Constrained Systems with Unconstrained Positions: Graph Constructions and Tradeoff Functions (Part II)

Lei Poo

Stanford University

Panu Chaichanavong

Center for Magnetic Recording Research, UCSD

Brian Marcus

University of British Columbia

March 25, 2004

Objectives

Goals:

- Given an insertion rate, find the maximum possible code rate.
- Given an insertion rate, find a set of unconstrained positions that (nearly) achieve the maximum code rate.

Outline:

- Tradeoff functions
- More properties of \hat{G}
- Properties of the tradeoff functions
- Bounds for the tradeoff functions

Tradeoff Functions

Let $I \subseteq \mathbb{N}$ be a set of unconstrained positions.

M(q, I): number of words w of length q in \hat{S} such that $w_i = \Box$ if and only if $i \in I$. Let $\rho \in [0, 1]$ be an insertion rate.

$$\begin{split} \mathcal{I}(\rho) &: \text{set of all sequences } (I_q) \text{ such that } I_q \subseteq \{1, \ldots, q\} \text{ and } |I_q|/q \to \rho. \\ \\ \textbf{Example: } \rho = 1/3. \ I_q = \{3n \ : \ n \geq 1, \ 3n \leq q\}. \\ & I_1 \quad I_2 \quad I_3 \quad I_4 \quad I_5 \quad I_6 \quad \cdots \\ & \emptyset \quad \emptyset \quad \{3\} \quad \{3\} \quad \{3\} \quad \{3, 6\} \quad \cdots \\ & (I_q) \text{ corresponds to } _ \square _ \square \square _ \square \square \ldots \\ & (I_q) \in \mathcal{I}(1/3). \end{split}$$

Tradeoff Functions

Tradeoff function:

$$f(\rho) = \sup_{(I_q) \in \mathcal{I}(\rho)} \limsup_{q \to \infty} \frac{\log M(q, I_q)}{q}.$$

Maximum insertion rate:

$$\mu = \sup_{f(\rho) > 0} \rho.$$

Finite-Type Constraints

A graph G has **finite memory** if there exists m so that all paths of length m with the same label end at the same state.

 ${\cal S}$ is finite-type if it has a presentation with finite memory.

Example: RLL(1,3)

Tradeoff Function f for Finite-Type Constraints

Define G' to be the irreducible component of \hat{G} that contains H.

Example: RLL(1,3)

Proposition 1: If *S* is finite-type, then *G'* is the only non-trivial irreducible component of \hat{G} . For any labeled graph *G* over $\{0, 1, \Box\}$, denote the tradeoff function for *G* by f_G . **Corollary 2:** Let *S* be a finite-type constrained system. Then $f(\rho) = f_{G'}(\rho)$.

An Example when $f(\mu) \neq 0$

G: graph below without dashed edges. Let S = S(G). *S* is primitive since *G* is irreducible and aperiodic. The graph *G* has memory 7, so *S* is finite-type.

G':G + dashed edges. Then $f(\mu)=f(1/8)=1/8>0.$

What about other Constraints?

2-Charge Constraint Example:

- The 2-charge constraint is non-finite-type.
- The capacity for this constraint is 0.5, and so f(0) = 0.5
- There is no word in \hat{S} that has more than two $\Box.$ Therefore $f(\rho)=-\infty$ when $\rho>0$

A More General Approach

So far, we considered

- Finite-Type Constraints,
- Specific Examples of Finite-Type and non-Finite-Type Constraints.

Need a more general approach in characterizing f for the case of n components in \hat{G} .

Intuition:

- f is non-increasing
- can apply timesharing concepts to achieve better code rates

Concave Function $g(f_1, \ldots, f_n)$

Let $f_i: [0,1] \to [-\infty,\infty)$, $i \in \{1,\ldots,n\}$, be functions.

Define $g(f_1, \ldots, f_n) : [0, 1] \to [-\infty, \infty]$ to be the smallest concave function such that $g(f_1, \ldots, f_n)(\rho) \ge f_i(\rho)$ for all $i \in \{1, \ldots, n\}$ and $\rho \in [0, 1]$.

Caratheodory's Theorem

To express $g(f_1, \ldots, f_n)(\rho)$ in terms of f_i , we apply a special case of **Caratheodory's Theorem** from convex analysis.

Proposition 3 [Rockafellar, 1970, Corollary 17.1.3]: Let $\{f_i : i \in I\}$ be an arbitrary collection of functions on \mathbb{R} , and let f be the convex hull of the collection. Then for any x,

$$f(x) = \inf \left\{ \sum_{1 \le k \le 2} \lambda_k f_{i_k}(x_k) : \sum_{1 \le k \le 2} \lambda_k x_k = x, \ i_k \in I \right\}.$$

where the infimum is taken over all expressions of x as a convex combination in which at most 2 of the coefficients λ_i are non-zero.

Applying Caratheodory's Theorem

Lemma 4: Let $f_i:[0,1] \to [-\infty,\infty)$, $i \in \{1,\ldots,n\}$, be functions. For any $ho \in [0,1]$,

$$g(f_1,\ldots,f_n)(\rho) = \sup \,\theta f_i(x) + (1-\theta)f_j(y),$$

where the supremum is subject to

- $\theta, x, y \in [0, 1]$,
- $i, j \in \{1, \ldots, n\}$,
- $\theta x + (1 \theta)y = \rho$.

Lemma 5: Let $f_i: [0,1] \to [-\infty,\infty)$, $i \in \{1,\ldots,n\}$, be functions. For any $\rho \in [0,1]$,

$$g(f_1, \ldots, f_n)(\rho) = \max_{i,j \in \{1,\ldots,n\}} g(f_i, f_j)(\rho).$$

Determining f in the Case of Many Components

- Let G_1, \ldots, G_n be the irreducible components of \hat{G} .
- Let $P = \{(i, j) \in \{1, \dots, n\}^2 : G_i \to G_j\}.$
- Denote f_{G_i} by f_i . For a fixed $0 \le \rho \le 1$,

$$g(f_1,\ldots,f_n) \stackrel{(\mathbf{a})}{\leq} \max_{i,j\in\{1,\ldots,n\}} g(f_i,f_j) \stackrel{(\mathbf{b})}{\leq} \max_{(i,j)\in P} g(f_i,f_j) \stackrel{(\mathbf{c})}{\leq} f \stackrel{(\mathbf{d})}{\leq} g(f_1,\ldots,f_n)$$

- (a) Lemma 5, a consequence of Caratheodory's Theorem.
- (b) Lemma 7, a property of \hat{G} .
- (c) Lemma 8, timesharing between $G_i \rightarrow G_j$, $i, j \in P$.
- (d) Lemma 9

Inequality (b): Using a property of \hat{G}

Proposition 6: Let *S* be an irreducible constraint. Let *G* be an irreducible component of \hat{G} . There exist irreducible components G_1 and G_2 of \hat{G} such that

- G_1 can reach H,
- H can reach G_2 ,
- $S(G) \subseteq S(G_1)$,
- $S(G) \subseteq S(G_2)$.

Proving Inequality (b)

Lemma 7: Let S be an irreducible constraint. Then

$$\max_{i,j\in\{1,...,n\}} g(f_i, f_j)(\rho) \le \max_{(i,j)\in P} g(f_i, f_j)(\rho).$$

Proof: Let G_i and G_j be irreducible components of \hat{G} . By Proposition 6, there exist irreducible components $G_{i'}$ and $G_{j'}$ such that $G_{i'}$ can reach H, H can reach $G_{j'}$, $S(G_i) \subseteq S(G_{i'})$, and $S(G_j) \subseteq S(G_{j'})$. Thus $(i', j') \in P$ and $g(f_i, f_j)(\rho) \leq g(f_{i'}, f_{j'})(\rho)$.

Inequality (c): Timesharing between Components

Lemma 8 [Timesharing]: Let G be a graph over alphabet $\{0, 1, \Box\}$. Let G_1 and G_2 be irreducible components of G such that G_2 can be reached from G_1 . Then

$$f_G(\rho) \ge g(f_1, f_2)(\rho).$$

Proof idea: Suppose that $\rho_1 < \rho < \rho_2$. We concatenate the sequences in G_1 with insertion rate ρ_1 and the sequences in G_2 with insertion rate ρ_2 to obtain sequences with insertion rate ρ . Then we show that $f_G(\rho)$ must be at least the weighted average of $f_1(\rho_1)$ and $f_2(\rho_2)$.

Inequality (d)

Lemma 9: Let G_1, \ldots, G_n be the irreducible components of \hat{G} . Then

$$f(\rho) \leq g(f_1,\ldots,f_n)(\rho).$$

Proof idea: Show for a given ρ , the existence of a chain of components G_1, \ldots, G_c such that

(1)
$$G_1 \to G_2 \to \cdots \to G_c$$

(2) There exists θ_i , ρ_i , for $i = 1, \ldots, c$ such that

2(i)
$$\sum_{i=1}^{c} \theta_i \rho_i = \rho$$
,
2(ii) $\sum_{i=1}^{c} \theta_i f_i(\rho_i) \ge f(\rho)$.

Then apply $\sum_{i=1}^{c} \theta_i f_i(\rho_i) \le g(f_1, ..., f_c)(\rho) \le g(f_1, ..., f_n)(\rho).$

Main Results

From inequalities (a) to (d),

$$f = g(f_1, \ldots, f_n).$$

Theorem 10: Let S be an irreducible constrained system. Let G' be the irreducible component of \hat{G} that contains H. Let $G_1, \ldots, G_k = G'$ be the irreducible components of \hat{G} that can reach H. Let $G' = G_k, \ldots, G_m$ be the irreducible components of \hat{G} that can be reached from H. Then

$$f(\rho) = g(f_1, \ldots, f_k)(\rho) = g(f_k, \ldots, f_m)(\rho).$$

• Important computationally as it is easier to construct the set of components reachable from H than the entire graph \hat{G} .

Concavity and Continuity of \boldsymbol{f}

Let S be a constrained system.

Proposition 11: f is **non-increasing** on [0, 1].

Proposition 12: f is left-continuous on $[0, \mu]$.

Corollary 13:The trade-off function f for an irreducible constraint S is **concave**. The restriction of f to the domain $[0, \mu]$ is **continuous**.

Computing f exactly?

Problems:

- Still do not know how to compute f exactly for a given constraint.
- Is there an algorithm that computes f exactly from \hat{G} ?

Bounds for f

 $\bullet \ \ {\rm For} \ 0 \leq \rho \leq \mu {\rm ,}$

$$f(\rho) \le \operatorname{cap}(S) - \rho.$$

- Greedy Lower Bound
- Dynamic Programming Lower Bound (DPLB)
- Approximate Dynamic Programming Upper Bound (Appox. DPUP)
- For constraints with more structure, it is possible to construct lower bounds by considering specific parity insertion schemes, e.g. Bit-stuffing for MTR constraints.
- Take the convex hull of all the lower bounds to obtain a better lower bound.

Bit-Stuffing Lower Bound for MTR(j, k)

Bit-stuffing for MTR(j, k): WLOG that $j \le k$. Let $b \le \min(j, k) - 1$. Begin with a string s that satisfies the MTR(j - b, k - b) constraint. Subdivide s into intervals of length k - b + 1. In between each of these intervals, insert a string of b ones. The resulting string satisfies MTR(j, k) and has parity insertion rate $\frac{b}{k+1}$.

The piecewise-linear curve connecting the following j + 1 points:

- $(0, \log \lambda_{j,k})$
- $\left(\frac{1}{k+1}, \frac{k}{k+1}\log\lambda_{j-1,k-1}\right)$
- $\left(\frac{2}{k+1}, \frac{k-1}{k+1}\log\lambda_{j-2,k-2}\right)$
- • •
- $\left(\frac{j-1}{k+1}, \frac{k-j+2}{k+1}\log\lambda_{1,k-(j-1)}\right)$
- $(\mu, 0)$,

is a lower bound to $f_{MTR(j,k)}$.

Example using MTR(2,3)

Let S be $\mathrm{MTR}(2,3)$ constraint. Then $\mathrm{cap}(S)=0.7947$, $\mu=0.3750.$ Take period to be 1000.

More bounds for $\operatorname{MTR}(2,3)$ 0.8 Bit-stuffing LB Approx. DPUB 0.6 DPLB 0.4 0.20 ρ 0.2 0.4 0.6 0.8 0

24

Example using MTR(4, 4)

Conclusions

- Constrained systems with unconstrained positions
- Introduce a constrained system \hat{S} and a presentation \hat{G} with unconstrained symbol
- Define tradeoff function and maximum insertion rate
- Introduced the notion of timesharing between components of \hat{G}
- Established using results from convex analysis that for irreducible constraints, f is equal to the concave hull of the code rate of all components in \hat{G} .
- In particular, we showed a stronger result that *f* is determined by components reachable from *H*.
- Determined that f is concave and continuous for an irreducible constraint.
- Showed some upper and lower bounds on f.

References

[de Souza et al., 2002] de Souza, J. C., Marcus, B. H., New, R., and Wilson, B. A. (2002).
Constrained systems with unconstrained positions. *IEEE Trans. Inform. Theory*, 48(4):866–879.

[Rockafellar, 1970] Rockafellar, R. T. (1970). *Convex Analysis*. Princeton University Press, Princeton.