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A High Level Look at the Problem

Consider the following linear inverse problem

Y = AX ,

where Y is a L × 1 vector of measurements, X a J × 1 vector of
unknown quantities of interest, and A a L × J known matrix, with
L << J.

Interested in estimating X .
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Origins of this problem

Consider a (computer) network comprised of nodes and wlog
bidirectional links.
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Network Flows

A computer network carries packets, whose payload is
expressed in bytes.

A network flow contains all the packets originating at a node
and destined for some other node in the network.

Each flow can in principle traverse a set of paths connecting
its origin and destination, which is determined by the routing
policy, assumed known.

The volume of traffic refers to either the number of packets
and/or the number of bytes in a flow (or on a link) in a given
time-interval.
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Network Flow Volumes
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Stochastic properties of flow volumes vary by the level of
aggregation and time scales.

Estimating traffic volumes is important for monitoring and
provisioning such networks.
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Aggregate Measurements

Observations are made on edges which are a linear
combination of the volumes corresponding to the flows
passing through respective links.

Y(3,4) = X(1,5) + X(1,6) + X(2,5) + X(2,6) + X(3,4)

and

Y(4,3) = X(5,1) + X(6,1) + X(5,2) + X(6,2) + X(4,3).
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Aggregate Measurements

In vector notation:
Y = AX ,

where Y is a L × 1 vector of observations on L edges, X is a
J × 1 vector of flow-volume variables associated with J flows
and A is a L × J routing matrix where [A]ij indicates the
fraction of the jth flow that traverses the ith link.

If each origin-destination flow traverses exactly one path then
A is binary.

The matrix A is typically not full rank, as there are many
more flows than links.

Network Tomography under Dependence



Some Interesting Extensions

Multivariate Time Series

Multimodal Measurements

Network Tomography under Dependence



Multivariate Time-Series Formulation

Let Y (t) denote the vector of observations on the links during
measurement interval t.

Let X (t) be the (unobserved) vector of flow volumes in the
same measurement interval.

We will view X (t) (and hence Y (t)) as random vectors
satisfying some stochastic model.

Thus, we have the following observation model:

Y (t) = AX (t), t = 1, · · · .

In this formulation the routing matrix A (typically not full
rank) does not change over time.

The distribution of X (t) can be modeled at different levels of
complexity from independent and identically (i.i.d.) Gaussian
to long range dependent.
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Multimodal Measurements

Suppose that
YP = AXP , YB = AXB ,

denote measurements on Packets and Bytes.

The two quantities can be related, for example, through a
compounding mechanism

XB =

XP
∑

k=1

Sk ,

where Sk denotes the payload in bytes of the k−th packet.
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Identifiability: Objective

State assumptions and derive conditions
on the routing matrix A,
under which certain distributional parameters of X
are uniquely determined by the observable distribution of Y .
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Identifiability: A Simple Example

X

X

1

X 2

3

Y
Y

1

2

Figure: Aggregate Volume Measurements

Observations on links 1 and 2 are respectively given by

Y1 = X1 + X2,

Y2 = X2 + X3.

Assume the flow volumes are uncorrelated.
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Identifiability: A Simple Example

vY =





Var(Y1)
Var(Y2)

Cov(Y1,Y2)



 =





1 1 0
0 1 1
0 1 0









Var(X1)
Var(X2)
Var(X3)



 ≡ BvX .

Thus, vY that contains the variances and the covariance of
(Y1,Y2), uniquely determines vX that contains the variances
of X1, X2 and X3, since B is a matrix of full rank.

Now, the matrix B is clearly a function of the routing matrix
A given by

A =

(

1 1 0
0 1 1

)

.

It can therefore be seen that “identifiability” of variances of
the Xi ’s is related to a matrix function of A being full rank
when the Xi ’s are uncorrelated.
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Identifiability: Definition

The distribution of a J-dimensional random vector X is
identifiable up to mean

under model M,
from observations of the form Y = AX ,
if for Y1 = AX1 and Y2 = AX2, L(X1),L(X2) ∈ M,

Y1
d
= Y2 (i.e. L(Y1) = L(Y2)) implies that X1

d
= X2 + c (i.e.

L(X1) = L(X2 + c)) for some constant c ∈ R
J .

Generally first moments are not identifiable in this setting.

Similarly, a parameter, θ(L(X )) is said to be identifiable under

model M if Y1
d
= Y2 (i.e. L(Y1) = L(Y2)) implies that

θ(L(X1)) = θ(L(X2)).
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Identifiability Results

For the case of independent flow volumes three kinds of
identifiability results are known.

These are conditions on the routing matrix under which flow
volume variances are identifiable (Cao et al., 2000), conditions
on the routing matrix under which entire flow volume
distributions are identifiable up to mean (Chen et al., 2007)
and conditions on the routing policy or network structure that
imply that the routing matrix satisfies the required properties
for identifiability (SM, 2007).

We establish similar results for particular models of flow
volume dependence.

The techniques are naturally more involved and the
independence case can be recovered as a special case.

These results seek to address the question of “how complex
can the dependence structure of a linear inverse problem be
and still be identifiable”.
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A Useful Technical Tool

For a L × J matrix A = [a1, · · · , aJ ]
and M × J matrix B = [b1, · · · , bJ ],
the LM × J Khatri-Rao product A ⊙ B is defined as
[a1 ⊗ b1, · · · , aJ ⊗ bJ ]
where ⊗ denotes the Kronecker product.

Rows in A ⊙ B are element-wise products of a row in A and a row
in B .
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The Case of Independent Flows

Proposition

For Xj , j = 1, · · · , J independently distributed and whose
characteristic functions are either analytic or possess no real roots,
the distribution of X is identifiable up to mean from Y = AX,
if B = A ⊙ A has rank J.
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Dependence in Network Flow Volumes

We will consider three types of dependence in flow volumes.

Temporal

Spatial

Inter-modality

Spatial dependence is the most challenging since it is in the
spatial domain that the problem is ill-posed.
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Models of Spatial Dependence

Given the ill-posedness nature of the problem, identifiability in the
presence of dependence relies on some notion of ’sparsity’ in the
dependence structure.

Introduce three distinct, but related models, for which
identifiability can be established.
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A Covariance Model

Suppose that modeling dependence through second moments
suffices.

Let Cov(X ) = V (θ) with

V (θ) = θ1u1u
′

1 + · · · + θruru
′

r

with U = [u1, · · · , ur ] assumed known.

Note that an arbitrary J × J covariance matrix can be modeled by
using UJ ≡ [IJ P ], with P being a binary matrix of appropriate
dimensions with distinct columns, each of which has exactly 2
non-zero entries.

Network Tomography under Dependence



A Covariance Model

In tomography applications, an interesting model will be based on
a block diagonal Cov(X ) comprised of m blocks of size k. It can
easily be modeled by

U = Im ⊗ Uk

Analogously, one can construct an increasing family of such models
that capture hierarchical notions of spatial dependence.
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Independent Components Model

Let X = UZ , with Z1, · · · ,Zr being independent random variables
with U assumed known as above.

The use of arbitrary distributions for Z1, · · · ,Zr allows us to model
dependencies of the distribution and not just through covariances.

When second moments of Z1, · · · ,Zr exist, the covariance of X is
given by V (θ). However the coefficients θ1, · · · , θr are restricted to
be positive and equal to the variances of Z1, · · · ,Zr .
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Latent Variables Model

A latent variable model corresponding to a covariance model
(defined by matrix U) is given by X = CZ , where Z1, · · · ,ZJ are
independent random variables and C ∈ C(U).

If C ∈ C(U), then C is a lower triangular matrix with all diagonal
entries equal to 1, such that for every vector d ∈ R

J
+ there is a

vector θ ∈ R
r satisfying CDiag(d)C ′ = V (θ) ≥ 0.

When V (θ) is positive definite, then the Cholesky decomposition
gives the corresponding unique coefficient matrix C .

A necessary condition for C(U) to be non-trivial is if U has rank J.

When U corresponds to a block diagonal covariance matrix then
C(U) contains every matrix obtained from the Cholesky
decomposition of V (θ) (for all V (θ) > 0).
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Main Result

Proposition

Given Y = AX, if AU ⊙ AU has rank r then

1 If Cov(X ) exists and is equal to V (θ) given by the
Covariance Model then θ is identifiable from Cov(Y ).

2 If X satisfies the Independent Components Model with
Z1, · · · ,Zr such that either their characteristic functions are
all analytic or all have no real roots, then the distributions of
Z1, · · · ,Zr are identifiable up to mean from the distribution of
Y .

3 If U has rank J and X satisfies the Latent Variable Model

with Z1, · · · ,ZJ all non-normal random variables such that
either their characteristic functions are all analytic or all have
no real roots, then the matrix C and distributions of
Z1, · · · ,ZJ are identifiable up to mean from the distribution of
Y .
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Application: Independent Connections Model

Some empirical facts:
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An Examination of Spatial Dependence

Figure: Densities of observed correlations: Forward-reverse (dashed)
and the rest (solid)
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Forward and Reverse Flows

In real computer networks, a large part of the traffic is
connection oriented.

For example, traffic flows transported using the TCP protocol,
or connections involving Internet (Voice over IP) telephony,
lead to packets being exchanged between the two endpoints.

Therefore, volumes of flow from node n1 to node n2 and
vice-versa, are correlated.

One of these flows is labeled as a forward flow and the other
as a reverse flow and form a flow pair. It is reasonable to
assume that flow pairs are independent with possible
dependence between forward and reverse flows of a flow pair.
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Independent Connections Model

Y (p) = AX (p),

where A = (AF ,AR) and X (p) = (X
(p)
F

′

,X
(p)
R

′

)′.

If second moments exist, then the covariance matrix of X (p) is
of the form

ΣX =

(

Diag(δFF ) Diag(δFR)
Diag(δFR) Diag(δRR)

)

,

where δFF , δFR , δRR correspond to the variances of X
(p)
F

,

covariances of X
(p)
F and X

(p)
R and variances of X

(p)
R ,

respectively.

Can be extended to include time and byte modality.
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Independent Connections Model

The independent connections model is obtained using

U =

(

IJ/2×J/2 0 IJ/2×J/2

0 IJ/2×J/2 IJ/2×J/2

)

In the case of Independent Connections Model AU ⊙ AU having
rank r = 3J/2 is equivalent to
Bc ≡ [AF ⊙ AF ,AF ⊙ AR + AR ⊙ AF ,AR ⊙ AR ] having rank
r = 3J/2.

This can be shown to be the case under reasonable conditions on
routing and network structure.
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Spatio-Temporal Dependence

The covariance model can be easily extended to handle
spatio-temporal dependence.

For example: For the Independent Connections Model
identifiability of the corresponding (spatio-temporal)
covariance model, assuming only within flow temporal
dependence, requires

B = [AF ⊙ AF ,AR ⊙ AR ,AF ⊙ AR ,AR ⊙ AF ]

and

Bc = [AF ⊙ AF ,AR ⊙ AR ,AF ⊙ AR + AR ⊙ AF ]

to be full rank.
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Multimodal Tomography

Suppose YP = AXP and YB = AXB with (XPj ,XBj)
′, distributed

independently for j = 1, · · · , J.

Proposition

If
B = A ⊙ A

has rank J and the joint characteristic functions of (XPj ,XBj)
′ are

either analytic or have no roots in R
2 for all j = 1, · · · , J . Then

the distribution of (X ′

P ,X ′

B)′ is identifiable from (Y ′

P ,Y ′

B) up to a
mean ambiguity.

The above proposition can be easily extended to multimodal
tomography and time dependence (treating time as another
modality).
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Multimodal Tomography: Compound Model

Suppose

1 Prob(XP ∈ N) = 1 and

2 The distribution of XP is non-trivial i.e. there is no n ∈ N

such that Prob(XP = n) = 1 and

3

XB =

XP
∑

i=1

Si

where XP ,S1,S2, · · · are distributed independently and
S1,S2, · · · are distributed identically and

4 The distribution of S1 is non-trivial i.e. there is no s ∈ R such
that Prob(S1 = s) = 1.
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Identifiability of Compound Model

Under the conditions of the previous proposition and
additionally the above assumptions of a compound model on
each (XPj ,XBj)

′ for j = 1, · · · , J, the distribution of (X ′

P ,X ′

B)′

is fully identifiable.

This is the only model where the mean is also identifiable,
“without making parametric/moment-relation assumptions”.
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Sufficient Conditions on Routing for
Identifiability

Recall matrices

B = [AF ⊙ AF ,AR ⊙ AR ,AF ⊙ AR ,AR ⊙ AF ]

and

Bc = [AF ⊙ AF ,AR ⊙ AR ,AF ⊙ AR + AR ⊙ AF ]

and
B = A ⊙ A

Require full-rankness of above for identifiability.

Under what conditions on the routing discipline and network
structure do we obtain full-rankness?
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Sufficient Conditions on Routing for
Identifiability (SM07)

Proposition

1 Under balanced minimum weight routing on a symmetric
graph, the matrix B (and hence Bc ) is full rank.

2 The matrix B is full rank for hierarchical networks.

3 For a directed acyclic graph, the matrix B is full rank.
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Concluding Remarks

The above results show that under reasonable models of
dependence second and higher order moments are estimable
from the data.

This can be levearged for estimation of first moments of X , by
imposing an appropriate relationship with higher order
moments.

Are there other more general models of spatio-temporal
dependence?

For the generic Y = AX problem with A not being full rank
and where X satisfies one of the posited dependence models,
how can we design A so that the distribution of X becomes
identifiable (up to mean shifts).
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