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Compressed Sensing

@ Classic setup
y=®x & X
N x1

Sparse
Signal

m X 1 only

Measurements
m X N K
Measurement nonzero

Matrix entries

Kashin, 1977; Bresler et al., 1999; Donoho et al., 2004; Candés et al., 2005;

@ Only one constraint
» x ¢ RN is K-sparse
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Constrained Com(gressed Sensmg

Nxl1
_ Sparse
—_— Signal
m X 1 only
Measurements m X N K

Measurement
Matrix

nonzero
entries

@ Constraints on x

» x,;’s are correlated (Dai & Milenkovic; Baraniuk, et al.; - - -).
» z; are bounded integers.
» May improve performance.

@ Constraints on ®

» Sparse/structured (Dai & Milenkovic; Indyk, et al.; Do, et al.; Strauss, et
al.).

» [,-norm + nonnegativity.

» May introduce performance loss.

@ Performance requirement on noise tolerance.
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Application 1: CS DNA Microarrays

DNA Microarray: measures the concentration of certain molecules
(such as mRNA) for tens of thousands of genes simultaneously.

Major issue: each sequence has a unique identifier = high cost.
CS DNA Microarray (Dai, Sheikh, Milenkovic and Baraniuk; Hassibi)

Constraints:

@ x : x; =the # of certain molecules.
|z;] < t: Bounded integer.

@ &: ¢, ; =the affinity (the probability) between the probe and target.
[®ill;, =1, ;5 > 0.

The same model works for low light imaging, drug screening- - -
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Application 2: Multiuser Communications
A multi-access channel with K users
y = Zfil hiv/Pit; + e.
t; €C;
C;: i*™ user’s codebook Ci| = n;
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Application 2: Multiuser Communications
A multi-access channel with K users
y = Zfi1 hivPit; +e.
t; €C;
C;: i user's codebook Ci| = n;

y=®x+e Lo}
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Questions regarding to Constrained CS (CCS)

@ How to analyze the gain/loss for a given set of constraints?
@ How do the constraints affect the reconstruction algorithms?

Dai and Milenkovic (UIUC) WSC & Constrained CS DIMACS 2009 6/15



Questions regarding to Constrained CS (CCS)

@ How to analyze the gain/loss for a given set of constraints?
@ How do the constraints affect the reconstruction algorithms?

Our Observation: coding theoretic techniques help.

Constrained
CS
Compressed
Sensing
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Superimposed Codes

@ Euclidean Superimposed Codes (Ericson and Gyérfi, 1988)

> fvill, = 1.

y=®x & X

. . N x1
» Distance requirement _ Sparse
.. . . - igna
= deterministic noise tolerance.
_ mx1
||¢ (Xl X2)||2 2 d vxl 7é X2 Measurements m X N ‘(})_Ely

Measurement

! nonzero
Matrix

entries
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Superimposed Codes
@ Euclidean Superimposed Codes (Ericson and Gyérfi, 1988)

> z; = 0/1. y=®%x & x
> ”V%HQ:]' ) N x1
» Distance requirement _ Sparse
T . - igna
= deterministic noise tolerance.
_ mXx1
||¢ (Xl X2)||2 2 d vxl 7é X2 Measurements m X N ‘(;_Ely
Measurement nonzero
Matrix entries

@ Applications = Weighted superimposed codes (WSC) (D. and
Milenkovic, 2008)

» |z;| < tis aninteger.
> |vill, = 1.
» Distance requirement

||q)(X1 - X2)||p Z d Vxl 7é X9.

@ A hybrid of CS and Euclidean superimposed codes
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Rate Bounds for WSCs

Definition: Let
N (m,K,d,t) = max{N : 3C}.
The asymptotic code rate is defined as

R(K7d7t) = lim sup M_

m
m—00
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Rate Bounds for WSCs

Definition: Let
N (m,K,d,t) = max{N : 3C}.
The asymptotic code rate is defined as
R(K,d,t) =lim sup W.
m—0o0

Theorem:

@ For Euclidean norm,

LeR (1+0(1) < R(K,d,t) <'BE (1 4+0,4(1)).
@ For ll-WSC and nonnegative [;-WSC

e (1+0(1) < R(K,d,t) < 2K (1+0,4(1)).
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Interpretation

@ For WSCs,
Klog N 4K log N
<m< ———m-.
logK — = logk

The bounds are not independent of d

= can make the distance arbitrarily close to one.

@ For classic CS,

=0 (s (X))

No performance garantee under noise.
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The Proof of the Upper Bound
Low-hanging fruit: sphere-packing bound:
Minimum distance d = Balls B (®x, %) are disjoint

X /N tK+4\" logN logK
k 2

< = < .
Z(k>(2t> - ( %l ) m - K
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The Proof of the Upper Bound
Low-hanging fruit: sphere-packing bound:
Minimum distance d = Balls B (®x, %) are disjoint

High-hanging fruit: a large fraction of balls
radius.

log N < logvK _ logK
m = K — 2K -
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Proof of the Lower Bounds: Random Coding

Random codes:

H € R™*V =a Gaussian random matrix (H; ; ~ N (0, 1)).
P Uzzhz/th”p
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Proof of the Lower Bounds: Random Coding

Random codes:

H € R™*V =a Gaussian random matrix (H; ; ~ N (0, 1)).
P Uz:hz/thHp

d < |Ayl, = (|12 - (@1 — z2),
(Ay), ~Linear combination of Gaussian rvs.
l,-norm of a Gaussian vector: large deviations.

Dai and Milenkovic (UIUC) WSC & Constrained CS DIMACS 2009

11/15



Proof of the Lower Bounds: Random Coding

Random codes:

H € R™*V =a Gaussian random matrix (H; ; ~ N (0, 1)).
P 'Uz:h'z/thHp

d < |Ayl, = (|12 - (@1 — z2),
(Ay), ~Linear combination of Gaussian rvs.
l,-norm of a Gaussian vector: large deviations.

R(K,dt) = (hrgv)supb%rfv > S (14 o(1)).
m,IN )—00
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Proof of the Lower Bounds: Random Coding

Random codes:

H € R™*V =a Gaussian random matrix (H; ; ~ N (0, 1)).
@ v = hi/|hil,

d < |Ayl, = (|12 - (@1 — z2),
(Ay), ~Linear combination of Gaussian rvs.
l,-norm of a Gaussian vector: large deviations.

R(K,d1) = lim sup 555 > S5 (14 0(1)).
Difficulty with nonnegativity.

@ Gaussian approximation.

@ The Berry-Esseen theorem for bounding the approx. error.
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Code Construction and Decoding Algorithms

@ Coding theory:

» Offers myriad of construction techniques.
» No efficient decoding methods for WSC codes were known before.

o CS:

» Offers decoding algorithmic solutions
l1-minimization, OMP, SP, CoSaMP ...

@ Combination?
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Decoding

The WESC decoder:
Z; =round (V]y).
no iteration.
OMP: K iterations.

Discrete input = complexity reduction

The WESC decoder: O (mN)

OMP: O (KmN)

Code Rate for both WESC decoder and OMP:

R <

S 3K = m:O(K2logN).
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Multiuser Interference Cancellation and Decoding

@ High mobility = No channel information at transmitters.
@ Coding and decoding motivated by CS.

m=128, N=256, K=16: number of realization=1000

—=&— ML decoding + SIC
0.9} ) —&— Subspace based decoding -

Error Probability
)
@

SNR (dB)
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Conclusion

WSCs for constrained CS:
@ Quantified the code rate
@ Noise tolerance
@ Efficient decoding
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