Looking for 14-Cycles in the Cube

Zoltan Füredi, University of Illinois at Urbana-Champaign

Given graphs P and Q the generalized Turan number $\operatorname{ex}(P, Q)$ denotes the maximum number of edges of a P-free subgraph of Q. We consider the case when P is C_{k}, the cycle of length k and Q_{n} is the hypercube, (i.e., Q_{n} is n-regular and it has 2^{n} vertices).

Erdős conjectured that

$$
\begin{equation*}
\operatorname{ex}\left(C_{4}, Q_{n}\right)=\left(\frac{1}{2}+o(1)\right) e\left(Q_{n}\right) \tag{?}
\end{equation*}
$$

Fan Chung showed an upper bound 0.623 and that $\operatorname{ex}\left(C_{6}, Q_{n}\right) \geq(1 / 4) e\left(Q_{n}\right)$, moreover that $\operatorname{ex}\left(C_{4 k}, Q_{n}\right)=o\left(e\left(Q_{n}\right)\right)$. There are futher results concerning C_{10} by Alon et al., by Axenovich et al., by A. Thomason et al., and more. Here we deal with the next unsolved case, and show that

$$
\operatorname{ex}\left(C_{14}, Q_{n}\right) / e\left(Q_{n}\right) \rightarrow 0
$$

This is a joint work with Lale Özkahya.

