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Longest Prefix Forwarding

– Packet has a destination address
– Router identifies the longest prefix of the

destination address to find the next hop
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The table is dynamic
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Routing protocols insert and delete prefixes



Given a set of strings S = {p1,...,pn} (prefixes) build a
data structure such that

Given a string q we can find (efficiently) the longest
prefix of q in S

The longest prefix problem

Updates – insert or delete a prefix



We can model this as follows
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Segments are nested
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A packet is a point
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Want the shortest segment that contains the packet



Want to be able to insert/delete
segments
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Want to be able to insert/delete
segments
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Want to be able to insert/delete
segments
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Discussion

• In the segment-stabbing problem we assume
that we can compare endpoints in O(1) time

• This may be reasonable if strings are short

• It is less reasonable if we try to solve the
longest prefix problem for arbitrary strings



Results (1) (SWAT 2008, HK)

• A very simple data structure for shortest
segment in a nested family
O(log(n)) time, and O(logB(n)) I/Os per op

• A data structure for longest prefix in a
collection of arbitrary strings
O(log(n) + |q|) time and O(logB(n) + |q|/B) I/Os
per op

both take linear space



Generalizations (1)

Given a set S of nested segments, each with priority
assigned to it, build a structure that allows efficient
queries of the from:
• Given a point x find segment with minimum priority
containing it.
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• Updates – insert or delete a segment

x



Generalizations (2)
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• Updates – insert or delete a segment

Given a set S of nested segments, each with priority
assigned to it, build a structure that allows efficient
queries of the from:
• Given a point x find segment with minimum priority
containing it.



Motivation for the general
problem

• Firewalls
• Rules are intervals/prefixes
• In case several rules apply to a packet

then decide by priority



Results (2) (STOC 2003,KMT)

• A simple data structure for nested
segments with priorities

   O(log(n)) time per op,
   O(n) space (uses dynamic trees)

• A data structure for general segments
O(log(n)) time per query/insert but
delete takes O(log(n)loglog(n)) time,
O(nloglog(n)) space



• A data structure for general segments
O(log(n)) time per query/insert but delete
takes O(log(n)loglog(n)) time, O(nloglog(n))
space

• O(logB(n)) I/Os per operation

Results (3) (SODA 2005, AAY)



Results (4) extension to 2D (M’03)
• Query  point in R2

– (Sender IP, receiver IP)
• interval  rectangle with priority

5
9

7

We can keep the query time logarithmic for nested
rectangles



Previous work: Networking community

• Specific for IP addresses, assume RAM,
bounds often depend on W: the length of the
address
(Sahni & Kim : O(n) space O(log n) time per op,
complicated, still use RAM)

• trie based solutions
• hash based solutions



Previous work: Theory community

• Feldman & Muthukrishnan (2000), Thorup (2003)
use RAM to get query time below O(log(n))

• Thorup: O(l) query time O(n1/l) update time, O(n)
space for general priority stabbing



• An update time of O(log2(n)) using
O(nlog(n)) space is easy !

Lets get started...



Classical solution: Segment tree

Construct a
balanced binary
tree over the basic
intervals
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Place segment s in
every node v such that
s “covers v” but does
not “cover p(v)”
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Place segment s in
every node v such that
s “covers v” but does
not “cover p(v)”
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Traverse the path to the
leaf containg x – O(log(n))
nodes.
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In each node choose the
min segment.

Find the minimum among
those.
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Segment tree - Insert
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Insert two new leaves

Add a segment in
O(logn) nodes

delete in analogous

need a secondary
heap at each node

 O(log2n) per
update
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? ?

We have to compute the segments which are mapped
to the nodes around the point of rotation

To rebalance we have to make
rotations


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? ?

To amortize away this work use weight balance trees
(BB[α])



Summary: segment tree

O(log2(n))Delete

O(log2(n))Insert

O(log(n))Query



Results (1) (SWAT 2008, HK)

• A very simple data structure for shortest
segment (in a nested family)
O(log(n)) time, and O(logB(n)) I/Os per op

• A data structure for longest prefix in a
collection of arbitrary strings
O(log(n) + |q|) time and O(logB(n) + |q|/B) I/Os
per op

both take linear space



Shortest nested segment
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Shortest nested segment
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Use a segment tree
as before
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Main observation

A B C D F jE G I K LH M

We can maintain only
the shortest among
all segments mapped
to a node
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A B C D F jE G I K LH M

Observe (1) – any
segment appears
somewhere

Observe (2) – Only
one among a pair of
siblings has a
segment
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A B C D F jE G I K LH M

As before in O(log(n))
time
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Insert
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Rotations ?
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Shortest Nested Segments - Rotations
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Delete
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Results (1) (SWAT 2008, HK)

• A very simple data structure for shortest
segment (in a nested family)
O(log(n)) time, and O(logB(n)) I/Os per op

• A data structure for longest prefix in a
collection of arbitrary strings
O(log(n) + |q|) time and O(logB(n) + |q|/B) I/Os
per op

both take linear space
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Use the B-tree as a segment tree

C



Keep only the shortest at
each node

A B C E G LF H I M NI OD J K

M N OLJ KIG HFEDBA C



Same as before.

O(logB(n)) I/Os.
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Split/merge/borrow analogous to rotations
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Results (1) (SWAT 2008, HK)

• A very simple data structure for shortest
segment (in a nested family)
O(log(n)) time, and O(logB(n)) I/Os per op

• A data structure for longest prefix in a
collection of arbitrary strings
O(log(n) + |q|) time and O(logB(n) + |q|/B)
I/Os
per op

both take linear space



Combine

• Combine with the string B-tree of
Ferragina and Grossi (JACM 99)
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Results (2) (STOC 2003,KMT)

• A simple data structure for nested
segments with priorities

   O(log(n)) time per op,
   O(n) space (uses dynamic trees)

• A data structure for general segments
O(log(n)) time per query/insert but
delete takes O(log(n)loglog(n)) time,
O(nloglog(n)) space
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The parent of a segment v is the
smallest segment containing v



Nested Intervals
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Query:

Starting node s = smallest interval
containing the query point

Relevant priorities are on the path
from s to the root.
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Problem: path may be long…
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Want to use a dynamic tree to
represent the containment tree.

Dynamic trees know how to do that



Dynamic trees
find min along path

link

cut

O(log n) time per
operation
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Problem:
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Binarization

1

5

7
92

2

4

72 1

2 9

5

4

Leftmost child of v => Left
child of v

Any other child of v => right
child of its left sibling9

7

5

∞ ∞

∞

Adjust costs:

Left edge => priority of
parent

Right edge => ∞

Node v => node v



Insert (Cont.)

Constant number of links and cuts



Summary

• Containment tree C
– Query = min cost on path from starting

point to root
• Represent C by binarized version B
• Represent B by dynamic tree D
• How do you find the point to start the

query ?
• How do you find the edges to cut ?



How do you start the query ?
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query (cont)
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Results (2) (STOC 2003,KMT)

• A simple data structure for nested
segments with priorities

   O(log(n)) time per op,
   O(n) space (uses dynamic trees)

• A data structure for general segments
O(log(n)) time per query/insert but
delete takes O(log(n)loglog(n)) time,
O(nloglog(n)) space



• A data structure for general segments
O(log(n)) time per query/insert but delete
takes O(log(n)loglog(n)) time, O(nloglog(n))
space

• O(logB(n)) I/Os per operation

Results (3) (SODA 2005, AAY)



Further research

• Cache oblivious solution for strings
(static solution by Brodal & Fagerberg
SODA’06)

• Simplify the solutions
• Implement the shortest segment data

structure
• Better solutions for higher dimensions


