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Communication system model

Transmitter

Channel

Receiver

Source
ECC

Encoder Modulator

Channel

SamplerEqualizer
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Decoder

Discrete-time Continuous-time
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Continuous-time discrete-time interface

Source
ECC

Encoder Modulator

Channel

SamplerEqualizer
ECC

Decoder

Discrete-time

Continuous-time

to

Continuous-time

Discrete-time

to



3

Sampling: Timing recovery

0 T 2T 3T

τ0 τ1 τ2
–τ3

a1a0

a2

a3

TIME

T – Symbol duration

a0, a1, a2,... – Data symbols

τ0, τ1, τ2,... – Timing offsets

Timing Recovery Problem: Estimate τ0, τ1, τ2, ...
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Constant offset:

Frequency offset:

Random walk:

wherewi arei.i.d. zero-mean Gaussian random variables of
variance .  determines the severity of the random walk.

τk τ=

τk τ0 k∆T+ τk 1– ∆T+= =

τk 1+ τk wk+ τ0 wi
i 0=

k

∑+= =

σw
2 σw

2

Timing offset models
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Acquisition:

• Estimate τ0

• Correlation techniques

• Known preamble sequence at start of packet (Trained mode)

• Parameterτ0 spans a large range

Tracking :

• Keep track ofτ1, τ2, τ3,...

• Based on the phase-locked loop (PLL)

• Data symbols unknown (Decision-directed mode)

• Sufficient to track small signalsτ1 –τ0 , τ2 –τ1 , τ3 –τ2 , ...

Timing recovery in two stages
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PLL: Motivation

Consider the simple case of a time-invariant offset:

τk = τ

Let  be the current timing estimate.

Timing error: εi = τi –  =τ – .

With a perfect timing error detector (TED), we get  =εi .

Update:

With imperfect TED:

τ̂i

τ̂i τ̂i

ε̂i

τ̂i 1+ τ̂i ε̂i+ τ= =

τ̂i 1+ τ̂i αε̂i+=
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PLL-based timing recovery

PLL
UPDATE

f(t)y(t)

rcv. filter

T.E.D.

kT + kτ̂

rk
for further processing

kε̂

r t( )

τ̂k 1+ τ̂k αε̂k+=

τ̂k 1+ τ̂k αε̂k β ε̂i
i 0=

k 1–

∑+ +=

First-order PLL

Second-order PLL
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Timing Error Detector (TED)

PLL
UPDATE

f(t)y(t)

rcv. filter

T.E.D.

kT + kτ̂

rk

kd̂

for further processing

kε̂

r t( )

ε̂k
3T
16
-------- rkd̂k 1– rk 1– d̂k–( )=

Mueller & Müller Timing Error Detector

• TED is a decision-directed device

• Usually, instantaneous hard quantization

• Better decisions entail delay that destabilizes the loop



9

• Improve the quality of decisions (Approach I)

⇒ Need to get around the delay induced by better decisions.

⇒ Feedback from the ECC decoder and equalizer to timing recovery.

Dr. Barry’s presentation!

• Improve the timing recovery architecture (Approach II)

⇒ Need to assume perfect decisions for tractability.

⇒ Methods based on gradient search and projection operation.

⇒ Use Cramer-Rao bound to evaluate competing methods.

This presentation!

Improving timing recovery
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Overview: Approach II

Questions:

• How good is the PLL-based system?

• Can it be improved upon?

Method:

• Derive fundamental performance limits.

• Compare the PLL performance with these limits.

• Develop methods that outperform the PLL.
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Problem statement

The uniform samples are:

rk = alh(kT – lT – τl) + nk ,

whereσ2 is the noise variance, andh(t) is the impulse response.

Problem: Given samples{rk} and knowledge of channel model, estimate
• theN uncoded i.i.d. data symbols{ak}
• theN timing offsets{τk}.

l 0=
N 1–∑

AWGN

τ h(t)

We consider the followinguncodedsystem:

ak{ }0
N 1–

uncoded i.i.d.

rk
LPF

kT
(uniform)
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Cramer-Rao bound

• answers the following question:

“What is the best any estimator can do?”

• is independent of the estimator itself.

• is a lower bound on the error variance of any estimator.

Cramer-Rao bound (CRB)
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→ fixed, unknown parameter to be estimated

r → observations

• Sensitivity of  to changes in  determines quality of estimation.

• If  is narrow, for a givenr, probable s lie in a narrow range.

⇒  can be estimated better,i.e., with lesser error variance.

• CRB uses  as a measure of narrowness.

θ

f r θ( ) θ

f r θ( ) θ

θ
∂

∂θ
------ f r θ( )log

CRB, intuitively

f r θ1( ) f r θ1( )f r θ2( ) f r θ2( )

r r
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CRB for a random parameter

If  is random as opposed to being fixed and unknown,

•  is characterized by ap.d.f.  and

• r,  are characterized by the jointp.d.f. .

The measure for narrowness in this case is

θ

θ f θ( )

θ f r θ,( )

∂
∂θ
------ f r θ,( )log
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For any unbiased estimator , the estimation error covariance matrix is
lower bounded by

where  is the information matrix given by

In particular,

θ̂ r( )

E θ̂ r( ) θ–( ) θ̂ r( ) θ–( )
T

[ ] J 1–≥

J

J E ∂
∂θ
------ f r θ,( )log

∂
∂θ
------ f r θ,( )log

T

 
 
 

=

E θ̂i r( ) θi–( )
2

[ ] J 1– i i,( )≥

CRB is the inverse of Fisher information
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• An estimator that achieves the CRB is calledefficient.

• Efficient estimators do not always exist.

Fixed, unknownθ: ML is efficient

Randomθ: MAP is efficient

∂
∂θ
------ f r θ( )log 0=

∂
∂θ
------ f r θ,( )log 0=

Efficient estimators
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CRB: lower bound on timing error variance

Constant offset:

Frequency offset:

σε
2 σ2

N Eh'
--------------≥

σε
2 6σ2

N 1–( )N 2N 1–( )Eh'
----------------------------------------------------------≥
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CRB for a random walk

The Cramer-Rao bound on the error variance of any unbiased timing estimator:

where

is the steady state value,

,

and .

E τ̂k τk–( )2[ ] h f k( )⋅≥

h σw
2 η

η2 1–
---------------=

f k( ) N 0.5+( ) ηlog( ) 1 N 0.5 2 k 1+( )–+( ) ηlog( )sinh
N 0.5+( ) ηlog( )sinh

--------------------------------------------------------------------------------–tanh=

η λ λ2 4–+
2

-----------------------------= λ 2 2π2

3
--------- 1– 

  σw
2

σ2T2
-------------+=
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Steady-state value becomes more representative as SNR and N increase.

CRB: Steady-state value

0 5000
0

0.4%

0.8%

1.2%

Time

σ ε
⁄T

(%
)

σw ⁄ T = 0.05%

h

N = 5000

Parameters

SNRbit = 5 dB
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Trained PLL away from the CRB

0 2050 4100
1%

2%

3%

4%

5%

Time (bit periods)

CRLB

Trained PLL with α optimized

N = 4095

Parameters

SNR = 5 dB

σw ⁄ T = 0.7%
α = 0.03
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Trained PLL does not achieve the steady-state CRB.
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• As in the random walk case, the PLL does not achieve the
CRB in the constant offset and the frequency offset cases.

• Using Kalman filtering analysis, we can show that PLL is
the optimal causal timing recovery scheme.

⇒ Eliminate causality constraint to improve performance.

⇒ Block processing.

Outperforming the PLL: Block processing
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The trained maximum-likelihood (ML) estimator picks  to minimize

This minimization can be implemented using gradient descent:

• Initialization using PLL.

• Without training, use  instead of .

τ

J τ̂ a;( ) rk alh kT lT– τ̂–( )
l
∑– 

  2

k ∞–=

∞

∑=

τ̂i 1+ τ̂i µJ' τ̂i a;( )–=

J τ̂ â;( ) J τ̂ a;( )

Constant offset: Gradient search



24

Trained ML achieves CRB α = 0.01

Parameters

N = 5000

τ/T = π/20

-8 -3 2 7
0.2%

2%

20%

SNR  (dB)

0.3%

1%

10%

3%

R
M

S
 T

im
in

g 
E

rr
or

σ ε
 / 

T

Trained ML, CRB

Trained PLL

Decision-directed PLL

Decision-directed ML

Two ways to improve performance over conventional PLL:

* Better architecture – ML for example.

* Better decisions – exploit error correction codes.
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Frequency offset: Least squares estimation

Let ,

,

 from PLL.

Model:

Problem:

Find  and  to minimize

Solution:

 and

k 0 1 … N 1–, , ,[ ]T=

τ τ0 τ1 … τN 1–, , ,[ ]T=

τ̂ τ̂0 τ̂1 … τ̂N 1–, , ,[ ]T=

τ ∆T( )k τ0+=

∆T̂ τ̂0

τ̂ ∆T( )ˆ k τ0
ˆ+( )–

2

∆T̂
N kτ̂k∑ k τ̂k∑∑–

N k2∑ k∑( )2–
----------------------------------------------= τ̂0

1
N
----- τ̂k k∆T̂–( )∑=

0 1000 2000 3000 4000

0

2

4

6

8

k

τ̂k
τk
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Least Squares away from CRB 10000 packets

Parameters

N = 250
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Decision-Directed

Trained

CRB
CRB

Trained

Decision-Directed

* Trained MM + PLL + LS about 2 dB away from the CRB
⇒ Gradient descent?

∆T/T ∼ unif[0, 0.005]
τ0/T ~ unif[0, 0.1]

α optimized
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Gradient descent not suitable

−0.1 −0.05 0 0.05 0.1
0
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1000
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Given uniform samples , pick  and  to minimizerk{ } ∆T̂ τ̂0

J ∆T̂ τ̂0 a;,( ) rk alh kT lT– l∆T̂– τ̂0–( )
l
∑– 

  2

k
∑=

∆T̂ T⁄

J
∆

T̂
τ̂ 0,

(
)

 parabolic in .J ∆T̂ τ̂0,( ) τ̂0

Gradient descent→ sensitive to initialization
→ proceeds along greatest gradient: rattling in the bowl
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Gradient descent:

• Moves along the direction of greatest gradient,

• Long, narrow valley⇒ this is not a good idea.

Newton’s method:

• Makes parabolic approximation,

• Directly computes the location of the minimum,

• Efficacy depends on how good the parabolic approximation is.

LM combines these two estimates using a weight factorλ.

Levenberg-Marquardt method
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The update box
* updates the estimatewi → wi+1,
* increasesλ if error increased; decreasesλ if error decreased.

Levenberg-Marquardt (LM) method

PLL LS

Uniform
Sampler Compute

Update

r t( ) τ̂ ŵ0

Initialization

Levenberg-Marquardt

ŷ

ŵ
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* Trained MM + PLL + LS + LM method achieves the CRB.

Trained LM achieves CRB
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10000 packets

Parameters

N = 250

∆T/T ∼ unif[0, 0.005]
τ0/T ~ unif[0, 0.1]

α optimized



31

• N-dimensional estimation problem,

• ML estimation prohibitively complex.

Instead:

• Linearize the PLL-based system,

• Apply projection operator.

Random walk: Linearization and Projection
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TED equation:

Define:

Therefore, we get the following linear Gaussian model:

• Outputyk is the sum of the PLL and the TED outputs.

• Validity of model depends on linearity of TED characteristics.

• is an estimate based on previous observations (a priori).

• yk is based on previous and present observsations (a posteriori).

ε̂k εk nk+ τk τ̂k– nk+= =

yk τ̂k ε̂k+=

yk τk nk+=

τ̂k

Linear Gaussian model from PLL
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For the linear Gaussian model, the MAP estimator is

where

• y is the vector of a posteriori observations

•  is the covariance matrix of the timing offset vector

•  is the variance of the noisenk

τ̂map y( ) Kτ σn
2 I+( )

1–
Kτ y=

Kτ τ

σn
2

MAP estimator
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Trained MAP
Trained PLL

• 5.5 dB gain over PLL.

• 1.5 dB away from CRB.

• CRB not attainable with the timing model chosen. (Thea posteriori den-
sity  needs to be Gaussian, which is not the case here.)

• Gap partly due to loss due to linearization of the TED characteristics.

f θ r( )

1000 packets

Parameters

N = 500

σw/T = 0.33%

α optimized

MAP estimator: Performance

random walk model

first order PLL
MM TED
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MAP estimator takes the form of a matrix operation:

Using the structure of the matrices involved, we can rewrite this as

where

• is a convolution matrix,

⇒ implemented as atime-invariant filter ,

• is diagonal matrix with different diagonal entries,

⇒ implemented astime-varying scaling of the filter output.

τ̂map y( ) Kτ σn
2 I+( )

1–
Kτ y=

τ̂map y( ) A1 A2 y≈

A2

A1

MAP estimator: Reduced-complexity Implementation
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• Conventional timing recovery based on the PLL.

• Cramer-Rao bound gives a bound on performance of any timing estimator.

• Derived the CRB for different timing offset models.

• PLL does not achieve the CRB.

• With constant offset, gradient descent achieves the CRB.

• With frequency offset, the Levenberg-Marquardt method achieves the CRB.

• With a random walk, the MAP estimator significantly outperforms the CRB.

(Caveat: With a random walk, the CRB is not achievable.)

Summary
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Thank you!

Questions?


