Looking for 14-Cycles in the Cube

Zoltan Füredi, University of Illinois at Urbana-Champaign

Given graphs P and Q the generalized Turan number ex(P,Q) denotes the maximum number of edges of a P-free subgraph of Q. We consider the case when P is C_k , the cycle of length k and Q_n is the hypercube, (i.e., Q_n is n-regular and it has 2^n vertices).

Erdős conjectured that

$$ex(C_4, Q_n) = (\frac{1}{2} + o(1))e(Q_n)$$
 (?)

Fan Chung showed an upper bound 0.623 and that $ex(C_6, Q_n) \ge (1/4)e(Q_n)$, moreover that $ex(C_{4k}, Q_n) = o(e(Q_n))$. There are further results concerning C_{10} by Alon et al., by Axenovich et al., by A. Thomason et al., and more. Here we deal with the next unsolved case, and show that

$$\operatorname{ex}(C_{14}, Q_n) / e(Q_n) \to 0.$$

This is a joint work with Lale Özkahya.