IP Lookup and Range Searching

Haim Kaplan
Tel Aviv University

Joint with:

Longest Prefix Forwarding

- Packet has a destination address

- Router identifies the longest prefix of the
destination address to find the next hop

forwarding table

L 4.0.0.0/8
destination 4.83.128.0/17 o
12.34.158.5 > 12.0.0.0/8 outgoing link
12.34.158.0/24 .

126.255.103.0/24

The table is dynamic

Routing protocols insert and delete prefixes

132.66.235.0/24

\ 4.0.0.0/8
forwarding table /
L 4.0.0.0/8
destination 4.83.128.0/17 o
12.34.158.5 > 12.0.0.0/8 outgoing link
12.34.158.0/24 >

126.255.103.0/24

The longest prefix problem

Given a set of strings S = {p;,....p,.} (prefixes) build a
data structure such that

Given a string q we can find (efficiently) the longest
prefix of ¢in S

Updates - insert or delete a prefix

0.0.0.0

We can model this as follows

Each segment corresponds to a prefix

|P address

255.255.255.255

0.0.0.0

Segments are nested

|P address

255.255.255.255

0.0.0.0

A packet is a point

Want the shortest segment that contains the packet

(—

IQ | | | | | |] 1]] >

|P address

255.255.255.255

0.0.0.0

Want to be able to insert/delete
segments

|P address

255.255.255.255

0.0.0.0

Want to be able to insert/delete
segments

|P address

255.255.255.255

0.0.0.0

Want to be able to insert/delete
segments

|P address

255.255.255.255

Discussion

* In the segment-stabbing problem we assume
that we can compare endpoints in O(1) time

» This may be reasonable if strings are short

» It is less reasonable if we try to solve the
longest prefix problem for arbitrary strings

Results (1) (SWAT 2008, HK)

A very simple data structure for shortest
segment in a nested family

O(log(n)) time, and O(logg(n)) I/Os per op

A data structure for longest prefix ina
collection of arbitrary sfrings

O(log(n) + |q]) time and O(logg(n) + |q|/B) I/0s
per op

both take linear space

Generalizations (1)

Given a set S of nested segments, each with priority
assigned fo it, build a structure that allows efficient
queries of the from:

» Given a point x find segment with minimum priority
containing it.

» Updates - insert or delete a segment

®

Generalizations (2)

Given a set S of ksi\ed segments, each with priority
assigned fo it, build a structure that allows efficient
queries of the from:

» Given a point x find segment with minimum priority
containing it.

» Updates - insert or delete a segment

Motivation for the general
problem

* Firewalls
* Rules are intervals/prefixes

* In case several rules apply to a packet
then decide by priority

Results (2) (STOC 2003,KMT)

* A simple data structure for nested
segments with priorities

O(log(n)) time per op,

O(n) space (uses dynamic trees)

* A data structure for general segments
O(log(n)) time per query/insert but
delete takes O(log(n)loglog(n)) time,
O(nloglog(n)) space

Results (3) (SODA 2005, AAY)

* A data structure for general segments

O(log(n)) time per query/insert but delete
takes O(log(n)lm}}é(n)) time, O(nlogldg(n))
space

* O(logg(n)) I/0s per operation

Results (4) extension to 2D (M'03)

* Query = point in R?
- (Sender IP, receiver IP)
* interval = rectangle with priority

5

We can keep the query time logarithmic for nested
rectangles

Previous work: Networking community

+ Specific for IP addresses, assume RAM,
bounds often depend on W: the length of the
address

(Sahni & Kim : O(n) space O(log n) time per op,
complicated, still use RAM)

- trie based solutions
- hash based solutions

Previous work: Theory community

+ Feldman & Muthukrishnan (2000), Thorup (2003)
use RAM 1o get query time below O(log(n))

* Thorup: O(1) query time O(n!/') update time, O(n)
space for general priority stabbing

Lets get started...

» An update time of O(log?(n)) using
O(nlog(n)) space is easy !

Classical solution: Segment tree

9 7
2
§)
4
AlB|lC]D E F|lG H I |J]IK|LIM
Construct a ()
balanced binary
tree over the basic () O
intervals
() () () ()
() () 1 0 [() () ()
E F G

2
4
AlB]cCc]|D F |G I L|M
Place segment s in
every node v such that
s "covers V" but does ()
not "cover p(v)" N
(J 0o o O ()
E F G
0 0 0 O i 00 0
A B C D H K L M

2
4
AlB]cC]|D F|G I LM
Place segment s in
every node v such that
s "covers v" but does O
not "cover p(v)" - —
() (]
(] 1 [] () ()
E F G
0 0 O 0] 0 0 O
A B C D H K L M

hodes.

9
2
X 4
AlB]cCc]|D E F|G I LM
Traverse the path to the
leaf containg x - O(log(n))
‘ —
() o
(] () 0 o 0 Q ()
E F G
1 0 0 0 i 0 0 0
A B C D H K L M

9
2
X 4
AlB|lcC]D F |G I LIM
In each node choose the
min segment.
Find the minimum among - — _
those. o ®
O(log(n)) time —
(log(n)) = = &4 % S
E F G
0 0O 0O O] 0 [
A B C D H K L

Segment tree - Insert

10
1
9 4
2
6
4
A B C D I;I F G I:I I J K]J]LIM
Insert two new leaves ()
Add a segment in O(logn) ° o
nodes — -
O)
() ()] [] () () ()
E F G
0 0O 0O O il 0 0O 0O 0
A B C D H 1 J K L M

hodes

9
2
4
A B C D F|1G H | LI M
Insert two new leaves
Add a segment in O(logn) °
) O
() ()] () ()
G
0 0 0 0O 0O O N] i
A B C DFE FE H K L

9
2
6
4
A B C D F G LI M
Insert two new leaves
Add a segment in O(logn) °
nodes — -
O)
() ()] () ()
G
0 0 O 0O 0 04 O 0] [
A B C D E E I K L
1 [
H’ H”

A]lB]J]C]|D F |G
9 E”

Insert two new leaves

Add a segment in
O(logn) nodes

delete in analogous

need a secondary
heap at each node

= O(log®n) per
update

B N
A B C DFE FE

To rebalance we have to make
rotations

We have to compute the segments which are mapped
to the nodes around the point of rotation

To amortize away this work use weight balance trees

(BB[)

Summary: segment tree

Query O(log(n))
Insert O(log?(n))
Delete O(log?(n))

Results (1) (SWAT 2008, HK)

A very simple data structure for shortest
segment (in a nested family)

O(log(n)) time, and O(logg(n)) I/Os per op

A data structure for longest prefix in a
collection of arbitrary sfrings

O(log(n) + |q]) time and O(logg(n) + |q|/B) I/0s
per op

both take linear space

Shortest nested segment

F

G ‘H\ I IJ‘K\L
@.

M

Shortest nested segment

C

G ‘H\ I IJ‘K\L
@.

A|B D |E | F
Use a segment tree
as before
() O
(] () (] (2
(] (0 IO ()
C F G

M

Main observation

AlB|] ¢ [IDIE]lF] G |H] 1 1i

We can maintain only
the shortest among @.
all segments mapped

to a node () O)

@/m

AIB] ¢ IDIEIF] G IH] 1 lilkKlLI M

Observe (1) - any
segment appears (O
somewhere

Observe (2) - Only () O

one among a pair of
siblings has a > e = e

segment °

@/m

> [
oo [
o O
o
wn i
G
N-
=
g-

As before in O(log(n))
time ()

Insert

IO

=
s

G ‘H\ I IJ‘K\L

C’ C” E

|
C”D E

]
A B C

G |nu I l‘ \L
I’ I”‘] K

C’ C” E

I”

I’

G |nu I l‘ \L
I’ I”‘] K

C’ C” E

I”

I’

G |nu I l‘ \L
I’ I”‘] K

C’ C” E

I”

I’

Rotations ?

Shortest Nested Segments - Rotations

Shortest Nested Segments - Rotations

Impossible

Delete

Alslclcelo e | F] ¢ ‘H\I"I”Ij‘K\L M
(O

(O O
(] () (] ()
() O 00 Q () ()
F G
0 [0 O 0 O 0 0 O
A B CC’D E H J K L
1 O

Delete

Alslclcelo e | F] ¢ ‘H\I"I”Ij‘K\L M
(O

(O O
(] () (] ()
() O 00 Q () ()
F G
0 [0 O 0 O 0 0 O
A B CC’D E H J K L
1 O

Delete

Alslclcelo e | F] ¢ ‘H\I"I”Ij‘K\L M
(O

Delete

G ‘H\I"I”Ij ‘K\L

E

D

C”

A|lB]|C

|
C”D E

]
A B C

I”

I’

Results (1) (SWAT 2008, HK)

A very simple data structure for shortest
segment (in a nested family)

O(log(n)) time, and O(logg(n)) I/Os per op

A data structure for longest prefix ina
collection of arbitrary sfrings

O(log(n) + |q]) time and O(logg(n) + |q|/B) I/0s
per op

both take linear space

Use the B-tree as a segment tree

H ‘I\J L‘M\N

/N I

(05 0% Win TEHD B

AB C GHI JKLM NO

AlB]J C]D |E]F |G K O

ABCDEFG}II‘I\JIKLMNO

Keep only the shortest at
each node

/N I

Ty By Hhw wbn T

ABC DEF GHI JKLM NO

Query

ABCDEFG}II‘I\JIKLMNO

Same as before.

O(logy(n)) I/Os.

—
A /N
T 65 fhw 7éhT dh

ABC DEF GHI JKLM NO

Insert

DIE‘F

-

/N I

(T dTn fov THbn 1
ABC DEF GHI JKLM NO

A|lB]| C G

‘I\JHLMNO

K’ K”

/N /N

D/i%mmﬁm 1)

ABCC’DEF GHI J KILM NO

K”

‘I\JHLMNO

K’ K”

/N /N

D/i%mmﬁm i

ABCC’DEF GHI J KILM NO

K”

Split/merge/borrow analogous to rotations

Split/merge/borrow analogous to rotations

Results (1) (SWAT 2008, HK)

A very simple data structure for shortest
segment (in a nested family)

O(log(n)) time, and O(logg(n)) I/Os per op

A data structure for longest prefix in a
collection of arbitrary strings

O(log(n) + |q|) time and O(logx(n) + |q|/B)
< }Og q Je q
per op

both take linear space

Combine

» Combine with the string B-tree of
Ferragina and Grossi (JACM 99)

A Patricia trie of the keys

ARAR AL AR ARAL A RAR

A; - abaaabbaa A,,- abbacabba —

L
S
b b b b b b
a a a b b R
R a a a a a
C C C C C
— A - a a a a a A, - abaaabbccc —
A, -ab b b b b B A, - abaacab
A; -aba C C R b b A, - abaacabaaa —
— A, - abaaabb C C a a A, - abaacabccc
c c L R
L R

Results (2) (STOC 2003,KMT)

* A simple data structure for nested
segments with priorities

O(log(n)) time per op,

O(n) space (uses dynamic trees)

* A data structure for general segments
O(log(n)) time per query/insert but
delete takes O(log(n)loglog(n)) time,
O(nloglog(n)) space

Containment tree.

The parent of a segment vis the
smallest segment containing v

Nested Intervals

O

Query:

Starting node s = smallest interval
containing the query point

Relevant priorities are on the path
from s to the root.

Problem: path may be long...

Dynamic trees know how to do that

Want to use a dynamic tree to
represent the containment tree.

Dynamic trees

find min along path /N

O(log n) time per
A operation
cut 7\

Use a dynamic tree to represent
the containment tree

Problem:
Updates => Many cuts & links

Insert

Binarization

Node v => node v

Leftmost child of v => Left
child of v

Any other child of v => right
child of its left sibling

Adjust costs:

Left edge => priority of
parent

Right edge => «

Insert (Cont.)

%Of f@fogf

Constant number of links and cuts

Summary

« Containment tree C

- Query = min cost on path from starting
point to root

* Represent C by binarized version B
* Represent B by dynamic tree D

* How do you find the point to start the
query ?

* How do you find the edges to cut ?

How do you start the query ?

—4

2 9 5
2 7 1

Use a balanced search tree on the
endpoints

B EEOOOO M.

Min(Mincost@), pri(@))

query (cont)

—4

2 9 5
2 7
A
1
O
EpDEE EEREEENOCOCOHE
Z

Mincost(@)

Results (2) (STOC 2003,KMT)

* A simple data structure for nested
segments with priorities

O(log(n)) time per op,

O(n) space (uses dynamic trees)

» A data structure for general segments
O(log(n)) time per query/insert but
delete takes O(log(n)loglog(n)) time,
O(nloglog(n)) space

Results (3) (SODA 2005, AAY)

* A data structure for general segments

O(log(n)) time per query/insert but delete
takes O(log(n)lm}}é(n)) time, O(nlogldg(n))
space

* O(logg(n)) I/0s per operation

Further research

» Cache oblivious solution for strings
(static solution by Brodal & Fagerberg
SODA'06)

+ Simplify the solutions

» Implement the shortest segment data
structure

+ Better solutions for higher dimensions

