
IP Lookup and Range Searching

Haim Kaplan
Tel Aviv University

Joint with: Lars Arge, Pankaj Agarwal, Moshik Hershcovitch, Eyal
Molad, Bob Tarjan, Ke Yi

Longest Prefix Forwarding

– Packet has a destination address
– Router identifies the longest prefix of the

destination address to find the next hop

4.0.0.0/8
4.83.128.0/17
12.0.0.0/8
12.34.158.0/24
126.255.103.0/24

12.34.158.5
destination

forwarding table

outgoing link

The table is dynamic

4.0.0.0/8
4.83.128.0/17
12.0.0.0/8
12.34.158.0/24
126.255.103.0/24

12.34.158.5
destination

forwarding table

outgoing link

132.66.235.0/24 4.0.0.0/8

Routing protocols insert and delete prefixes

Given a set of strings S = {p1,...,pn} (prefixes) build a
data structure such that

Given a string q we can find (efficiently) the longest
prefix of q in S

The longest prefix problem

Updates – insert or delete a prefix

We can model this as follows
0.

0.
0.

0

25
5.

25
5.

25
5.

25
5

IP address

Each segment corresponds to a prefix

Segments are nested
0.

0.
0.

0

25
5.

25
5.

25
5.

25
5

IP address

A packet is a point
0.

0.
0.

0

25
5.

25
5.

25
5.

25
5

IP address

Want the shortest segment that contains the packet

Want to be able to insert/delete
segments

0.
0.

0.
0

25
5.

25
5.

25
5.

25
5

IP address

Want to be able to insert/delete
segments

0.
0.

0.
0

25
5.

25
5.

25
5.

25
5

IP address

Want to be able to insert/delete
segments

0.
0.

0.
0

25
5.

25
5.

25
5.

25
5

IP address

Discussion

• In the segment-stabbing problem we assume
that we can compare endpoints in O(1) time

• This may be reasonable if strings are short

• It is less reasonable if we try to solve the
longest prefix problem for arbitrary strings

Results (1) (SWAT 2008, HK)

• A very simple data structure for shortest
segment in a nested family
O(log(n)) time, and O(logB(n)) I/Os per op

• A data structure for longest prefix in a
collection of arbitrary strings
O(log(n) + |q|) time and O(logB(n) + |q|/B) I/Os
per op

both take linear space

Generalizations (1)

Given a set S of nested segments, each with priority
assigned to it, build a structure that allows efficient
queries of the from:
• Given a point x find segment with minimum priority
containing it.

5
7 13

9

• Updates – insert or delete a segment

x

Generalizations (2)

5
1

7
3

9

• Updates – insert or delete a segment

Given a set S of nested segments, each with priority
assigned to it, build a structure that allows efficient
queries of the from:
• Given a point x find segment with minimum priority
containing it.

Motivation for the general
problem

• Firewalls
• Rules are intervals/prefixes
• In case several rules apply to a packet

then decide by priority

Results (2) (STOC 2003,KMT)

• A simple data structure for nested
segments with priorities

 O(log(n)) time per op,
 O(n) space (uses dynamic trees)

• A data structure for general segments
O(log(n)) time per query/insert but
delete takes O(log(n)loglog(n)) time,
O(nloglog(n)) space

• A data structure for general segments
O(log(n)) time per query/insert but delete
takes O(log(n)loglog(n)) time, O(nloglog(n))
space

• O(logB(n)) I/Os per operation

Results (3) (SODA 2005, AAY)

Results (4) extension to 2D (M’03)
• Query  point in R2

– (Sender IP, receiver IP)
• interval  rectangle with priority

5
9

7

We can keep the query time logarithmic for nested
rectangles

Previous work: Networking community

• Specific for IP addresses, assume RAM,
bounds often depend on W: the length of the
address
(Sahni & Kim : O(n) space O(log n) time per op,
complicated, still use RAM)

• trie based solutions
• hash based solutions

Previous work: Theory community

• Feldman & Muthukrishnan (2000), Thorup (2003)
use RAM to get query time below O(log(n))

• Thorup: O(l) query time O(n1/l) update time, O(n)
space for general priority stabbing

• An update time of O(log2(n)) using
O(nlog(n)) space is easy !

Lets get started...

Classical solution: Segment tree

Construct a
balanced binary
tree over the basic
intervals

4
6

2
9

1

A B C D E F G I J KH L M

7

E G

LI KH MJ

F

BA DC

Place segment s in
every node v such that
s “covers v” but does
not “cover p(v)”

4
6

2
9

1

A B C D E F G I J KH L M

7

E G

LKH MJ

F

BA DC I

Place segment s in
every node v such that
s “covers v” but does
not “cover p(v)”

4
6

2
9

1

A B C D E F G I J KH L M

7

E G

LKH MJ

F

BA DC I

4
6

2
9

1

A B C D E F G I J KH L M

7

E G

LKH MJ

F

BA D

Traverse the path to the
leaf containg x – O(log(n))
nodes.

C I

x

Query

4
6

2
9

1

A B C D E F G I J KH L M

7

x

In each node choose the
min segment.

Find the minimum among
those.

O(log(n)) time
E G

LKH MJ

F

BA DC I

Query

Segment tree - Insert

4
6

2
9

1

A B C D E F G I J KH L M

7

10

Insert two new leaves

Add a segment in O(logn)
nodes

E G

LKH MJ

F

BA DC I

4
6

2
9

1

A B C D E F G I J KH L M

7

10

E’ E’’

Insert two new leaves

Add a segment in O(logn)
nodes

G

LKH MJ

F

BA DC E’’E’ I

4
6

2
9

1

A B C D E F G I J KH L M

7

10

E’ E’’

Insert two new leaves

Add a segment in O(logn)
nodes

G

LK MJ

F

BA DC E’’E’

H’ H’’

I

H’ H’’

4
6

2
9

1

A B C D E F G I J KH L M

7

10

E’ E’’ H’ H’’

Insert two new leaves

Add a segment in
O(logn) nodes

delete in analogous

need a secondary
heap at each node

 O(log2n) per
update

G

LK MJ

F

BA DC E’’E’

H’ H’’

I

? ?

We have to compute the segments which are mapped
to the nodes around the point of rotation

To rebalance we have to make
rotations


y

x

B

C

A

x

A
y

B C

? ?

To amortize away this work use weight balance trees
(BB[α])

Summary: segment tree

O(log2(n))Delete

O(log2(n))Insert

O(log(n))Query

Results (1) (SWAT 2008, HK)

• A very simple data structure for shortest
segment (in a nested family)
O(log(n)) time, and O(logB(n)) I/Os per op

• A data structure for longest prefix in a
collection of arbitrary strings
O(log(n) + |q|) time and O(logB(n) + |q|/B) I/Os
per op

both take linear space

Shortest nested segment

A B C D F jE G I K LH M

G

LKH MJ

F

BA D

C

E I

Shortest nested segment

A B C D F jE G I K L

Use a segment tree
as before

H M

G

LKH MJ

F

BA D

C

E I

Main observation

A B C D F jE G I K LH M

We can maintain only
the shortest among
all segments mapped
to a node

G

LKH MJ

F

BA D

C

E I

A B C D F jE G I K LH M

Observe (1) – any
segment appears
somewhere

Observe (2) – Only
one among a pair of
siblings has a
segment

G

LKH MJ

F

BA D

C

E I

A B C D F jE G I K LH M

As before in O(log(n))
time

x

G

LKH MJ

F

BA D

C

E I

Query

Insert

A B C D F jE G I K LH M

G

LKH MJ

F

BA D

C

E I

A B C D F jE G I K LH M
C’ C’’

G

LKH MJ

F

BA D EC’ C’’ I

A B C D F jE G I K LH M
C’ C’’ I’ I’’

G

LKH MJ

F

BA D EC’ C’’

I’ I’’

A B C D F jE G I K LH M
C’ C’’ I’ I’’

G

LKH MJ

F

BA D EC’ C’’

I’ I’’

A B C D F jE G I K LH M
C’ C’’ I’ I’’

G

LKH MJ

F

BA D EC’ C’’

I’ I’’

Rotations ?


y

x

B

C

A

x

A
y

B C

??

? ?

Shortest Nested Segments - Rotations


y

x

B

C

A

x

A
y

B C

??

? ?


y

x

B

C

A

x

A
y

B C

??

? ?

Shortest Nested Segments - Rotations


y

x

B

C

A

x

A
y

B C


y

x

B

C

A

x

A
y

B C


y

x

B

C

A

x

A
y

B C


y

x

B

C

A

x

A
y

B C

y

x

B

C

A

Impossible

Delete

G

LKH MJ

F

BA D EC’ C’’

I’ I’’

A B D F jE G K LH MC’ C’’ I’ I’’

Delete

G

LKH MJ

F

BA D EC’ C’’

I’ I’’

A B D F jE G K LH MC’ C’’ I’ I’’

A B D F jE G K LH MC’ C’’ I’ I’’

Delete

G

LKH MJ

F

BA D EC’ C’’

I’ I’’

A B D F jE G K LH MC’ C’’ I’ I’’

Delete

G

LKH MJ

F

BA D EC’ C’’

I’ I’’

Results (1) (SWAT 2008, HK)

• A very simple data structure for shortest
segment (in a nested family)
O(log(n)) time, and O(logB(n)) I/Os per op

• A data structure for longest prefix in a
collection of arbitrary strings
O(log(n) + |q|) time and O(logB(n) + |q|/B) I/Os
per op

both take linear space

M N O

A B C E G LF H I M NI OD J K

LJ KIG HFEDBA

Use the B-tree as a segment tree

C

Keep only the shortest at
each node

A B C E G LF H I M NI OD J K

M N OLJ KIG HFEDBA C

Same as before.

O(logB(n)) I/Os.

A B C E G LF H I M NI OD J K

Query

x

M N OLJ KIG HFEDBA C

A B C E G LF H I M NI OD J K

Insert

M N OLJ KIG HFEDBA C

K

A B C E G LF H I M NI OD J K
C’ C’’ K’K’’

K’’

M N OLJIG HFEDC’BA C’’

K

A B C E G LF H I M NI OD J K
C’ C’’ K’K’’

K’’

M N OLJIG HFEDC’BA C’’

A

Split/merge/borrow analogous to rotations

B C D E



V

A B C

V1

D E

V2

? ?

?? ? ? ?

A

Split/merge/borrow analogous to rotations

B C D E



V

A B C

V1

D E

V2

Results (1) (SWAT 2008, HK)

• A very simple data structure for shortest
segment (in a nested family)
O(log(n)) time, and O(logB(n)) I/Os per op

• A data structure for longest prefix in a
collection of arbitrary strings
O(log(n) + |q|) time and O(logB(n) + |q|/B)
I/Os
per op

both take linear space

Combine

• Combine with the string B-tree of
Ferragina and Grossi (JACM 99)

a
b
a
a
c
a
b
c
c
c
R

A Patricia trie of the keys

3

a
b
a
a
c
a
b
c
c
c
L

a
b
a
a
c
a
b
R

a
b
b
a
c
a
b
b
a
L

a
b
b
a
c
a
b
b
a
R

a
b
R

5

8

11

a

a
c

a c R

RL

10
RL

b
R

A4R A8R A9L A9R A7R A10L A10R A2R

A1 -
a

A6 - abaaabbccc
A2 - ab
A3 - aba
A4 - abaaabb
A5 - abaaabbaa

A8 - abaacabaaa

A10 - abbacabba
A9 - abaacabccc

A7 - abaacab

R
R

Results (2) (STOC 2003,KMT)

• A simple data structure for nested
segments with priorities

 O(log(n)) time per op,
 O(n) space (uses dynamic trees)

• A data structure for general segments
O(log(n)) time per query/insert but
delete takes O(log(n)loglog(n)) time,
O(nloglog(n)) space

1

5

7
9

8

72 1

2 9

5

8

2
2

Containment tree:

The parent of a segment v is the
smallest segment containing v

Nested Intervals

1

5

7
9

8

72 1

2 9

5

8

2

Query:

Starting node s = smallest interval
containing the query point

Relevant priorities are on the path
from s to the root.

2

Problem: path may be long…

x

1

5

7
92

8

72 1

2 9

5

8

2

Want to use a dynamic tree to
represent the containment tree.

Dynamic trees know how to do that

Dynamic trees
find min along path

link

cut

O(log n) time per
operation

1

5

7
92

8

72 1

2 9

5

8

2

Use a dynamic tree to represent
the containment tree

Problem:

Updates => Many cuts & links

Insert

Binarization

1

5

7
92

2

4

72 1

2 9

5

4

Leftmost child of v => Left
child of v

Any other child of v => right
child of its left sibling9

7

5

∞ ∞

∞

Adjust costs:

Left edge => priority of
parent

Right edge => ∞

Node v => node v

Insert (Cont.)

Constant number of links and cuts

Summary

• Containment tree C
– Query = min cost on path from starting

point to root
• Represent C by binarized version B
• Represent B by dynamic tree D
• How do you find the point to start the

query ?
• How do you find the edges to cut ?

How do you start the query ?

1
5

7
92

2

4

7

9

Use a balanced search tree on the
endpoints

1

Min(Mincost(    ), pri(    ))

query (cont)

1
5

7
92

2

4

7

9

1

Mincost(    )

Results (2) (STOC 2003,KMT)

• A simple data structure for nested
segments with priorities

 O(log(n)) time per op,
 O(n) space (uses dynamic trees)

• A data structure for general segments
O(log(n)) time per query/insert but
delete takes O(log(n)loglog(n)) time,
O(nloglog(n)) space

• A data structure for general segments
O(log(n)) time per query/insert but delete
takes O(log(n)loglog(n)) time, O(nloglog(n))
space

• O(logB(n)) I/Os per operation

Results (3) (SODA 2005, AAY)

Further research

• Cache oblivious solution for strings
(static solution by Brodal & Fagerberg
SODA’06)

• Simplify the solutions
• Implement the shortest segment data

structure
• Better solutions for higher dimensions

