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Objectives

Goals:

• Given an insertion rate, find the maximum possible code rate.

• Given an insertion rate, find a set of unconstrained positions that (nearly) achieve the

maximum code rate.

Outline:

• Tradeoff functions

• More properties of Ĝ

• Properties of the tradeoff functions

• Bounds for the tradeoff functions
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Tradeoff Functions

Let I ⊆ N be a set of unconstrained positions.

M(q, I): number of words w of length q in Ŝ such that wi = ¤ if and only if i ∈ I .

Let ρ ∈ [0, 1] be an insertion rate.

I(ρ): set of all sequences (Iq) such that Iq ⊆ {1, . . . , q} and |Iq|/q → ρ.

Example: ρ = 1/3. Iq = {3n : n ≥ 1, 3n ≤ q}.

I1 I2 I3 I4 I5 I6 · · ·

∅ ∅ {3} {3} {3} {3, 6} · · ·

(Iq) corresponds to ¤ ¤ ¤ . . .

(Iq) ∈ I(1/3).
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Tradeoff Functions

Tradeoff function:

f(ρ) = sup
(Iq)∈I(ρ)

lim sup
q→∞

log M(q, Iq)

q
.

Maximum insertion rate:

µ = sup
f(ρ)>0

ρ.

bc

1

1
0

µ

−∞

code rate

insertion rate ρ

cap(S)

f(ρ)

4



Finite-Type Constraints

A graph G has finite memory if there exists m so that all paths of length m with the same

label end at the same state.

S is finite-type if it has a presentation with finite memory.

Example: RLL(1,3)

0 0 0

1

1

1
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Tradeoff Function f for Finite-Type Constraints

Define G′ to be the irreducible component of Ĝ that contains H .

Example: RLL(1,3)
F(ǫ) F(1) ∩ F(0) F(1) ∩ F(00) {ǫ}

F(1) F(0) F(00) F(000)0 0 0

0

¤

1
1

1

¤

0

¤
1

0

Proposition 1: If S is finite-type, then G′ is the only non-trivial irreducible component of Ĝ.

For any labeled graph G over {0, 1, ¤}, denote the tradeoff function for G by fG.

Corollary 2: Let S be a finite-type constrained system. Then f(ρ) = fG′(ρ).
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An Example when f(µ) 6= 0

G: graph below without dashed edges. Let S = S(G). S is primitive since G is irreducible

and aperiodic. The graph G has memory 7, so S is finite-type.

G′: G + dashed edges. Then f(µ) = f(1/8) = 1/8 > 0.
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What about other Constraints?

2-Charge Constraint Example:

• The 2-charge constraint is non-finite-type.

• The capacity for this constraint is 0.5, and so f(0) = 0.5

• There is no word in Ŝ that has more than two ¤. Therefore f(ρ) = −∞ when ρ > 0

0

01

1 F(0) ∩ F(11)

F(1) ∩ F(00)

F(1)

F(0)

F(ǫ)

F(11)

F(0) ∩ F(1)

F(00)

{ǫ}01

¤

¤
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1

0
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0
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01
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G Ĝ
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A More General Approach

So far, we considered

• Finite-Type Constraints,

• Specific Examples of Finite-Type and non-Finite-Type Constraints.

Need a more general approach in characterizing f for the case of n components in Ĝ.

Intuition :

• f is non-increasing

• can apply timesharing concepts to achieve better code rates
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Concave Function g(f1, . . . , fn)

Let fi : [0, 1] → [−∞,∞), i ∈ {1, . . . , n}, be functions.

Define g(f1, . . . , fn) : [0, 1] → [−∞,∞] to be the smallest concave function such that

g(f1, . . . , fn)(ρ) ≥ fi(ρ) for all i ∈ {1, . . . , n} and ρ ∈ [0, 1].

f1

f2

g(f1, f2)

µ2 µ1 = µmax

ρ
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Caratheodory’s Theorem

To express g(f1, . . . , fn)(ρ) in terms of fi, we apply a special case of Caratheodory’s

Theorem from convex analysis.

Proposition 3 [Rockafellar, 1970, Corollary 17.1.3]: Let {fi : i ∈ I} be an arbitrary

collection of functions on R, and let f be the convex hull of the collection. Then for any x,

f(x) = inf







∑

1≤k≤2

λkfik
(xk) :

∑

1≤k≤2

λkxk = x, ik ∈ I







.

where the infimum is taken over all expressions of x as a convex combination in which at

most 2 of the coefficients λi are non-zero.
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Applying Caratheodory’s Theorem

Lemma 4: Let fi : [0, 1] → [−∞,∞), i ∈ {1, . . . , n}, be functions. For any ρ ∈ [0, 1],

g(f1, . . . , fn)(ρ) = sup θfi(x) + (1 − θ)fj(y),

where the supremum is subject to

• θ, x, y ∈ [0, 1],

• i, j ∈ {1, . . . , n},

• θx + (1 − θ)y = ρ.

Lemma 5: Let fi : [0, 1] → [−∞,∞), i ∈ {1, . . . , n}, be functions. For any ρ ∈ [0, 1],

g(f1, . . . , fn)(ρ) = max
i,j∈{1,...,n}

g(fi, fj)(ρ).
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Determining f in the Case of Many Components

• Let G1, . . . , Gn be the irreducible components of Ĝ.

• Let P = {(i, j) ∈ {1, . . . , n}2 : Gi → Gj}.

• Denote fGi
by fi. For a fixed 0 ≤ ρ ≤ 1,

g(f1, . . . , fn) (a)
≤ max

i,j∈{1,...,n}
g(fi, fj)

(b)
≤ max

(i,j)∈P
g(fi, fj)

(c)
≤ f (d)

≤ g(f1, . . . , fn)

(a) Lemma 5, a consequence of Caratheodory’s Theorem.

(b) Lemma 7, a property of Ĝ.

(c) Lemma 8, timesharing between Gi → Gj , i, j ∈ P .

(d) Lemma 9
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Inequality (b): Using a property of Ĝ

Proposition 6: Let S be an irreducible constraint. Let G be an irreducible component of Ĝ.

There exist irreducible components G1 and G2 of Ĝ such that

• G1 can reach H ,

• H can reach G2,

• S(G) ⊆ S(G1),

• S(G) ⊆ S(G2).

H

G′

G2

GG1

Ĝ
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Proving Inequality (b)

Lemma 7: Let S be an irreducible constraint. Then

max
i,j∈{1,...,n}

g(fi, fj)(ρ) ≤ max
(i,j)∈P

g(fi, fj)(ρ).

Proof: Let Gi and Gj be irreducible components of Ĝ. By Proposition 6, there exist

irreducible components Gi′ and Gj′ such that Gi′ can reach H , H can reach Gj′ ,

S(Gi) ⊆ S(Gi′), and S(Gj) ⊆ S(Gj′). Thus (i′, j′) ∈ P and

g(fi, fj)(ρ) ≤ g(fi′ , fj′)(ρ). ¥
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Inequality (c): Timesharing between Components

Lemma 8 [Timesharing]: Let G be a graph over alphabet {0, 1, ¤}. Let G1 and G2 be

irreducible components of G such that G2 can be reached from G1. Then

fG(ρ) ≥ g(f1, f2)(ρ).

Proof idea: Suppose that ρ1 < ρ < ρ2. We concatenate the sequences in G1 with

insertion rate ρ1 and the sequences in G2 with insertion rate ρ2 to obtain sequences with

insertion rate ρ. Then we show that fG(ρ) must be at least the weighted average of f1(ρ1)

and f2(ρ2).

G2

G1

ρ2

ρ1

G
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Inequality (d)

Lemma 9: Let G1, . . . , Gn be the irreducible components of Ĝ. Then

f(ρ) ≤ g(f1, . . . , fn)(ρ).

Proof idea: Show for a given ρ, the existence of a chain of components G1, . . . , Gc such

that

(1) G1 → G2 → · · · → Gc

(2) There exists θi, ρi, for i = 1, . . . , c such that

2(i)
∑c

i=1 θiρi = ρ,

2(ii)
∑c

i=1 θifi(ρi) ≥ f(ρ).

Then apply
∑c

i=1 θifi(ρi) ≤ g(f1, . . . , fc)(ρ) ≤ g(f1, . . . , fn)(ρ).
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Main Results

From inequalities (a) to (d),

f = g(f1, . . . , fn).

Theorem 10: Let S be an irreducible constrained system. Let G′ be the irreducible

component of Ĝ that contains H . Let G1, . . . , Gk = G′ be the irreducible components of

Ĝ that can reach H . Let G′ = Gk, . . . , Gm be the irreducible components of Ĝ that can

be reached from H . Then

f(ρ) = g(f1, . . . , fk)(ρ) = g(fk, . . . , fm)(ρ).

• Important computationally as it is easier to construct the set of components reachable

from H than the entire graph Ĝ.
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Concavity and Continuity of f

Let S be a constrained system.

Proposition 11: f is non-increasing on [0, 1].

Proposition 12: f is left-continuous on [0, µ].

Corollary 13: The trade-off function f for an irreducible constraint S is concave . The

restriction of f to the domain [0, µ] is continuous .
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Computing f exactly?

Problems:

• Still do not know how to compute f exactly for a given constraint.

• Is there an algorithm that computes f exactly from Ĝ?
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Bounds for f

• For 0 ≤ ρ ≤ µ,

f(ρ) ≤ cap(S) − ρ.

• Greedy Lower Bound

• Dynamic Programming Lower Bound (DPLB)

• Approximate Dynamic Programming Upper Bound (Appox. DPUP)

• For constraints with more structure, it is possible to construct lower bounds by

considering specific parity insertion schemes, e.g. Bit-stuffing for MTR constraints.

• Take the convex hull of all the lower bounds to obtain a better lower bound.
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Bit-Stuffing Lower Bound for MTR (j, k)

Bit-stuffing for MTR (j, k): WLOG that j ≤ k. Let b ≤ min(j, k) − 1. Begin with a string

s that satisfies the MTR(j − b, k − b) constraint. Subdivide s into intervals of length

k − b + 1. In between each of these intervals, insert a string of b ones. The resulting string

satisfies MTR(j, k) and has parity insertion rate b
k+1 .

The piecewise-linear curve connecting the following j + 1 points:

• (0, log λj,k)

• ( 1
k+1 , k

k+1 log λj−1,k−1)

• ( 2
k+1 , k−1

k+1 log λj−2,k−2)

• · · ·

• ( j−1
k+1 , k−j+2

k+1 log λ1,k−(j−1))

• (µ, 0),

is a lower bound to fMTR(j,k).
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Example using MTR (2, 3)

Let S be MTR(2, 3) constraint. Then cap(S) = 0.7947, µ = 0.3750. Take period to be

1000.

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6
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ρ

cap(S) − ρ

Greedy

23



More bounds for MTR (2, 3)
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Example using MTR (4, 4)

Let S be MTR(4, 4) constraint. Then cap(S) = 0.9468, µ = 0.6.
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Conclusions

• Constrained systems with unconstrained positions

• Introduce a constrained system Ŝ and a presentation Ĝ with unconstrained symbol

• Define tradeoff function and maximum insertion rate

• Introduced the notion of timesharing between components of Ĝ

• Established using results from convex analysis that for irreducible constraints, f is equal

to the concave hull of the code rate of all components in Ĝ.

• In particular, we showed a stronger result that f is determined by components reachable

from H .

• Determined that f is concave and continuous for an irreducible constraint.

• Showed some upper and lower bounds on f .
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