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Problem Statement
How does the capacity of the system scale 
with the bit-width     ?

What is the optimum bit width from a purely 
information theoretic viewpoint?

T



Signal: the magnetization in the medium is 
either

Noise: electronic noise and transition noise.

Signal and Noise Models

±1



Signal and Noise Models

x(t) =
∑

k

akp(t − kT ), p(t) = u(t) − u(t − T )

r(t) =
∑

k

ak − ak−1

2
hT (t − kT − ∆tk) + w(t)

ak ∈ {+1,−1}
∆tk : transition noise
w(t) : electronic noise–AWGN with PSD N0/2

hT (t) : transition (−1 → +1) response



Recording Modes

Magnetization profile for longitudinal recording

Magnetization profile for perpendicular recording



Transition Response

Longitudinal recording Perpendicular recording

hT (t) =
A

1 + (2t/w)2 hT (t) = A erf
(2

√
log 2t
w

)

The pulse width is sometimes also written as PW50.



Capacity

C = lim
τ→∞

1
τ

max({x(t), t ∈ [0, τ ]}; {r(t), t ∈ [0, τ ]})

The fundamental quantity of interest is the areal 
capacity of the magnetic medium.

In the Shannon sense, this is the number of bits 
per unit area that can be stored and recovered 
reliably.

Assuming a fixed track width, we can focus on the 
linear density of bits or linear capacity:



Problem Statement
How is the optimal bit width      for maximum 
capacity per unit length?

Misconceptions: Very small bit-widths are bad 
because...

There is higher transition noise.

There is longer ISI and lower SNR per bit.

Truth: We can overcome all these problems 
with clever coding.

T



Thought Experiment

T = 0.5
R = 0.5

T = 1
R = 1

No code

Repetition code

If we use better code, case 2 will outperform case 1.
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A Note about the SNR
We define: SNR =

Eiw2

N0

where Ei =
∫

R

∣∣∣dhT (t)
dt

∣∣∣2dt

Reasons for this definition:

It is finite for both perpendicular and 
longitudinal modes.

It is a function of the head and medium alone. 
It is independent of       or the code we use.T



Electronic Noise 
Dominated Channel

x(t) =
∑

k

akp(t − kT ), p(t) = u(t) − u(t − T )

r(t) =
∑

k

(ak − ak−1)hT (t − kT ) + w(t)

=
∑

k

akhD(t − kT ) + w(t)

hD(t) = hT (t) − hT (t − T ) : dibit response
w(t) : electronic noise–AWGN with PSD N0/2



Sufficient statistics

To be exact, we need to pass          through a 
matched filter and sample at baud rate.

If                 , it is almost optimal to use a 
simple low-pass filter and sample a baud rate:

T ! w

r(t)



Discrete-time Model

rn =
∑

k

akh̃n−k + wn

wn ∼ N(0, N0/2T ), i.i.d.

We obtain an ISI channel with binary inputs:

where, h̃n ! hD(nT )

Let the above ISI channel have capacity              .
Then, the linear capacity is

KB(T ) =
1
T

CB(T )

CB(T )



Simple Upper Bound

{ak = ±1} → {ak ∈ R, E a2
k ≤ 1}

Suppose we relax the input constraint:

We obtain a Gaussian channel, whose capacity is
computed using the “water-filling” method.

CB(T ) ≤ CG(T )

CG(T ) = max
Sx[·]

1
2

∫ 0.5

−0.5
log

(
1 +

Sx[ν]|H̃[ν]|2
N0/2T

)
such that

∫ 0.5

−0.5
Sx[ν]dν = 1



Lower Bounds
Several researchers have computed 
information rates for binary ISI channels:

Monte-Carlo method: compute the 
quantity                            for a very long 
sequence of length      with the input 
generated using an appropriate Markov 
model.

This method becomes unreliable or 
computationally intense for high recording 
densities.

I(xN ; rN )/N
N



Shamai-Laroia Conjecture

Along any horizontal line, the SNR “loss” due to ISI
is the same for both Gaussian and binary signalling.



Shamai-Laroia Conjecture
Suppose that the input to the binary ISI channel is 
independent and uniformly (IUD) distributed

CB(T ) ≥ CBPSK(2IG(T ) − 1)

where               is the i.i.d Gaussian information rate.IG(T )

Remark: This bound is also found to be surprisingly
tight for non IUD Markov sources up to memory 6
and we have

CB(T ) ≥ CBPSK(2CG(T ) − 1)



For Gaussian inputs, the optimal input 
spectrum is not flat. It becomes highly non 
i.i.d as

For binary inputs, we could mimic the 
Gaussian water-filling spectrum, but it is 
neither optimal nor achievable in general.

For the binary case, we optimize over first-
order Markov sources to get a lower bound.

Optimal Input Distribution

T → 0



The first order model is specified by one 
probability parameter

For each       we pick the optimal probability 
to maximize the Shamai-Laroia bound.

 As               we find that   

Markov Source Model 

T

p → 0T → 0

p
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Linear capacity bounds for longitudinal recording
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Jitter Noise Dominated 
Channel
Most general method: pulse-width modulation

r(t) =
∑

n

(−1)nhT (t − σn − wn)

σn =
n∑

k=1

tk, wn ∼ N(0,σ2
j )



Since there is no additive noise, we can use a zero forcing 
equalizer to estimate

Capacity

σ̂n = σn + wn

Thus, t̂n = σ̂n − σ̂n−1

= tn + wn − wn−1

Linear capacity:

These are sufficient statistics and the channel is ISI!

C = max
p(T N )

I(T̂N ;TN )

E
∑

n Tn



Remark: This constant is not important. The bound 
behaves like          .

Lower Bound on Capacity
We can show that the following is a lower bound on 
the linear capacity:

where         is the capacity of the ISI-free channel:

t̂n = tn + wn

i.e.,

K0

K0 = max
p(T )

I(T̂ ;T )
ET

1/σj

K ≥ 2
√

2 − 1
2

K0



Summary
From a purely information theoretic 
viewpoint there are considerable gains at we 
higher recording densities.

This ignores timing recovery and other 
implementation issues.

In today’s recording medium transition noise 
is a dominant noise source and

We should lower      by a factor of 10 to see 
potential gains. 

σj ! 0.1T

T


