Locality Sensitive Hashing Scheme Based on *p*-Stable Distributions

Mayur Datar (Stanford)

Nicole Immorlica (MIT)

Piotr Indyk (MIT)

Vahab Mirrokni (MIT)

(Streaming) Massive Data Sets \Rightarrow High Dimensional Vectors

- Massive data sets visualized as high dimensional vectors
- E.g. Number of IP-packets sent to address i from IP address j

$$\boldsymbol{v^j} = \{v_1^j, v_2^j, \dots, v_i^j, \dots, v_N^j\}$$

Dimensionality = 2^{32}

• E.g. Number of phone calls made from telephone number j to telephone number k

$$v^{j} = \{v_{1}^{j}, v_{2}^{j}, \dots, v_{k}^{j}, \dots, v_{N'}^{j}\}$$

Dimensionality = 10^9

Update Model

- Vectors constantly updated as per *cash register model*
- Update element (i, a) for vector \boldsymbol{v} changes it as follows:

$$\boldsymbol{v} = \{v_1, v_2, \dots, (v_i + a), \dots, v_N\}$$

Numerous high dimensional vectors
 E.g. one vector per (millions) telephone customers, one vector per (millions) IP-address etc.
 Rows of a huge matrix

l_p Norms

- $l_p(\boldsymbol{v}) = (\sum_{i=1}^N |v_i|^p)^{1/p}$ E.g. l_1 norm (Manhattan), l_2 norm (Euclidean)
- l_p norms usually computed over vector differences E.g. $l_1(v^j - v^k)$, $l_2(v^j - v^k)$, $l_{0.005}(v^j - v^k)$ etc.
- What do l_p norms capture?
 - l_1 norm applied to telephone vectors: symmetric (multi) set difference between two customers
 - l_p norms for small values of p (0.005): capture Hamming norms, distinct values [CDIM'02]

Proximity Queries

- Nearest Neighbor: Given a query q find the closest (smallest l_p norm) point p
- Near Neighbor: Given a query q and distance R find all (or most) points p s.t. $l_p(p q) \le R$
- Applications: Classification, fraud detection etc.
 E.g. find cell phone customers whose calling pattern is similar to that of XYZ (UBL)

Approximate Nearest Neighbor

- Curse of dimensionality
- Error parameter ϵ : Find any point that is within $(1+\epsilon)$ times the distance from true nearest neighbor

Mayur Datar. LSH Scheme based on p-Stable distributions 5

Approximate Near Neighbor ((R, ϵ)-PLEB)

- B(c, R) denotes a *ball* of radius R centered at c
- Given: radius R, error parameter ϵ and query point q:
 - if there exists data point p s.t. $q \in B(p, R)$, return YES and a point (or all points) p' s.t. $q \in B(p', (1 + \epsilon)R)$,
 - if $q \notin B(p, R)$ for all data points p, return NO,
 - if closest data point to q is at distance between R and $R(1+\epsilon)$ then return $\rm YES$ or $\rm NO$

Approximate Near Neighbor

- Useful problem formulation in itself
- Approximate near est neighbor can be reduced to approximate near neighbor (binary search on R)
- Henceforth, we will concentrate on solving approximate near neighbor

Our contribution

- Data structure for the approximate near neighbor problem $((R, \epsilon)-PLEB)$
- Small query time, **update time** and easy to implement
- works for l_p norms, for 0 . In particular <math>0
- Earlier result ([IM'98]) worked for l_1 , l_2 and Hamming norm.
- Our technique improves the query time for l_2 norm

Locality Sensitive Hashing (LSH)([IM'98])

- Intuition: if two points are close (less than dist r_1) they hash to same bucket with prob at least p_1 . Else, if they are far (more than dist $r_2 > r_1$) they hash to same bucket with prob no more than $p_2 < p_1$
- Formally: A family $\mathcal{H} = \{h : S \to U\}$ is called (r_1, r_2, p_1, p_2) -sensitive for distance function D if for any $v, q \in S$

- if
$$\boldsymbol{v} \in B(\boldsymbol{q},r_1)$$
 then $\Pr_{\mathcal{H}}[h(\boldsymbol{q})=h(\boldsymbol{v})] \geq p_1$,

- if $\boldsymbol{v} \notin B(\boldsymbol{q}, r_2)$ then $\Pr_{\mathcal{H}}[h(\boldsymbol{q}) = h(\boldsymbol{v})] \leq p_2$.
- $r_1 < r_2, \, p_1 > p_2$

Using LSH to solve (R, ϵ) -PLEB ([IM'98])

• Let $c = 1 + \epsilon$

Theorem. Suppose there is a (R, cR, p_1, p_2) -sensitive family \mathcal{H} for a distance measure D. Then there exists an algorithm for (R, c)-PLEB under measure D which uses $O(dn + n^{1+\rho})$ space, with query time dominated by $O(n^{\rho})$ distance computations, and $O(n^{\rho} \log_{1/p_2} n)$ evaluations of hash functions from \mathcal{H} , where $\rho = \frac{\ln 1/p_1}{\ln 1/p_2}$

• Bottom-line: Design LSH scheme with small ρ for l_p norms

Recap

- Proximity problems reduced to designing LSH schemes
- Design LSH schemes for l_p norms with small ρ , update time etc.
- A family $\mathcal{H} = \{h : S \to U\}$ is called (r_1, r_2, p_1, p_2) -sensitive for distance function D if for any $v, q \in S$
 - if $\boldsymbol{v} \in B(\boldsymbol{q},r_1)$ then $\Pr_{\mathcal{H}}[h(\boldsymbol{q})=h(\boldsymbol{v})] \geq p_1$,
 - if $\boldsymbol{v} \notin B(\boldsymbol{q},r_2)$ then $\Pr_{\mathcal{H}}[h(\boldsymbol{q})=h(\boldsymbol{v})] \leq p_2$
- $r_1 = R = 1$, $r_2 = R(1 + \epsilon) = 1 + \epsilon = c$

p–**Stable distributions**

- *p*-stable distribution ($p \ge 0$): A distribution \mathcal{D} over \Re s.t
 - n real numbers $v_1 \ldots v_n$,
 - i.i.d. variables $X_1 \dots X_n$ with distribution \mathcal{D} ,
 - r.v. $\sum_i v_i X_i$ has the same distribution as the variable $(\sum_i |v_i|^p)^{1/p} X = l_p(v) X$, where X is a r.v. with distribution \mathcal{D}
- E.g. p-Stable distr for p = 1 is Cauchy distr, for p = 2 is Gaussian distr
- for 0 there is a way to sample from a <math>p-stable distribution given two uniform r.v.'s over [0,1] [Nol]

How are *p*-Stable distributions useful?

- Consider a vector $X = \{X_1, X_2, \dots, X_N\}$, where each X_i is drawn from a p-Stable distr
- For any pair of vectors $a, b \ a \cdot X b \cdot X = (a b) \cdot X$ (by linearity)
- Thus $a \cdot X b \cdot X$ is distributed as $(l_p(a b))X'$ where X' is a *p*-Stable distr r.v.
- Using multiple independent \pmb{X} 's we can use $\pmb{a}\cdot\pmb{X}-\pmb{b}\cdot\pmb{X}$ to estimate $l_p(a-b)$ [Ind'01]

How are *p***-Stable distributions useful?**

- For a vector a, the dot product $a \cdot X$ projects it onto the real line
- For any pair of vectors a, b these projections are "close" (w.h.p.) if $l_p(a b)$ is "small" and "far" otherwise
- $\bullet\,$ Divide the real line into segments of width w
- Each segment defines a hash bucket, i.e. vectors that project onto the same segment belong to the same bucket

Hashing (formal) definition

- Consider $h_{\boldsymbol{a},b} \in \mathcal{H}^w$, $h_{\boldsymbol{a},b}(\boldsymbol{v}) : \mathcal{R}^d \to \mathcal{N}$
- a is a d dimensional random vector whose each entry is drawn from a p-stable distr
- b is a random real number chosen uniformly from [0, w] (random shift)

•
$$h_{\boldsymbol{a},b}(\boldsymbol{v}) = \lfloor \frac{\boldsymbol{a} \cdot \boldsymbol{v} + b}{w} \rfloor$$

- Consider two vectors $m{v_1}, m{v_2}$ and let $\ell = l_p(m{v_1}, m{v_2})$
- Let Y denote the distance between their projections onto the random vector a (Y is distributed as ℓX where X is a p-stable distr r.v.)
- if Y > w, v_1, v_2 will not collide
- if $Y \leq w$, v_1, v_2 will collide with probability equal to (1 (Y/w)) (random shift b)

Collision probabilities

- $f_p(t)$: p.d.f. of the absolute value of a *p*-stable distribution
- $\ell = l_p(\boldsymbol{v_1}, \boldsymbol{v_2})$

•
$$\ell \leq 1$$
, $p_1 = Pr[h_{a,b}(v_1) = h_{a,b}(v_2)] \geq \int_0^w f_p(t)(1 - \frac{t}{w})dt$

- $\ell > 1 + \epsilon = c, \ p_2 = Pr[h_{a,b}(v_1) = h_{a,b}(v_2)] \le \int_0^w \frac{1}{c} f_p(\frac{t}{c})(1 \frac{t}{w})dt$
- \mathcal{H}^w hash family is (r_1, r_2, p_1, p_2) -sensitive for $r_1 = 1$, $r_2 = c$ and p_1, p_2 given as above

Special cases

• p = 1(Cauchy distr): $f_p(t) = \frac{2}{\pi} \frac{1}{1+t^2}$

•
$$p_2 = 2 \frac{tan^{-1}(w/c)}{\pi} - \frac{1}{\pi(w/c)} \ln(1 + (w/c)^2)$$

• p_1 obtained by substituting c = 1

Mayur Datar. LSH Scheme based on p-Stable distributions 18

Special cases

•
$$p = 2$$
(Gaussian distr): $f_p(t) = \frac{2}{\sqrt{2\pi}}e^{-t^2/2}$

•
$$p_2 = 1 - 2norm(-w/c) - \frac{2}{\sqrt{2\pi}w/c}(1 - e^{-(w^2/2c^2)})$$

• p_1 obtained by substituting c = 1

Mayur Datar. LSH Scheme based on p-Stable distributions 19

Comparison with previous scheme

- Previous hashing scheme for p=1,2 achieved $\rho=1/c$
- Based on reduction to hamming distance
- New scheme achieves smaller ρ (than 1/c) for p=2
- Large constants and \log factors for p=2 in query time besides n^{ρ}
- Achieves $\rho = 1/c$ for p = 1

$$\rho$$
 for $p=2$

Mayur Datar. LSH Scheme based on p-Stable distributions $\mathbf{21}$

ρ for p=1

Mayur Datar. LSH Scheme based on p-Stable distributions ${f 22}$

General case

• what about general case, i.e. $p \neq 1, 2$?

Theorem. For any $p \in (0, 2]$ there is a (r_1, r_2, p_1, p_2) -sensitive family \mathcal{H}^w for l_p^d such that for any $\gamma > 0$,

$$\rho = \frac{\ln 1/p_1}{\ln 1/p_2} \le (1+\gamma) \cdot \max\left(\frac{1}{c^p}, \frac{1}{c}\right).$$

• Achieves $\frac{1}{c^p}$ for p < 1

Conclusions

- New LSH scheme for 0 . First one for <math>0
- Easy to implement (experiments in progress)
- Easy to update hash value in cash register model
- Improves running time for p = 2 over previous scheme