

The Binary Blocking Flow Algorithm

Andrew V. Goldberg Microsoft Research – Silicon Valley

www.research.microsoft.com/ \sim goldberg/

___ Why this Max-Flow Talk? ____

The result: $O(\min(n^{2/3}, m^{1/2})m \log(n^2/m) \log(U))$ maximum flow algorithm [Goldberg & Rao 97].

- My first joint work with Bob was on max-flows.
- The result is strong, appropriate for the event.
- Closely related to Bob's work.
 - \circ Motivated by $O(\min(n^{2/3}, m^{1/2})m)$ unit capacity flow algorithm [Even & Tarjan 75].
 - Uses dynamic trees [Sleator & Tarjan 83].
 - \circ Uses $O(m \log(n^2/m))$ blocking flow algorithm [Goldberg] & Tarjan 88].
 - Bob has the best strongly polynomial algorithm [King, Rao & Tarjan 94].
 - o Bob teaches the algorithm in his advanced algorithms class.
 - o Improved and beautified a part of it [Haeupler & Tarjan 071.

___ Problem Definition ____

- Input: Digraph $G = (V, A), s, t \in V, u : A \rightarrow [1, \dots, U].$
- \bullet n = |V| and m = |A|.
- Similarity assumption [Gabow 85]: $\log U = O(\log n)$ For modern machines $\log U$, $\log n \leq 64$.
- The \tilde{O} () bound ignores constants, $\log n$, $\log U$.
- \bullet Flow $f:A \to [0, \dots U]$ obeys capacity constraints and conservation constraints.
- Flow value |f| is the total flow into t.
- Cut is a partitioning $V = S \cup T : s \in S, t \in T$.
- Cut capacity $u(S,T) = \sum_{v \in S, w \in T} u(v,w)$.

Maximum flow problem: Find a maximum flow. Minimum cut problem (dual): Find a minimum cut.

____ Time Bounds ____

year	discoverer(s)	bound	note
1951	Dantzig	$O(n^2mU)$	$\tilde{O}\left(n^2mU\right)$
1955	Ford & Fulkerson	$O(m^2U)$	$\tilde{O}\left(m^2U\right)$
1970	Dinitz	$O(n^2m)$	$\tilde{O}(n^2m)$
1972	Edmonds & Karp	$O(m^2 \log U)$	$\tilde{O}\left(m^2\right)$
1973	Dinitz	$O(nm \log U)$	$\tilde{O}\left(nm\right)$
1974	Karzanov	$O(n^3)$	
1977	Cherkassky	$O(n^2m^{1/2})$	
1980	Galil & Naamad	$O(nm\log^2 n)$	
1983	Sleator & Tarjan	$O(nm \log n)$	
1986	Goldberg & Tarjan	$O(nm\log(n^2/m))$	
1987	Ahuja & Orlin	$O(nm + n^2 \log U)$	
1987	Ahuja et al.	$O(nm\log(n\sqrt{\log U/m}))$	
1989	Cheriyan & Hagerup	$E(nm + n^2 \log^2 n)$	
1990	Cheriyan et al.	$O(n^3/\log n)$	
1990	Alon	$O(nm + n^{8/3} \log n)$	
1992	King et al.	$O(nm + n^{2+\epsilon})$	
1993	Phillips & Westbrook	$O(nm(\log_{m/n} n + \log^{2+\epsilon} n))$	
1994	King et al.	$O(nm\log_{m/(n\log n)} n)$	
1997	Goldberg & Rao	$O(m^{3/2}\log(n^2/m)\log U)$	$\tilde{O}\left(m^{3/2}\right)$
		$O(n^{2/3}m\log(n^2/m)\log U)$	$\tilde{O}\left(n^{2/3}m\right)$

blocking flow and push-relabel algorithms.

Background _____

- Residual capacity $u_f(a) = u(a) f(a)$ $a \in A$ and $f(a^R)$ o.w.
- Residual graph $G_f = (V, A_f)$ is induced by arcs with positive residual capacity.
- Let $\ell \geq 0$ be a length function on A_f .
- Reduced cost $c_d(v, w) = \ell(v, w) d(v) + d(w)$.
- ullet Shortest paths w.r.t. ℓ and c_d are the same.
- If d(t) = 0 and $c_d \ge 0$, then $d(v) \le \text{dist}(v, t)$.
- d(v) = dist(v, t) iff \exists a v-t path of zero reduced cost arcs.
- If $d(v) \ge d(w)$, increasing f(v, w) creates no negative arcs.
- ullet Given f and d, the admissible graph $G_d = (V, A_d)$ is induced by zero reduced cost residual arcs.
- If $(v, w) \in A_d$, then $d(v) \ge d(w)$.
- An s-t flow augmentation in G_d does not decrease dist(s,t).

_____ Augmenting Path Algorithm _____

An Augmenting path is an s-t path in G_f .

f is optimal iff there is no augmenting path.

Flow augmentation: Given an augmenting path Γ , increase f on all arcs on Γ by the minimum residual capacity of arcs on Γ . Saturates at least one arc on Γ .

Augmenting path algorithm: While there is an augmenting path, find one and augment.

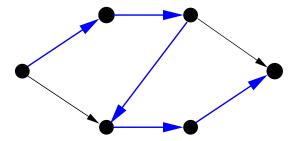
Runs in $O(m^2U)$ time.

Unit lengths: $\forall a \in A_f \text{ let } \ell(a) = 1.$

Augmenting along a shortest path yields a polynomial-time algorithm.

Blocking Flows ____

f in G is blocking if every s-t path in G is saturated.



- ullet The admissible graph G_d contains all arcs of G_f on s-t shortest paths.
- For unit lengths, G_d is acyclic.
- $O(m \log(n^2/m))$ algorithm to find a blocking flow in an acyclic graph [Goldberg & Tarjan 88].

Blocking flow method:[Dinitz 70]

Repeatedly augment f by a blocking flow in G_f .

Lemma: Each iteration increases the s to t distance in G_f .

 $O(nm \log(n^2/m))$ maximum flow algorithm.

Binary Length Function ____

How does one beat the nm barrier?

[Edmonds & Karp 1972]: general lengths (but no results).

Algorithm intuition [Goldberg & Rao 1997]:

- Capacity-based lengths: $\ell(a) = 1$ if $0 < u_f(a) < 2\Delta$, $\ell(a) = 0$ otherwise.
- \bullet Maintain residual flow bound F, update when improves by at least a factor of 2.
- Set $\Delta = F/\sqrt{m}$.
- ullet Find a flow of value Δ or a blocking flow; augment.
- After $O(\sqrt{m})$ Δ -augmentations F decreases.
- After $4\sqrt{m}$ blocking flow augmentations, $d(s) \geq 2\sqrt{m}$.
- One of the cuts $(\{d(v) > i\}, \{d(v) \le i\})$ has no 0-length arcs and at most $\sqrt{m}/4$ length one arcs.
- After $O(\sqrt{m})$ blocking flows F decreases.

Why stop blocking flow computation at Δ value?

____ Zero Length Arcs ____

Pros:

- Seem necessary for the result to work.
- Large arcs do not go from hight to low vertex layers.
- Small cut when d(s) << n.

Cons:

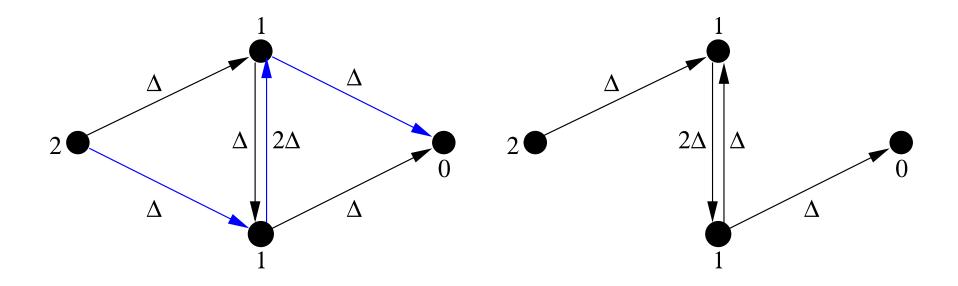
- \bullet G_d need not be acyclic.
- Increasing flow in G_d may create new admissible arcs: d(v) = d(w), increasing f(v, w) increases $u_f(w, v)$ from Δ to 2Δ .
- The new arcs are created only if an arc length is reduced to zero.

These problems can be resolved.

___ Problem: Admissible Cycles _____

- G_d can have only cycles of zero-length arcs between vertices with the same d.
- These arcs have capacities of at least 2Δ .
- Contract SCCs of G_d to obtain acyclic G'_d .
- Δ flow can be routed in such a strongly connected graph in linear time [Erlebach & Hagerup 02, Haeupler & Tarjan 07].
- ullet Stop a blocking flow computation if the current flow has value Δ .
- After finding a flow in G'_d , extend it to a flow in G_d .
- ullet A blocking flow in G_d' is a blocking flow in G_d .

Problem: Arc Length Decrease _____



An arc length can decrease from one to zero and s-t distance may not increase.

_____ Special Arcs _____

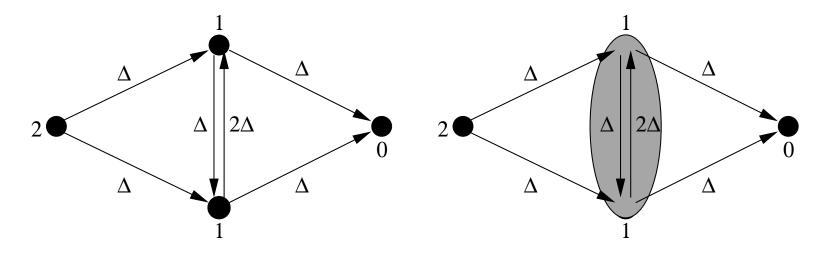
When length decrease on (v, w) can happen and hurt?

- 1. $\Delta \leq u_f(v,w) < 2\Delta$
- 2. d(v) = d(w)
 - $\circ d(v) > d(w)$: $f(v,w)^R$ not increases, $\ell(v,w)$ not decreases.
 - $\circ d(v) < d(w)$: decreasing $\ell(v, w)$ does not hurt.
- 3. (optional) $u_f(v,w)^R \ge 2\Delta$

Special arc: Satisfies (1), (2) and optionally (3).

Can reduce special arc length to zero: d does not change, residual capacity large.

Main Loop _____



- ullet Assign arc lengths, compute distances to t.
- Reduce special arc length to zero.
- Contract SCCs in G_d to obtain G'_d .
- Find a Δ -flow or a blocking flow in G'_d .
- ullet Extend to a flow in G_d , augment.

____ Main Theorem ____

Theorem: While F stays the same, d is monotone. In the blocking flow case, d(s) increases.

Proof:

- No negative reduced cost arcs created, d monotone.
- No zero arcs created (special arcs excluded).
- No admissible arcs created w.r.t. new lengths.
- Blocked cut remains blocked after length update.
- \bullet d(s) increases by a blocking flow augmentation.

____ Analysis ____

$O(\sqrt{m}\log(mU))$ iteration bound is obvious. To do better:

- While $\Delta \geq U$ no zero-length arcs, d(s) monotone.
- After $O(\sqrt{m})$ iterations $F \leq \sqrt{m}U$.
- $O(\sqrt{m})$ iterations reduces F by a factor of two.
- In $O(\sqrt{m} \log U)$ iterations $F \leq \sqrt{m}$.
- Integral flow, an iteration decreases F.
- $O(\sqrt{m} \log U)$ iterations total.
- An iteration is dominated by a blocking flow.
- A slight variation gives an $O(n^{2/3} \log U)$ iteration bound.

____ Additional Topics ____

- The new algorithm not as robust as push-relabel in practice...
- ...but outperforms Dinitz' algorithm [Hagerup et al 98].
- Problems extending the bound to the push-relabel method.
- Extends to the augment-relabel method.
- Open problem: extending the bound to min-cost flows.

____ Push-Relabel Method _____

Push-relabel algorithms [Goldberg & Tarjan 86] are more practical than blocking flow algorithms.

- Preflow f [Karzanov 1974]: $v \neq s$ may have flow excess $e_f(v)$, but not deficit.
- Distance labeling gives lower bounds on distance to t in G_f . Formally $d: V \to \mathcal{N}, \ d(t) = 0, \ \forall (v, w) \in G_f, \ d(v) \leq d(w) + 1.$
- Initially d(v) = 1 for $v \neq s, t$, d(s) = n, arcs out of s are saturated.
- Apply push and relabel operations until none applies.
- Algorithm terminates with a min-cut. Converting preflow into flow is fast.

Push-Relabel (cont.) _____

- ullet Algorithm updates f and d using push and relabel operations.
- push(v, w): $e_f(v) > 0$, (v, w) admissible. Increase f(v, w) by at most $\min(u_f(v, w), e_f(v))$.
- relabel(v): d(v) < n, no arc (v, w) is admissible. Increase d(v) by 1 or the maximum possible value.
- ullet Current arc data structure: Current arc of v starts at the first arc of v initially and after each relabeling; advances only if the current arc is not admissible.
- Selection rules: Pick the next vertex to process, e.g., FIFO on vertices with excess, highest-labeled vertex with excess.

Can extend the algorithm to the binary lengths, but the improved analysis fails: Δ flow can move around a cycle, neither flow value nor d(s) increases.

Augment–Relabel Algorithm ———

Intuitively, push-relabel with DFS operation ordering.

```
FindPath(v)
{
   if (v == t) return(true);
   while (there is an admissible arc (v,w)) {
      if (FindPath(w) {
        v->current = (v,w); return(true);
      }
   }
   relabel(v); return(false);
}
```

The algorithm repeatedly calls FindPath(s) and augments along the current arc path from s to t until $d(s) \ge n$.

Can use binary lengths to get the improved bounds.

Does not work well in practice.

____ Open Problem ____

Min-cost flow algorithms:

- For unit lengths, max-flow + cost-scaling = min-cost flow with log(nC) slowdown, where C is the maximum arc length.
- For unit capacities, [Gabow & Tarjan 87] give an $O(\min(n^{2/3}m^{1/2})m\log(nC))$ algorithm.
- For min-cost flows with integral data, is there an $O(\min(n^{2/3}m^{1/2})m\log(nC)\log U)$ algorithm?
- ...or a more modest $\tilde{O}\left(n^{1-\epsilon}m\right)$ algorithm for $\epsilon>0$?

