
Data Protection and Access-accounting
with Trusted Storage

Deepak Garg

Joint work with: Anjo Vahldiek, Eslam Elnikety, Aastha Mehta,

Peter Druschel (MPI-SWS)

With contributions from: Ansley Post (Google), Rodrigo Rodrigues
(Universidade Nova de Lisboa), Johannes Gehrke (Cornell University)

DIMACS/BIC/A4Cloud/CSA International Workshop on Trustworthiness, Accountability and Forensics in the Cloud (TAFC)

 Motivation: Data Protection and
Accountability in the Cloud

• Growing data in third-party environments (e.g., Clouds)

• Data protection and access-accounting necessary
– Legal and organizational mandates

– Loss of confidentiality, integrity, access accounts costly

– (E.g., electronic medical records, financial, corporate data)

• Increasingly complex storage infrastructure, administration

• Many threats, despite best intentions of Cloud provider
– Hardware failures, defects

– Software bugs, vulnerabilities

– Misbehaving apps

– Human errors (e.g., misconfigurations)

• Goal: Provide data confidentiality, integrity and access accounting,
with minimal trust in storage infrastructure.

• Scope: Persistently stored data. Currently, confidentiality, integrity,
verifiability, access-accounting (privacy  next step)

Trusted Storage

Application

File system

Disk driver

Virtual Machine Monitor

File system

Disk driver

Networked FS

i

Net stack
 Net driver Trust = Several

interfaces + ~106-
107 LoC

Policy
enforcement

(Trusted
Storage

Controller)

Trust = One
interface + ~105-

106 LoC

Trusted Storage Controller (TSC)

• An interpreter for very rich policies
• Policies are provided in a declarative language, by applications
• Policies are applied to all reads and writes by TSC (confidentiality

and integrity)
• TSC can attest state of stored data with embedded private key

(verifiability)
• Additionally, TSC implements:

– An object-level API for stored data
– A transaction semantics on individual objects (facilitates integrity checks)
– Authentication protocols, cryptographic channels
– Verification of third-party policy certificates (e.g., x.509 or XACML)
– Access to object content during policy evaluation
– Primitives for opaquely migrating stored objects between TS devices

• How is additional functionality available to higher layers? (IOCTL?)
• Applications, Cloud orchestrate data operations (as usual), but data

security relies on TSC

Trusted Storage Use

Application

File system

Disk driver

Virtual Machine Monitor

File system

Disk driver

Networked FS

i

Net stack
 Net driver

Access policy relying on:
- Client authentication
- Certified facts (time, location)
- Current object state
- New object state (update)

Attestation containing:
- Object size
- Object policy hash
- Object content hash
- Object id (pathname)

Threat Model

• Threat model: Honest, but curious or buggy provider

– Bugs in storage infrastructure

– Misconfigurations

• Must trust:

– Trusted storage controller

– External dependencies of policy (e.g., time server)

– No physical attacks on TS enclosure

• Guarantee: All access complies with policy

• TS provides data confidentiality, integrity, verifiability
and access accounting (not availability)

Example 1: Backup File Integrity

• Threat: Software bug, virus or operator error corrupts backup
data stored in the Cloud

• Policy: No update before backup expiration date

 update :- key_is(K, “TimeServer”) ∧

 K signs time(T) ∧ T >= expT

 read :- <no constraints>

External policy
dependency

Example 2: Append-only Log

• Threat: Accidental or malicious truncation of system log file

• Policy: Allow only appends, except to a trusted system
administrator

 update :- (old_extents_are(Oext) ∧

 new_extents_are(Next) ∧

 is_prefix(Oext, Next)) ∨ session_is(kad)

 read :- <no constraints>

Refers to both
old and new

structure

State machine; needs
atomic update transactions

Example 3: Mandatory Access Logging

• Threat: Unaccounted access to data (e.g., medical records,
pay-per-view content)

• Policy: Access allowed if descriptive entry is added to a
designated append-only log file

Content file has a seq#, forcibly incremented during update

- Read needs log entry <client, current seq#, locus>

- Write needs log entry <client, new seq#, locus, content hash>

Evaluation

• Prototype in an iSCSI Enterprise Target (IET) SAN server, with
small Flash memory for metadata

• Microbenchmarks:
– Small throughput overhead (<0.75%)

– Low (<0.5%) latency cost, except sequential read/write (2%/7%)

• Applications:
– Webserver: TS makes log files append-only, protects content from

unauthorized modification

– Secure migration by storage provider: TS prevents third-party provider
from reading data, but allows migration; forces N (>1) replicas at all
times

– Mandatory access logging: TS forces logs on all reads and writes,
ensures consistency during synchronization of independently modified
replicas (in progress)

Conclusion

• TS enforces application-defined policies on stored
objects, attests objects

• Rich policies, enable confidentiality, integrity, access-
accounting

• Relies only on TSC and policy dependencies

• Efficiently implementable

• Next work: TSC implemented in a VMM, information flow
control in the Cloud (goal: privacy)

• Open questions (for future revisions)
– A comprehensive study of security and privacy requirements for

Cloud apps?

– What do legal requirements entail for security primitives
needed in the Cloud?

