
Challenges in Web Information

Retrieval

Monika Henzinger
Ecole Polytechnique Federale de Lausanne
(EPFL) & Google Switzerland

2

Statistics for March 2008

20% of the world
population uses the internet
[internetworldstats.com]

~300 million searches per
day [Nielsen NetRatings]

search engines are the
second largest application
on the web

3

Outline of this talk

Search engine architecture
• Open problem: Loadbalancing

Large-scale distributed programming model
• Open problem: Relationship to data stream model

Sponsored search auctions
• Open problem: Realistic user modeling

4

Search Engine Architecture

Crawler
(Spider):
downloads
web pages

Document
Collection

“Search Engine”:
• builds inverted index
• serves user queries
using index

User query

ONLINE

5

Inverted Index

All web pages are numbered consecutively
For each word keep an ordered list (posting list) of all

positions in all document

query running time linear in length of posting lists of
query terms

Princeton (3,1) (3,10) (6,2) (9,4) (9,8) (10,1) (20,2)…

Tarjan (3,2) (3,20) (7,4) (8,3) (9,2) (9,20) (104,2) …

6

Query Data Flow

Split document set into subsets

Place complete index for one or
more subsets on each index
server

Problems:
• Some servers might have more

indices than others

• Some indices have lower
throughput than others
causing their servers to
become bottlenecks

Index Servers
Index Servers

Web Server

User query

Index Server

7

Idea: Copy Indices

Questions:

Which indices to copy?

How to assign indices and copies to machines?

Where to send individual requests?

Offline file layout & online loadbalancing problem

m1 m2 m3

f3f1
f2

m2m1 m3

f3
f2f1

f1f2

8

Model

Offline layout phase:
• Set m1 … mm of identical machines, each has si slots s.t.

each indices fits into each slot

• Set f1… fn of indices

• Assign files and copies to machines

Online loadbalancing phase: A sequence of requests arrives
s.t.

• every request t needs to access one index fj and

• places a load of l(t) on the machine that it is assigned to

9

Model (cont.)

Machine load MLi = sum of loads placed on mi

Goal: Minimize maxi MLi (makespan)
• A(s) = maximum machine load on sequence s
• OPT(s) = maximum machine load on sequence s for optimum

offline algorithm that might use a different file layout

Competitive Analysis: An algorithm A is k-competitive if for any
sequence s of requests

Goal: Study tradeoff between competitive ratio and number of used
slots

)1()()(OskOPTsA +≤

10

Parameters

Set α s.t.
where FLj = sum of loads of requests for index fj

Set β = maxt individual request load l(t)

Note: In web search engines: α is < 1, β is constant

ji FLFLji)1(:, α+≤∀

jFL iFL () jFLα+≤
⎪
⎭

⎪
⎬

⎫
1

11

Results

Slots n nm

Competitive
ratio

deterministic
1

Competitive
ratio

randomized

n
mg

nm
≥

)(

α
α

α
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
−+

)(
111
mg

2
1 α
+

2
3n

Assumption: Every machine has same number of slots

α
α
α

⎟
⎠
⎞

⎜
⎝
⎛

+
+

−+
m
111

*

*

*: some additional conditions apply

12

Open questions

Lower bounds

Different models:
• Performance measures

• Machine properties:
• Speeds (related/unrelated machines)

• Slots per machine

• Arrival times and duration

13

Outline of this talk

Search engine architecture

• Open problem: Loadbalancing √
Large-scale distributed programming model: MapReduce

• Open problem: Relationship to data stream model

Sponsored search auctions
• Open problem: Realistic user modeling

14

What is MapReduce?
System for distributing batch operations over many data

items over cluster of machines

Map phase:
• Extracts relevant information from each data item of the input

• Outputs (key, value) pairs

Aggregation phase:
• Sorts pairs by key

Reduce phase:
• Produces final output from sorted pairs list

User writes two simple functions: map and reduce.
Underlying library takes care of all details

frequently used within Google (70k jobs in 1 month)

15

Model (Feldman et al. ’08)

Massive unordered distributed (mud) model of computation:
A mud algorithm is a triple (Φ, +,Γ), where

Φ: Σ → Q maps an input item to message
the aggregator +: Q → Q maps two message to a single message
post-processing operator Γ: Q → Σ produces the final output

For input x = x1, … xn it outputs

A mud algorithm computes a function f if for all x and all possible topologies
of + operations:

f(x) = m(x)

))(...)()(()(21 nxxxm Φ++Φ+ΦΓ=x

16

Relationship to streaming algorithms

Observation: Any mud algorithm can be computed by a streaming
algorithm with the same time, space, and communication
complexity.

Inverse:
• f must be order invariant on input, since mud works on

unordered data
Theorem: For any order-invariant function f computed by a

streaming algorithm with

• g(n)-space and c(n)-communication s. t. g(n)=Ω(log n) and
c(n)=Ω(log n)

there exists a mud algorithm with

• O(g2(n))-space, O(c(n))-communication, and Ω(2polylog(n)) time

17

Open problems

More efficient mud algorithm

Multiple mud algorithms, running simultaneously over same
input, each aggregating only values with same key

closer to MapReduce

Multiple iterations
• Example: Finding near-duplicate web pages using k

fingerprints per page:
• 1 MapReduce with space O(k2n)

• 2 MapReduces with space O(kn)

18

Outline of this talk

Search engine architecture

• Open problem: Loadbalancing √
Large-scale distributed programming model: MapReduce

• Open problem: Relationship to data stream model √
Sponsored search auctions

• Open problem: Realistic user modeling

19

Search: hotel princeton

20

Sponsored Search Auctions

Advertisers enter bids for keywords.

At query time:
Ranking Scheme: System ranks ads by

• Bid
• Effective bid = bid * click-through-rate

2. Payment Scheme: Charge advertisers only if users click on an ad.
• Generalized First Price (GFP): Pay what you bid: Advertisers

see-saw.
• Generalized Second Price (GSP):

Pay what the ad below you bid: stable

Goal: Design ranking and payment scheme
that makes everybody “happy”

Adv Bid Price
Alice $0.32 $0.24
Bob $0.24 $0.17
Carol $0.17 $0.14
David $0.14 ---

21

Pay what you bid: Non-stability

Source: Edelman, Ostrovsky, Schwarz: Internet Advertising and the
Generalized Second Price Auction: Selling Billions of Dollars Worth of Keywords

22

Sponsored Search Auctions

Advertisers enter bids for keywords.

At query time:
Ranking Scheme: System ranks ads by

• Bid
• Effective bid = bid * click-through-rate

2. Payment Scheme: Charge advertisers only if users click on an ad.
• Generalized First Price (GFP): Pay what you bid: Advertisers

see-saw.
• Generalized Second Price (GSP):

Pay what the ad below you bid: stable

Goal: Design ranking and payment scheme
that makes everybody “happy”

Adv Bid Price
Alice $0.32 $0.24
Bob $0.24 $0.17
Carol $0.17 $0.14
David $0.14 ---

23

Most desirable properties

Stability: Bidders reach an equilibrium where it’s not in their
interest to change bids

Simplicity: Bidders can understand how the price is derived
from the bids

Monotonicity: Increasing bid does not decrease position and
does not decrease click probability

24

Current Model
Assumptions:

• ca(i) = click-through rate for ad i
• cp(j) = click-through multiplier for position j, cp(j) < cp(j-1)
• Separability: Pr[click on ad i at pos j] = ca(i) cp(j)
• Each bidder i has internal value v(i)

• Expected value at position j: ca(i) cp(j) v(i)
• Expected utility at position j: ca(i) cp(j) (v(i) – price(j))

• If pi is the position for bidder i then total expected value =

Goal: Maximize total expected value (efficient allocation)
Observation: Ranking by decreasing ca(i) v(i) maximizes total

expected value

∑
i

i ivpcpica)()()(

25

Current Model (cont.)

Observation: Ranking by decreasing ca(i) v(i) maximizes total
expected value

Recall: System ranks by effective bid = ca(i) b(i)
System knows only b(i) not v(i)
Payment scheme:

• Vickrey-Clarke-Groves (VCG):
• It’s best for bidder i to bid v(i)

stable
ranking maximizes total expected value

• Price depends on “damage caused to the other players” not very
simple

• GSP:
• simple, monoton, stable,
• but bidding v(i) is not usually best ranking does not usually

maximize total expected value

26

Separable user models

Above separable user model:
Pr[click on ad i at pos j] = ca(i) cp(j)
• "Pick position according to distribution cp(j). Click on

the ad in that position with probability ca(i) ."
More realistic separable user model:

• “Scan from top down. When you reach an ad, click
with probabilty ca(i). Continue scanning with probability
q(i,j).”

27

Different User Model: Markovian (Feldman et al.’08)

Markovian user model:
• Scans ads from top down.

• When reaches ad i in position j, clicks with probability ca(i).

• Continues scanning with probability q(i,j).

For q(i,j) does not depend on j, Feldman et al.
• give simple algorithm for finding best ranking of ads

• monoton

• VCG payments resulting auction is stable and maximizes
total expected value

28

Open problems

Markovian User Model
• Non-VCG pricing: Is there a simple, stable payment scheme in the

Markovian User Model?
• User impatience: Analyze the case that q(i,j) depends on both i and j

Model budgets for bidder (Feldman et al, Borgs et al, Dobzinski et al.)
Consider a variety of advertiser preferences = utility functions

• I don't care how much I pay, but I always want slot 3.

• I'm willing to pay up to $5 per click, or up to $1 per impression.

• My margin is $1 per click. Give me position that maximizes my profit,
i.e. value of clicks minus price paid.

• Maximize my profit, but never spend more than $0.50 per click.

29

Summary

Search engine architecture

• Open problem: Loadbalancing √
Large-scale distributed programming model: MapReduce

• Open problem: Relationship to data stream model √
Sponsored search auctions

• Open problem: Realistic user modeling √

30

Happy Birthday, Bob!

	Challenges in Web Information Retrieval
	Statistics for March 2008
	Outline of this talk
	Search Engine Architecture
	Inverted Index
	Query Data Flow
	Idea: Copy Indices
	Model
	Model (cont.)
	Parameters
	Results
	Open questions
	Outline of this talk
	What is MapReduce?
	Model (Feldman et al. ’08)
	Relationship to streaming algorithms
	Open problems
	Outline of this talk
	Search: hotel princeton
	Sponsored Search Auctions
	Pay what you bid: Non-stability
	Sponsored Search Auctions
	Most desirable properties
	Current Model
	Current Model (cont.)
	Separable user models
	Different User Model: Markovian (Feldman et al.’08)
	Open problems
	Summary

