Fast Reconstruction Algorithms for Deterministic Sensing Matrices and Applications

Robert Calderbank et al.

Program in Applied and Computational Mathematics Princeton University NJ 08544, USA.

- When sample by sample measurement is expensive and redundant:
- Compressive Sensing:
 - Transform to low dimensional measurement domain
- Machine Learning:
 - Filtering in the measurement domain

Compressed Sensing is a Credit Card!

We want one with no hidden charges

Geometry of Sparse Reconstruction

Restricted Isometry Property (RIP): An N × C matrix A satisfies (k, ε)-RIP if for any k-sparse signal x:

 $(1-\epsilon) \|\boldsymbol{x}\|_2 \le \|A\boldsymbol{x}\|_2 \le (1+\epsilon) \|\boldsymbol{x}\|_2.$

• Theorem [Candes, Tao2006]:

If the entries of $\sqrt{N}A$ are iid sampled from

- N(0,1) Gaussian
- U(-1,1) Bernoulli

distribution, and $N=\Omega\left(k\log(\frac{C}{k})\right)$, then with probability $1-e^{-cN}$, A has $(k,\epsilon)\text{-RIP}.$

 Reconstruction Algorithm [Candes, Tao 2006 and Donoho 2006]: If A satisfies (3k, ε)-RIP for ε ≤ 0.4, then given any k-sparse solution x to Ax = b, the linear program

```
minimize \|\boldsymbol{z}\|_1 such that A\boldsymbol{z} = \boldsymbol{b}
```

recovers \boldsymbol{x} successfully, and is robust to noise.

Expander Based Random Sensing

A: Adjacency matrix of a $(2k,\epsilon)$ expander graph

- No 2k-sparse vector in the null space of A

Theorem [Jafarpour, Xu, Hassibi, Calderbank 2008]: If $\epsilon \leq 1/4$, then for any *k*-sparse solution x to Ax = b, the solution can be recovered successfully in at most 2krounds.

Gap:
$$\boldsymbol{g}_t = \boldsymbol{b} - A\boldsymbol{x}_t$$

RHS proxy for difference between x_t and x.

ALGORITHM. Greedy reduction of gap.

- Let A: adjacency matrix of an expander graph
- x^* : sparse
- \bullet Noisy compressed sensing measurements y in Poisson model
- $\hat{x} = \arg\min\sum_{j=1}^{N} \left((Ax)_j y_j \log(Ax)_j \right) + \gamma pen(x)$
- Optimization over the simplex (positive values)
- pen: a well chosen penalty function.
- Then $\hat{x} \approx x^*$

Approach	Measurements	Complexity	Noise	RIP
	N		Resilience	
Basis Pursuit	$k \log\left(\frac{C}{k}\right)$	C^3	Yes	Yes
(BP) [CRT]				
Orthogonal Matching	$k \log^{\alpha}(C)$	$k^2 \log^{\alpha}(C)$	No	Yes
Pursuit (OMP) [GSTV]				
Group Testing [CM]	$k \log^{\alpha}(C)$	$k \log^{\alpha}(C)$	No	No
Greedy Expander	$k \log\left(\frac{C}{k}\right)$	$C \log\left(\frac{C}{k}\right)$	No	RIP-1
Recovery[JXHC]				
Expanders (BP) [BGIKS]	$k \log\left(\frac{C}{k}\right)$	C^3	Yes	RIP-1
Expander Matching	$k \log\left(\frac{C}{k}\right)$	$C \log\left(\frac{C}{k}\right)$	Yes	RIP-1
Pursuit(EMP) [IR]				
CoSaMP [NT]	$k \log\left(\frac{C}{k}\right)$	$Ck \log\left(\frac{C}{k}\right)$	Yes	Yes
SSMP [DM]	$k \log\left(\frac{C}{k}\right)$	$Ck \log\left(\frac{C}{k}\right)$	Yes	Yes

Random Signals or Random Filters?

Random Sensing

- Outside the mainstream of signal processing: Worst Case Signal Processing
- 2 Less efficient recovery time
- No explicit constructions
- 🔕 Larger storage
- Looser recovery bounds
- Deterministic Sensing
 - Aligned with the mainstream of signal processing : Average Case Signal Processing
 - Ø More efficient recovery time
 - Explicit constructions
 - Efficient storage
 - Tighter recovery bounds

k-Sparse Reconstruction with Deterministic Sensing Matrices

Approach	Measurements	Complexity	Noise	RIP
	N		Resilience	
LDPC Codes [BBS]	$k \log C$	$C \log C$	Yes	No
Reed-Solomon	k	k^2	No	No
codes [AT]				
Embedding ℓ_2 spaces	$k(\log C)^{\alpha}$	C^3	No	No
into ℓ_1 (BP) [GLR]				
Extractors [Ind]	$kC^{o(1)}$	$kC^{o(1)}\log(C)$	No	No
Discrete chirps [AHSC]	\sqrt{C}	$kN \log N$	Yes	StRIP
Delsarte-Goethals	$2^{\sqrt{\log C}}$	$kN \log^2 N$	Yes	StRIP
codes [CHS]				

- A: $N \times C$ matrix satisfying
 - columns form a group under pointwise multiplication
 - rows are orthogonal and all row sums are zero
- α : k-sparse signal where positions of the k nonzero entries are equiprobable

THEOREM: Given δ with $1 > \delta > \frac{k-1}{C-1}$, then with high probability

$$(1-\delta)\|\alpha\|_2 \le \|A\alpha\|_2 \le (1+\delta)\|\alpha\|_2$$

PROOF: Linearity of expectation

• $\mathbb{E}\left[\|A\alpha\|^2\right] \approx \|\alpha\|^2$

• VAR
$$[\|A\alpha\|^2] \to 0$$
 as $N \to \infty$

Two recent results Uniquess of sprase representation and $\ell 1$ receivery

• McDiarmid's inequality: Given a function f for which $\forall x_1, \dots, x_k, x'_i$:

$$\left|f(x_i,\cdots,x_i,\cdots,x_k)-f(x_i,\cdots,x'_i,\cdots,x_k)\right|\leq c_i,$$

and given X_1, \cdots, X_k independent random variables. Then

$$\Pr\left[f(X_1,\cdots,X_k) \ge \mathbf{E}[f(X_1,\cdots,X_k)] + \eta\right] \le \exp\left(\frac{-2\eta^2}{\sum c_i^2}\right).$$

• Relaxed assumption:

$$\forall i,j: \quad \left| |\sum_{x} \varphi^{i}(x)|^{2} - |\sum_{x} \varphi^{j}(x)|^{2} \right| \leq N^{2-\eta},$$

- Then:
 - Uniqueness of sparse representation
 - ℓ1 recovery of complex Steinhaus (random phase arbitrary magnitude) signals.

Kerdock set K_m : 2^m binary symmetric $m \times m$ matrices

Tensor
$$C^0(x, y, a) : \mathbb{F}_{2^m} \times \mathbb{F}_{2^m} \times \mathbb{F}_{2^m} \to \mathbb{F}_2$$
 given by
 $\mathsf{Tr}[xya] = (x_0, \dots, x_{m-1})P^0(a)(y_0, \dots, y_{m-1})^T$

THEOREM: The difference of any two matrices $P^0(a)$ in K_m is nonsingular

PROOF: Non-degeneracy of the trace

Example: m = 3, primitive irreducible polynomial $g(x) = x^3 + x + 1$

$$P^{0}(100) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, P^{0}(010) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, P^{0}(001) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Delsarte-Goethals Sets

Tensor
$$C^t(x, y, a) : \mathbb{F}_{2^m} \times \mathbb{F}_{2^m} \times \mathbb{F}_{2^m} \to \mathbb{F}_2$$
 given by
 $C^t(x, y, a) = \operatorname{Tr}[(xy^{2^t} + x^{2^t}y)a]$
 $= (x_0, \dots, x_{m-1})P^t(a)(y_0, \dots, y_{m-1})^T$

Delsarte-Goethals Set DG(m,r): $2^{(r+1)m}$ binary symmetric $m \times m$ matrices

$$DG(m,r) = \left\{ \sum_{t=0}^{r} P^t(a_t) | a_0, \dots, a_r \in \mathbb{F}_{2^m} \right\}$$

Framework for exploiting prior information about the signal

THEOREM: The difference of any two matrices in $DG(\boldsymbol{m},r)$ has rank at least $\boldsymbol{m}-2r$

PROOF: Non-degeneracy of the trace

Incorporating Prior Information Via the Delsarte-Goethals Sets

 The Delsarte-Goethals structure imparts an order of preference on the columns of a Reed-Muller sensing matrix

$$K_m = DG(m,0) \subset DG(m,1) \subset \cdots \subset DG\left(m,\frac{m-1}{2}\right)$$

Better inner products \longleftrightarrow Worse inner products

 If a prior distribution on the positions of the sparse components is known, the DG structure provides a means to assign the best columns to the components most likely present $A = \left[\phi^{P,b}(x)\right]: P \in DG(m,r), \ b \in \mathbb{Z}_2^m$

A has $N=2^m$ rows and $C=2^{(r+2)m}$ columns

$$\phi^{P,b}(x) = i^{\mathsf{wt}(d_p) + 2\mathsf{wt}(b)} i^{xPx^T + 2bx^T}$$

- Union of $2^{(r+1)m}$ orthonormal basis Γ_P
- Coherence between bases Γ_P and Γ_Q determined by $R = {\rm rank}(P+Q)$

THEOREM: Any vector in Γ_P has inner product $2^{-R/2}$ with 2^R vectors in Γ_Q and is orthogonal to the remaining vectors

PROOF: Exponential sums or properties of the symplectic group Sp(2m,2)

Quadratic Reconstruction Algorithm

$$f(x+a)\overline{f(x)} = \frac{1}{N}\sum_{j=1}^{k} |\alpha_j|^2 (-1)^{aP_j x^T} + \frac{1}{N}\sum_{j \neq t} \alpha_j \overline{\alpha}_t \phi^{P_j, b_j}(x+a) \overline{\phi^{P_t, b_t}(x)}$$

 $\frac{1}{N}\sum_{j=1}^{k} |\alpha_{j}|^{2}(-1)^{aP_{j}x^{T}}$: Concentrates energy at k Walsh-Hadamard tones. $\frac{1}{N}\sum_{i=1}^{k} |\alpha_{i}|^{4}$: Signal energy in the Walsh-Hadamard tones

The second term distributes energy uniformly across all N tones – the $l^{\rm th}$ Fourier coefficient is

$$\Gamma_a^l = \frac{1}{N^{3/2}} \sum_{j \neq t} \alpha_j \overline{\alpha}_t \sum_x (-1)^{lx^T} \phi^{P_j, b_j}(x+a) \overline{\phi^{P_t, b_t}(x)}$$

Theorem: $\lim_{N\to\infty}\mathbb{E}[N^2|\Gamma_a^l|^2]=\sum_{j\neq t}|\alpha_j|^2|\alpha_t|^2$

[Note:
$$||f||^4 = \left(\sum_{x,a} |f(x+a)\overline{f(x)}|^2\right)^2$$
]

Quadratic Reconstruction Algorithm

Example:
$$N=2^{10}$$
 and $C=2^{55}$

Fundamental Limits

Information Theoretic Rule of Thumb: Number of measurements N required by Basis Pursuit satisfies

$$N > k \log_2\left(1 + \frac{C}{k}\right)$$

Robert Calderbank et al. Fast Sensing Matrices and Applications