. Generators Interesting?

Minimal generators in...

• ...theory:

- related to *minimal transversals* in hypergraph theory [Berge 89]
- candidate keys of the tables in a relational database
- •... practice:
 - minimal sets of tests/exams/questions for a medical diagnosis

• ...algorithmic design:

- canonical representatives for concept intents:
 - minimal generating prefixes in NextClosure [Ganter 84]
- "seeds" for the computation of intents:
 - in general-purpose FCA algorithms: *Titanic* [Stumme *et al* 02]
 - in FCA-flavored *data mining* algorithms: *Close*, *Aclose* [Pasquier 00]

Implications

Given K = (O,A,I), Y, Z \subseteq A, Y \rightarrow Z is an **implication** :

- Y **premise**,
- Z conclusion.

(aka *functional dependency* in DB)

Def. $Y \rightarrow Z$ valid in K if $\forall o \in O, Y \subseteq o' \text{ forces } Z \subseteq o' \text{ (iff } Z \subseteq Y'').$ $\sum_{K} = all valid implications of K.$

\sum_{K} is large and redundant!

	a	b	c	d	e	f	g	h	i
1	Х	Х					Х		
2	Х	Х					х	х	
3	Х	Х	Х				х	х	
4	Х		х				х	х	х
5	Х	Х		х		Х			
6	Х	Х	Х	х		х			
7	Х		х	х	X				
8	Х		Х	х		х			

Def. A maximally informative rule: *minimal* premise, *maximal* conclusion.

Ex. bd \rightarrow af : *infromative* ae \rightarrow cd : *not* (e \rightarrow acd valid).

OEWG'05, DIMACS, March 2005

Inference Axioms and Covers

Pseudo-closed Sets and Canonical Basis

Partial Implications and Further Bases

Def. Partial implication $X \rightarrow Y$ (Luxenburger 92) Not valid to 100% (exists object $o : X \subseteq o'$, but $Y \not\subset o'$).

a.k.a association rules

Two bases for partial implications, following the lattice structure [Luxenburger 92]

Why Study the Pseudo-closed?

Pseudo-closed in...

- ...theory:
 - related to the precedence relation in the *lattice of all closures* on a ground set A [Caspard & Monjardet 03]
 - *minimal covers* for functional dependencies in relational databases [Maier 80]
- ...algorithmic design:
 - *alternative closure computation mechanism* for intents:
 - helps restrict usage of extents in large datasets [Valtchev & Duquenne 03],

• ... practice:

non-redundant sets of association rules in *data mining* [Kryszkiewicz
 02]

Intriguing Properties

- Families not necessarily disjoint:
 - Only $C_{\mathsf{K}} \cap \mathcal{P}C_{\mathsf{K}} = \emptyset$
 - Gen_{K} may share elements with both other families

Prop. Gen_K is an order ideal of the Boolean lattice 2^A : $Z \in G_K$ forces $\forall Y \subseteq Z$, $Z \in Gen_K$.

Prop. $\oint C_{\mathsf{K}} \cup C_{\mathsf{K}}$ is closed for intersection (closure space): $\oint C_{\mathsf{K}} \cup C_{\mathsf{K}} = (\oint C_{\mathsf{K}} \cup C_{\mathsf{K}})^{\cap}$.

Prop. Individual elements of $\mathcal{P}C_{\mathsf{K}}$ preserve the closure property: $\forall \mathsf{Y} \in \mathcal{P}C_{\mathsf{K}}, \forall \mathsf{Z} \in C_{\mathsf{K}}, \mathsf{Y} \cap \mathsf{Z} \in C_{\mathsf{K}} \cup \{\mathsf{Y}\}.$

Outline of the Talk

- Computational challenges
- Realization within Galicia

Algorithmic Problems in FCA

			Target structure								
			Concept set	Concept set + precedence	Min. generators	Canonical basis					
			Сĸ	£ _K = (C _K , ≤)	Gen_ _K	₿ _K					
	batch		<i>NextClosure</i> [Ganter 84], [Chein 69]	[Bordat 86], [Nourine & Raynaud 99]	Titanic [Stumme <i>et al</i> 02], [Pfalz & Taylor 02]	NextClosure for PC [Ganter 84]					
Mode	on-lir	0	[Norris 78]	[Godin <i>et al</i> 95], [Carpinetto & Romano 96], [Valtchev <i>et al</i> 02, 03]	[Valtchev <i>et al</i> 04],						
	le	A		[Nehme <i>et al</i> 05]	[Nehme <i>et al</i> 05]	[Ob'edkov & Duquenne 03]					
	mei			[Valtchev & Missa oui 01]	[Frambourg <i>et al</i> , <i>submitted</i>]						
	rge	A	[Valtchev & Duquenne 03]	[Valtchev <i>et al</i> 02]		[Valtchev & Duquenne 03]					

NextClosure

- **Reference algorithm in FCA**: [Ganter 84]
- Typical combinatorial generation (listing) procedure:
 - Search for **closed attribute sets** throughout the Boolean lattice 2^A,
 - Attribute set A totally ordered,
 - Closures of candidate sets computed,
 - Closed sets listed in a **lexicographic** order:
 - » Implicit *tree structure*
 - Looking for a **canonical representative** for each closed set:
 - » a minimal generating prefix = minimal prefix including a **minimal generator**
 - » pruning the search tree
 - Uses **no memory**:
 - » moves from one candidate to the next one in the lexicographic order,
 - » hence suitable for large lattices,

On-line Maintenance of Lattices & Co.

Why?

• Natural **evolution** in a dataset:

- organizations feed new data to their databases on a regular basis,
- reuse of current analysis results instead of computing the new ones from scratch,

• Explorative analysis:

- adding/removing input data elements,
- tracking the changes in the result,
- Potential efficiency gains:
 - Incremental mode: much faster than batch reconstruction from scratch,
 - **Batch** mode: provably faster for sparse data,

On-line Lattice Maintenance

OEWG'05, DIMACS, March 2005

The Approach Foundations

The Approach Foundations (cont'ed)

Lattice Update Method: Attribute-wise

```
Procedure Add-Attribute(
```

```
Input: \mathcal{L} a lattice, a an attribute;
Output: \mathcal{L} a lattice, updated)
```

```
for each c = (X, Y) in \mathcal{L}
```

 $E \leftarrow X \cap a'$

if *c minimal* for *E* then

if X = E then // modified

Update(c)

else // genitor

 $cc \leftarrow new-concept(E, Y \cup \{o\})$

(cc} U {cc} ل ← ل

UpdateOrder(c, cc)

Problem₁: Fit min. generator Gen_{K} computation to Add-Attribute(\mathcal{L}, a).

See [Nehme et al. 05]

Problem₂: Fit pseudo-closed $\mathcal{P}C_{\mathsf{K}}$ computation to Add-Attribute(\mathcal{L}, a).

See [Ob'edkov & Duquenne 03]

Merge of Lattices & Co.

Why?

- looking for the **interactions among subsets of descriptors** in a dataset:
 - split the descriptor set,
 - process the resulting subsets:
 - » first independently (factor lattices),
 - » then as a whole (global lattice),
 - map the factor lattices into the global one,
 - merge-based construction = last two steps carried out simultaneously.
- visualization (related to previous topic):
 - present the global lattice as "projected" into the direct product of the factors,
- **potential efficiency gains**: take advantage of distributed/parallel architecture
 - split the work into sub-problems,
 - deal with them separately,
 - put together the partial results,

Fragmentation of Contexts

Lattice Merge The Problem

Notations

- Contexts: factors K_1 , K_2 , global $K_3 = K_1 | K_2$.
- Closures: operators _ⁱⁱ (i=1,2,3).
- Lattices, canonical bases, generators:
 - factors $\mathcal{L}_i / \mathcal{B}_i / Gen_i$ (i=1,2),
 - global $\mathcal{L}_3 / \mathcal{B}_3 / \text{Gen}_3$,
 - direct product $\mathcal{L}_{4,2}/\mathcal{B}_{1,2}$.

Given

- Factor lattices: $\mathcal{L}_4, \mathcal{L}_2$
- (OPT) canonical bases of factors: ${
 m I\!\!B}_{
 m 1}, {
 m I}_{
 m 2}$
- (OPT) min. generator families of factors: Gen_1 , Gen_2

Find:

- Global lattice: (
- 🕨 (OPT) global canonical base: ß
- (OPT) global min. generator family: Gen₃

Visualization Tool

The Nested Line Diagram of L_{1,2} [Wille 82]

Approaching the Merge

Complete lattice merge, i.e., concepts and order

Key ideas:

- Mixture of extent families: $C_3^\circ = all pair-wise intersections on <math>C_1^\circ \times C_2^\circ$.
- Each global extent (3-extent) Y : generated by a set of pairs.
- Canonical element of C^o₁ x C^o₂:
 - the **minimum** of all pairs (\ddot{Y}_1, \ddot{Y}_2) from $C_1^0 \times C_2^0$ generating a 3-extent Y.

Completing the concept (Y, Y³): the *intent* Y³ is the union of canonical *intents*:

$$-Y^3 = \ddot{Y}^1_1 U \ddot{Y}^2_2$$
.

Merge: 3-step Construction Procedure

Outline of the Talk

◆ FCA: Galois connections, closures, lattices, min. generators

Computational challenges

Realization within Galicia

Goals of the Galicia project

Develop a tool set to support :

• **Research** on FCA theory and algorithms for the analysis of:

- **structured** data formats (*data* and *meta-data*):
 - » relational DB, UML models, image meta-data, etc.
- **semi-structured** data formats (*data* and *meta-data*):
 - » OWL, RDF(S), XMI, etc.
- volatile datasets,
- large databases,

• **Practical applications** of FCA techniques to:

- Data analysis and mining in:
 - » Software engineering,
 - » Bioinformatics,
 - » Image retrieval and mining,
 - » Ontology construction.

Member Teams

- Université de Montréal (Qc, CA)
 - P. Valtchev (Assist. Prof.),
- Université du Québec à Montréal (CA)
 - R. Godin (Prof.)
- Université du Québec en Outaouais (CA)
 - R. Missaoui (Prof.)
- LIRMM, Montpellier (FR)
 - M. Huchard (Prof.)
- Université de la Réunion (FR)
 - D. Grosser (Assist. Prof.)
- LORIA, Nancy (FR)
 - A. Napoli (Sen. Res.)

Life-cycle of a Lattice/Rule Set

The Galicia Platform

Rich set of tools for lattices, semi-lattices, general posets, rule bases, etc. :

Open-source

<u>http://www.iro.umontreal.ca/~galicia</u> (Home Page of the platform) <u>https://sourceforge.net/projects/galicia/</u> (Home Page of the SF project)

- **Portable**: developed in Java,
- **Generic**: abstract types, implementations easily exchangeable.
- Supports different input data formats:
 - Binary data
 - Categorical data
 - Relational Context Families: entities + relations

Key Functions of Galicia

Context import/export and edition:

- binary,
- relational and multi-valued

Construction of lattices and derived structures:

- Lattice construction:
 - » Batch mode
 - » Incremental: object- and attribute-wise
 - » Merge-based: object- and attribute-wise
- Galois sub-hierarchies
- Iceberg lattices

Association rule extraction from the lattice of intents:

- Exact rules (valid implications): Duquenne-Guigues basis [Guidues & Duquenne 86], generic basis [Pasquier et al. 99].
- Approximate rules (partial implications): Luxenburger bases [Luxenburger 92], informative basis [Pasquier et al. 99].

Exploration of FCA Results

Structure visualization and navigation services:

- Diagram types:
 - Standard Hasse diagrams,
 - Nested Line Diagrams (work in progres),
- Layout mechanisms for layered diagrams:
 - Static/dynamic formatting,
 - Layered,
 - Magnetism (attraction repulsion model).
- Views: 2D, 3D, 3D + rotation.
- Navigation:
 - hierarchy overview.

I/O operations for various formats:

- dedicated data formats: SLF (*in-house*), IBM,
- XML-based formats: XML DTDs for input data and posets, RCF (*in-house*).

Demo of Galícia

Research Perspective

On-going research projects:

- Relational FCA: bring FCA and conceptual data models (UML, E-R, etc.) closer:
 - Recursive and circular links in data,
 - Co-definition of concepts on different sorts of objects:
 - » Ex. Customer, Transaction, Product,
 - Iterative (fixed-point) construction of a set of related lattices
 - ... and a bunch of unresolved problems...
- *Evolution* of association rule bases:
 - Merge of factor bases along:
 - » the **object** dimension,
 - » the attribute dimension,
 - Decomposition of lattices/posets along different operators

Application Perspective

On-going application projects involving *Galicia*:

- Re-engineering of software analysis-level models: extracting high level abstractions from existing conceptual models described in UML;
- Image retrieval and mining: lattice products to detect and visualize interactions between lower level and higher level image characteristics,
- Information (text) retrieval: query analysis and expansion
- Bio-informatics: mining 3D structure of proteins (*initial stage*),