

Capacity and Beyond

Erozan M. Kurtas

Acknowledgement

M. Fatih Erden Sami Iren Dieter Arnold Raman Venkataramani Inci Ozgunes

Conventional system

Store bit by

- Applying external H > Hc (magnetize up)

- Applying external H < -Hc (magnetize down)

$$ArealDensity[bits / inch^{2}] = \frac{1[bit]}{a[inch]w[inch]}$$

In reality there are tiny grains

Tiny grains with finite volume V and anisotropy coefficient Ku

Dibit Responses Compared

Perpendicular model

Longitudinal model

Frequency Responses of Dibit responses

Reality is Quite Different

- Signal suffers from nonlinearities
 - NLTS
 - MR Asymmetry
 - Base Line Wanders
 - TAs
 - Other distortions
- Noise is Non-Gaussian
- Noise is Signal Dependent

Noise Free Real Signals with Nonlinearities

Extracted Dibit Response

extracted dibit

- provides information about systems linear response.
- is a convenient means for identifying nonlinearities present in system that show up as echoes around the main pulse.

Volterra Model of a Readback Signal

VM Kernels can be conveniently identified from measured PRBS signals

Identification of Kernels

Distorted (1)

There are only three kernels above the threshold

We declare them as significant and include in the Reduced Complexity

Volterra Model.

Volterra Model Block Diagram

How Good is VM?

Longitudinal Media Noise and Signal

Longitudinal: Media Noise Voltage

Data Dependent AR Model (AR)

Noise Filter

Perpendicular Signal and Media Noise

Media Noise 400 MHz

As ND Increases Noise Variance vs. Pattern

AR noise generation - not a great fit

Perpendicular: Media Noise Voltage

- Noise distribution does not fit Gaussian!
- Noise distribution looks more like a laplacian.

Generic Storage Channel

Bounds

Shamai at al. 1991, McLaughlin and Neuhoff 1993, and many others

Direct Computation

Hirt 1988

– Markov-Chain Monte-Carlo Method

Arnold and Loeliger, Pfister et al., Sharma and Singh, Vontobel, all in 2001

– Shamai-Laroia conjecture

Shamai-Laroia 1996, Dholakia et al. 2000, Arnold and Eleftheriou 2002

Brief Survey of the Literature (cont.)

Kavcic 2001:

Zhang, Duman, and Kurtas 2002: Modeling signaldependent noise $z_{\perp}^{(t)}$

Set-up for Mismatch Lower Bounds

Mismatch lower bound:

$$I(Q,M) \equiv E_{QW} \left[\log(QM)(Y) \right] - E_{QW} \left[\log M(Y \mid X) \right]$$

$$I(Q,W) \ge I(Q,M)$$

A. Ganti, A. Lapidoth, and I. E. Telatar, "Mismatched Decoding Revisited: General Alphabets, Channels with Memory, and the Wide-Band Limit, " IEEE Trans. on Inform. Theory, pp. 2315-2328, Nov. 2000.

How to model the noise?

Just use histograms

Validation on the ideal (1-D)-Channel

(1-D)-Channel – Histograms (dotted for low SNR, solid for high)

Model the channel as a GPR or FSM

1. Capturing the influence of the neighbor bits by means of a state

2. Sorting over time by means of a trellis of size $|S| = 2^{2m+1} = 2^{L}$

Use Quantized Histograms per Branch for Noise

3. Representation of the noise pdfs per branch:

Big Picture

3. Computation step

$$C \ge I_{\text{LB}} \leftarrow \frac{1}{n} \log \frac{M(Z_1^n \mid X_1^n)}{(QM)(Z_1^n)}$$

How complex is it?

Memory	$2 \cdot n$
# of comparisons per trellis section	b
# of multiplications per branch	2

Example: $n = 10^6$, |S| = 32, b = 6On a P4, 2.5 GHz, 512 MB

< 20 s

Orders of magnitude faster than performance evaluation of Turbo-Codes.

Results with Real Waveforms

Waveform:

Model: L=4, b=6

Compare with Turbo Codes

March/15/2004 Erozan Kurtas

Page 36

Heat Assisted Magnetic Recording

Conventional system

Store bit by

- Applying external H > Hc (magnetize up)

- Applying external H < -Hc (magnetize down)

$$ArealDensity[bits / inch^{2}] = \frac{1[bit]}{a[inch]w[inch]}$$

In reality there are tiny grains

Tiny grains with finite volume V and anisotropy coefficient Ku

Heat Assisted Magnetic Recording

Idea behind HAMR

An illustrative example

Why should we have any issue?

Assume speed to be 25m/s

25 nm equivalent to 1ns

-Increase the heat of the medium by 300K – 400K -Write the bit of information -Cool the medium

!!! Complete everything in 1ns !!!

Major issues in HAMR

- Magnetic issues
 - Availability of desirable Ku(T) for particles
 - Controllability of the spatial orientation of Ku(T) to minimize the temperature difference
- Thermal issues
 - Lubricant and overcoat stability
 - Air bearing flying stability
 - Media-Head air bearing surface smoothness
- •Optical issues -- Confining light in a very small spot. Some methods
 - Solid Immersion Lenses (SIL)
 - Apertures
 - Antennas
 - Waveguides

Each have their own advantages and disadvantages (*)

> (*) Challener et al, Jpn. J. Appl. Phys. 42, (2003) 981

Solid Immersion Lenses (SIL)

Theoretical spot size

Image courtesy of T. McDaniel, Seagate Technology

Circular Aperture in Ideal Conductor

Image courtesy of T. McDaniel, Seagate Technology

How can we get a useful channel model?

Karlqvist Head Field Approximation

Function of M

Very difficult to solve loop equation

Approximation – Thermal Williams Comstock Model

Williams Comstock equation

$$\frac{\partial M}{\partial x} = \frac{\partial M}{\partial H} \left[\frac{\partial H_h}{\partial x} + \frac{\partial H_d}{\partial x} \right]$$

Using the equations

Find transition location x_0 which satisfies $H_h(x_0) + H_d(x_0) = H_c(x_0)$

Find a-parameter as a function of x_0 $a = Function(x_0,...,..)$

Isolated transition response

Readback voltage from isolated transition

$$V_{GMR}(x) = CM_{r}(x_{0})\delta\left(\tan^{-1}\frac{x+g/2}{a(x_{0})+d} - \tan^{-1}\frac{x-g/2}{a(x_{0})+d}\right)$$

Temperature dependent

Requires iterations to find a parameter and x_0 for given temperature profile

Temperature profile as a function of position

Peak Temp = 700 Temp sigma = 150 nm

Y

Temperature in C

Longitudinal Component of Karlqvist Head Field as a function of position

Magnitude

Normalized isolated transition response as a function of position

 $x_0 = -200$ nm

Magnitude

Another Head Field as a function of position

$$H_{x} = \frac{H_{0}}{\pi} \left[\tan^{-1} \left(\frac{x + g/2}{y} \right) - \tan^{-1} \left(\frac{x - g/2}{y} \right) \right]$$

Ho = 500000 A/mg = 50 nmy = 40 nm

Normalized isolated transition response as a function of position

Down track position

Magnitude

System should be considered as a whole

- Joint optimization of
 - Tribological system
 - Medium magnetics
 - Near field optical system

Necessary to solve the issues

•Success in optimization will determine the attainable areal density

Object Based Storage Devices

Storage Architectures Today <u>Goal:</u> Scalability, Security, Data Sharing

Today's File Server

The Problem – expand endpoint function

need many intermediaries to translate

Intermediary functions

- some add value (e.g. data sharing)
- others simply cover limitations (e.g. reliability via RAID)

disks

OSD Interface

OSD Functions

Basic Protocol

- READ
- WRITE
- CREATE
- REMOVE
- GET ATTR
- SET ATTR J

- Very Basic
- Space Mgmt

Attributes

- timestamps
- vendor-specific
 - shared, opaque

<u>Security</u>

- Authorization on each request
- Integrity for args & data
- SET MASTER KEY [∫] secrets

<u>Groups</u>

- CREATE COLLECTION
- REMOVE COLLECTION
- LIST COLLECTION

Specialized

- APPEND write w/o offset
- CREATE & WRITE save msg
- FLUSH OBJ force to media
- LIST recovery of objects

<u>Management</u>

- FORMAT OSD
- CREATE PARTITION
- REMOVE PARTITION

File Server with OSD

Quality of Service on the Disk

Traditional

March/15/2004 Erozan Kurtas OSD

Example OSD Drive Uses

-Enterprise

- Data sharing
- Scalability
- Security
- Improved reliability
- Self-managed, self-configured drives

- Desktops/Notebooks

- Automatic de-fragmentation
- Object semantics
- Free space management
- QoS

-Consumer Electronics

- Video streams
 - Video can tolerate occasional bit loss
 - Drive takes advantage of this to improve performance (e.g., skipping ECC on a read)

Summary

-OSD enables scalable and secure data sharing

- Highly desirable in the enterprise market
- -Pushes intelligence down to disks
 - Self-aware, self-managed, self-configured drives
 - Better communication between applications and drives (QoS)
 - Increased system performance
 - Disk level computations (searches, etc.)

-It is REAL and HERE

