IP Lookup and Range Searching

Haim Kaplan
Tel Aviv University

Joint with: Lars Arge, Pankaj Agarwal, Moshik Hershcovitch, Eyal Molad, Bob Tarjan, Ke Yi

Longest Prefix Forwarding

- Packet has a destination address
- Router identifies the longest prefix of the destination address to find the next hop

The table is dynamic

Routing protocols insert and delete prefixes

The longest prefix problem

Given a set of strings $S=\left\{p_{1}, \ldots, p_{n}\right\}$ (prefixes) build a data structure such that
Given a string q we can find (efficiently) the longest prefix of q in S

Updates - insert or delete a prefix

We can model this as follows

Each segment corresponds to a prefix

Segments are nested

A packet is a point

Want the shortest segment that contains the packet

Want to be able to insert/delete segments

Want to be able to insert/delete segments

Want to be able to insert/delete segments

Discussion

- In the segment-stabbing problem we assume that we can compare endpoints in $O(1)$ time
- This may be reasonable if strings are short
- It is less reasonable if we try to solve the longest prefix problem for arbitrary strings

Results (1) (SWAT 2008, HK)

- A very simple data structure for shortest segment in a nested family $O(\log (n))$ time, and $O\left(\log _{B}(n)\right) I / O s$ per op
- A data structure for longest prefix in a collection of arbitrary strings $O(\log (n)+|q|)$ time and $O\left(\log _{B}(n)+|q| / B\right) I / O s$ per op
both take linear space

Generalizations (1)

Given a set S of nested segments, each with priority assigned to it, build a structure that allows efficient queries of the from:

- Given a point x find segment with minimum priority containing it.
- Updates - insert or delete a segment

Genenairzations (2)

Given a set S of hested segments, each with priority assigned to it, build a structure that allows efficient queries of the from:

- Given a point x find segment with minimum priority containing it.
- Updates - insert or delete a segment

Motivation for the general problem

- Firewalls
- Rules are intervals/prefixes
- In case several rules apply to a packet then decide by priority

Results (2) (STOC 2003,KMT)

- A simple data structure for nested segments with priorities
$O(\log (n))$ time per op,
$O(n)$ space (uses dynamic trees)
- A data structure for general segments $O(\log (n))$ time per query/insert but delete takes $O(\log (n) \log \log (n))$ time, $O(n \log \log (n))$ space

Results (3) (SODA 2005, AAY)

- A data structure for general segments $O(\log (n))$ time per query/insert but delete takes $O(\log (n) \log \log (n))$ time, $O(n \log \log (n))$ space
- $O\left(\log _{B}(n)\right) I / O s$ per operation

Results (4) extension to 2D (M'03)

- Query \rightarrow point in R^{2}
- (Sender IP, receiver IP)
- interval \rightarrow rectangle with priority

We can keep the query time logarithmic for nested rectangles

Previous work: Networking community

- Specific for IP addresses, assume RAM, bounds often depend on W : the length of the address
(Sahni \& Kim : $O(n)$ space $O(\log n)$ time per op, complicated, still use RAM)
- trie based solutions
- hash based solutions

Previous work: Theory community

- Feldman \& Muthukrishnan (2000), Thorup (2003) use RAM to get query time below $O(\log (n))$
- Thorup: $O(1)$ query time $O\left(n^{1 / 1}\right)$ update time, $O(n)$ space for general priority stabbing

Lets get started...

- An update time of $O\left(\log ^{2}(n)\right)$ using $O(n \log (n))$ space is easy!

Classical solution: Segment tree

Construct a balanced binary tree over the basic intervals

Place segment s in every node v such that s "covers v" but does not "cover $p(v)$ "

Place segment s in every node v such that s "covers v" but does not "cover $p(v)$ "

Query

Traverse the path to the leaf containg $x-O(\log (n))$ nodes.

Query

In each node choose the min segment.
Find the minimum among those.
$O(\log (n))$ time

Segment tree - Insert

Insert two new leaves Add a segment in $O(\operatorname{logn})$ nodes

Insert two new leaves
Add a segment in $O(\operatorname{logn})$ nodes

Insert two new leaves Add a segment in $O(\operatorname{logn})$ nodes

Insert two new leaves
Add a segment in O(logn) nodes delete in analogous need a secondary heap at each node
$\rightarrow O\left(\log ^{2} n\right)$ per update

To rebalance we have to make rotations

We have to compute the segments which are mapped to the nodes around the point of rotation

\rightarrow

To amortize away this work use weight balance trees (BB[d$]$)

Summary: segment tree

Query	$O(\log (n))$
Insert	$O\left(\log ^{2}(n)\right)$
Delete	$O\left(\log ^{2}(n)\right)$

Results (1) (SWAT 2008, HK)

- A very simple data structure for shortest segment (in a nested family)
$O(\log (n))$ time, and $O\left(\log _{B}(n)\right)$ I/Os per op
- A data structure for longest prefix in a collection of arbitrary strings $O(\log (n)+|q|)$ time and $O\left(\log _{B}(n)+|q| / B\right) I / O s$ per op
both take linear space

Shortest nested segment

Shortest nested segment

Use a segment tree as before

Main observation

We can maintain only the shortest among all segments mapped to a node

Observe (1) - any segment appears somewhere

Observe (2) - Only one among a pair of siblings has a segment

Query

As before in $O(\log (n))$ time

Inser \dagger

Rotations?

Shortest Nested Segments - Rotations

Shortest Nested Segments - Rotations

Delete

Delete

Delete

Delete

Results (1) (SWAT 2008, HK)

- A very simple data structure for shortest segment (in a nested family)
$O(\log (n))$ time, and $O\left(\log _{B}(n)\right)$ I/Os per op
- A data structure for longest prefix in a collection of arbitrary strings $O(\log (n)+|q|)$ time and $O\left(\log _{B}(n)+|q| / B\right) I / O s$ per op
both take linear space

Use the B-tree as a segment tree

Keep only the shortest at each node

Query

Same as before.
$O\left(\log _{B}(n)\right) I / O s$.

Insert

Split/merge/borrow analogous to rotations

Split/merge/borrow analogous to rotations

Results (1) (SWAT 2008, HK)

- A very simple data structure for shortest segment (in a nested family) $O(\log (n))$ time, and $O\left(\log _{B}(n)\right)$ I/Os per op

A data structure for longest prefix in a collection of arbitrary strings $O(\log (n)+|q|)$ time and $O\left(\log _{B}(n)+|q| / B\right)$ I/Os
per op
both take linear space

Combine

- Combine with the string B-tree of Ferragina and Grossi (JACM 99)

A Patricia trie of the keys

Results (2) (STOC 2003,KMT)

- A simple data structure for nested segments with priorities $O(\log (n))$ time per op. $O(n)$ space (uses dynamic trees)
- A data structure for general segments $O(\log (n))$ time per query/insert but delete takes $O(\log (n) \log \log (n))$ time, $O(n \log \log (n))$ space
\qquad

Containment tree:
The parent of a segment v is the smallest segment containing v

Nested Intervals

\qquad
5

Query:
Starting node $s=$ smallest interval containing the query point

Relevant priorities are on the path from s to the root.

Problem: path may be long...

Dynamic trees know how to do that

\qquad

Want to use a dynamic tree to represent the containment tree.

Dynamic trees

find min along path

link

$O(\log n)$ time per operation

\qquad9

Use a dynamic tree to represent the containment tree

Problem:

Updates => Many cuts \& links

Insert

Binarization

Node v $=>$ node v
Leftmost child of $v \Rightarrow$ Left \dagger child of v

Any other child of $v=>$ right child of its left sibling

Adjust costs:
Left edge => priority of parent

Right edge $\Rightarrow \infty$

Insert (Cont.)

Constant number of links and cuts

Summary

- Containment tree C
- Query = min cost on path from starting point to root
- Represent C by binarized version B
- Represent B by dynamic tree D
- How do you find the point to start the query?
- How do you find the edges to cut?

How do you start the query?

_-4

Use a balanced search tree on the

Min(Mincost(○), pri(○))

query (cont)

$$
\varlimsup_{2} 2 \xlongequal{-4} 7 \xrightarrow{\square} 1
$$

$$
4
$$

Mincost($\mathbf{(})$

Results (2) (STOC 2003,KMT)

- A simple data structure for nested segments with priorities
$O(\log (n))$ time per op,
$O(n)$ space (uses dynamic trees)
- A data structure for general segments $O(\log (n))$ time per query/insert but delete takes $O(\log (n) \log \log (n))$ time, $O(n \log \log (n))$ space

Results (3) (SODA 2005, AAY)

- A data structure for general segments $O(\log (n))$ time per query/insert but delete takes $O(\log (n) \log \log (n))$ time, $O(n \log \log (n))$ space
- $O\left(\log _{B}(n)\right) I / O s$ per operation

Further research

- Cache oblivious solution for strings (static solution by Brodal \& Fagerberg SODA'06)
- Simplify the solutions
- Implement the shortest segment data structure
- Better solutions for higher dimensions

