Data Protection and Access-accounting
with Trusted Storage

Deepak Garg

Joint work with: Anjo Vahldiek, Eslam Elnikety, Aastha Mehta,
Peter Druschel (MPI-SWS)

With contributions from: Ansley Post (Google), Rodrigo Rodrigues
(Universidade Nova de Lisboa), Johannes Gehrke (Cornell University)

- Max
Planck
@ Institute
for

MAK-PLAKCE-CESELLECHAFT Software Systems

DIMACS/BIC/A4Cloud/CSA International Workshop on Trustworthiness, Accountability and Forensics in the Cloud (TAFC)



Motivation: Data Protection and
Accountability in the Cloud

Growing data in third-party environments (e.g., Clouds)

Data protection and access-accounting necessary
— Legal and organizational mandates
— Loss of confidentiality, integrity, access accounts costly
— (E.g., electronic medical records, financial, corporate data)

Increasingly complex storage infrastructure, administration

Many threats, despite best intentions of Cloud provider
— Hardware failures, defects
— Software bugs, vulnerabilities
— Misbehaving apps
— Human errors (e.g., misconfigurations)

Goal: Provide data confidentiality, integrity and access accounting,
with minimal trust in storage infrastructure.

Scope: Persistently stored data. Currently, confidentiality, integrity,
verifiability, access-accounting (privacy = next step)



Trusted Storage

" Application

107 LoC

|

Trust = One
interface + ~10°-

10° LoC

4

Virtual Machine Monitor

" File system

st = Severa
< A5 ~106-

Policy
enforcement

(Trusted
“ Networked FS SRR
: Controller)
" Net stack
Net driver

/




Trusted Storage Controller (TSC)

An interpreter for very rich policies
Policies are provided in a declarative language, by applications

Policies are applied to all reads and writes by TSC (confidentiality
and integrity)
TSC can attest state of stored data with embedded private key
(verifiability)
Additionally, TSC implements:
— An object-level API for stored data
— A transaction semantics on individual objects (facilitates integrity checks)
— Authentication protocols, cryptographic channels
— Verification of third-party policy certificates (e.g., x.509 or XACML)
— Access to object content during policy evaluation
— Primitives for opaquely migrating stored objects between TS devices

How is additional functionality available to higher layers? (IOCTL?)

Applications, Cloud orchestrate data operations (as usual), but data
security relies on TSC



Trusted Storage Use

" Application

A Access policy relying on:

- Client authentication

- Certified facts (time, location)
- Current object state

- New object state (update)

Attestation containing:
- Object size

- Object policy hash

- Object content hash
- Object id (pathname)




Threat Model

Threat model: Honest, but curious or buggy provider
— Bugs in storage infrastructure
— Misconfigurations

Must trust:

— Trusted storage controller
— External dependencies of policy (e.g., time server)
— No physical attacks on TS enclosure

Guarantee: All access complies with policy

TS provides data confidentiality, integrity, verifiability
and access accounting (not availability)



Example 1: Backup File Integrity

* Threat: Software bug, virus or operator error corrupts backup
data stored in the Cloud

* Policy: No update before backup expiration date

update :- key is(K, “TimeServer”) A External policy

K signs time(T ) AT >=expT dependency

read :- <no constraints>



Example 2: Append-only Log
* Threat: Accidental or malicious truncation of system log file

* Policy: Allow only appends, except to a trusted system
administrator

Refers to both

update :- (old_extents_are(Oext) A } old and new

new_extents_are(Next) A structure

is_prefix(Oext, Next)) V session_is(k,)

read :- <no constraints>



Example 3: Mandatory Access Logging

 Threat: Unaccounted access to data (e.g., medical records,
pay-per-view content)

* Policy: Access allowed if descriptive entry is added to a
designated append-only log file

Content file has a seg#, forcibly incremented during update
- Read needs log entry <client, g

rent seq#, locus>

- Write needs log entry <clieg 'w seg#, locus, content hash>

State machine; needs

atomic update transactions



Evaluation

Prototype in an iSCSI Enterprise Target (IET) SAN server, with
small Flash memory for metadata

Microbenchmarks:
— Small throughput overhead (<0.75%)
— Low (<0.5%) latency cost, except sequential read/write (2%/7%)

Applications:

— Webserver: TS makes log files append-only, protects content from
unauthorized modification

— Secure migration by storage provider: TS prevents third-party provider
from reading data, but allows migration; forces N (>1) replicas at all
times

— Mandatory access logging: TS forces logs on all reads and writes,
ensures consistency during synchronization of independently modified
replicas (in progress)



Conclusion

TS enforces application-defined policies on stored
objects, attests objects

Rich policies, enable confidentiality, integrity, access-
accounting

Relies only on TSC and policy dependencies
Efficiently implementable

Next work: TSC implemented in a VMM, information flow
control in the Cloud (goal: privacy)

Open questions (for future revisions)

— A comprehensive study of security and privacy requirements for
Cloud apps?

— What do legal requirements entail for security primitives
needed in the Cloud?



