

Evidence for Accountable Cloud Computing Services

Thomas Rübsamen, Christoph Reich Hochschule Furtwangen University HFU	Aryan Taherimonfared, Tomasz Wiktor Wlodarczyk, Chunming Rong Center for IP-based Service Innovation, TN-IDE, University of

Stavanger

Agenda

- 1. Introduction
- 2. Accountability and evidence
- 3. What should be evidence?
- 4. Where is evidence collected?
- 5. Challenges
- 6. Summary

Introduction

- Transparency and control issues arise, when data is stored remotely in the cloud
 - Lost control over physical servers/networks
 - Service provision/de-provision
 - Tenant isolation
 - Data processing/movement
- Adding key terms to cloud SLAs is not enough
 - Processes and mechanisms must be developed to monitor and audit these terms
 - Providers must provide evidence
 - Cloud customer must be allowed to verify, that his data is being stored and maintained correctly in the cloud, and that his policies are adhered to
 - Evidence collection shall capture, integrate and process logs, (data) policies and context
- Showing what happens in the cloud and providing evidence for it can address transparency and accountability issues

Accountability and Evidence I

- Evidence may be derived from different sources, events and architectural layers
- Mapping of evidence to accountability contracts/SLAs and other policy requirements
- No efficient mechanisms to gather convincing evidence from verified log data
- No incentive for providers to publish log information
- How to make evidence gathering mechanisms compatible and interoperable?

Accountability and Evidence II

- Collect evidence to support (external) audits and verification
 - Evidence is provided to (automated) audits for fault detection
- Accountability attributes are assured by evidence
 - Attributability: a property of an observation can be assigned to an actor
 - Observability: how well internal actions of a system can be described by observing the external output
 - Assurance: Provision of evidence to proof an incident has happened / not happened
 - Verifiability: An aspect of a contractual relationship can be observed through evidence

- Information about data traveling in the cloud (where, juristiction)
- Information about data access (by whom and when, role, identity, purpose, time)
- Information about processes (data lifecycle events)
- Logging data from involved components/services

8

Evidence for Accountable Cloud Computing Services

- Large amounts of data (Big Data?)
- Various data formats
- How can evidence be trusted (certification, singing, tamper-evident recording)
- Retention-time of evidence (laws may apply)
- Interoperability of evidence collection in multi-provider scenarios (cloud provider accountability chains)
- Multi-tenancy in monitoring tools and devices

Summary

- Build an evidence base for collected information to assure accountability and support audits
- Evidence will be collected at many architectural layers in the cloud stack
- Many challenges to address

Thank You for Your Attention!

