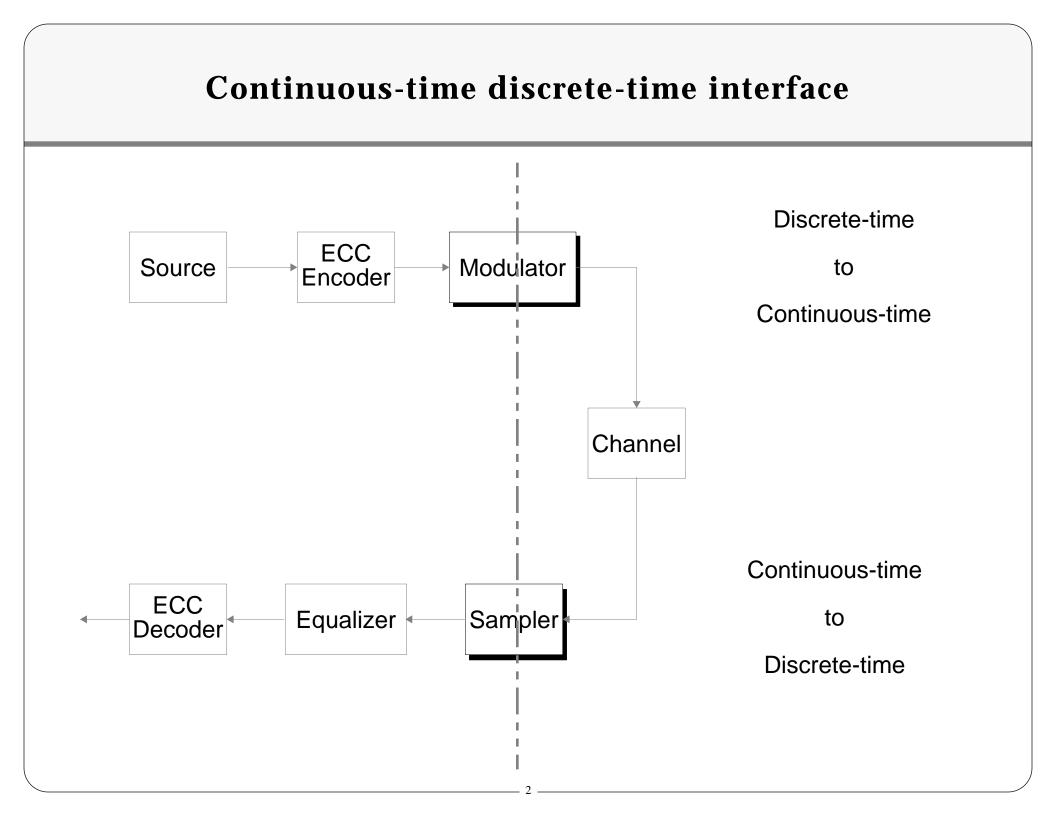


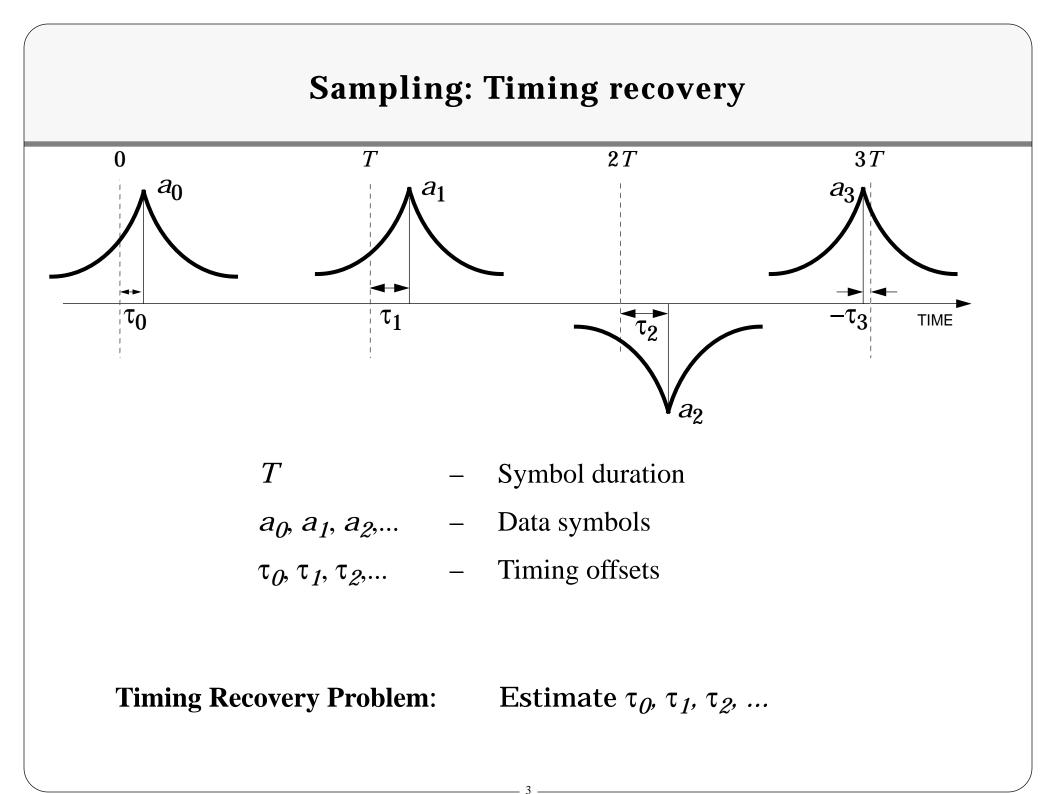
Timing Recovery at Low SNR Cramer-Rao bound, and outperforming the PLL

Aravind R. Nayak John R. Barry Steven W. McLaughlin

{nayak, barry, swm}@ece.gatech.edu
Georgia Institute of Technology

Communication system model ECC Modulator Transmitter Source Encoder Channel Channel ECC Sampler Equalizer -Receiver Decoder **Discrete-time** Continuous-time





Timing offset models

Constant offset:

$$\tau_k = \tau$$

Frequency offset:

 $\tau_k = \tau_0 + k\Delta T = \tau_{k-1} + \Delta T$

Random walk:

$$\tau_{k+1} = \tau_k + W_k = \tau_0 + \sum_{i=0}^k W_i$$

where W_i are *i.i.d.* zero-mean Gaussian random variables of variance σ_W^2 . σ_W^2 determines the severity of the random walk.

Timing recovery in two stages

Acquisition:

- Estimate τ_0
- Correlation techniques
- Known preamble sequence at start of packet (Trained mode)
- Parameter τ_0 spans a large range

Tracking:

- Keep track of τ_1 , τ_2 , τ_3 ,...
- Based on the phase-locked loop (PLL)
- Data symbols unknown (Decision-directed mode)
- Sufficient to track small signals $\tau_1 \tau_0$, $\tau_2 \tau_1$, $\tau_3 \tau_2$, ...

PLL: Motivation

Consider the simple case of a time-invariant offset:

$$\tau_k = \tau$$

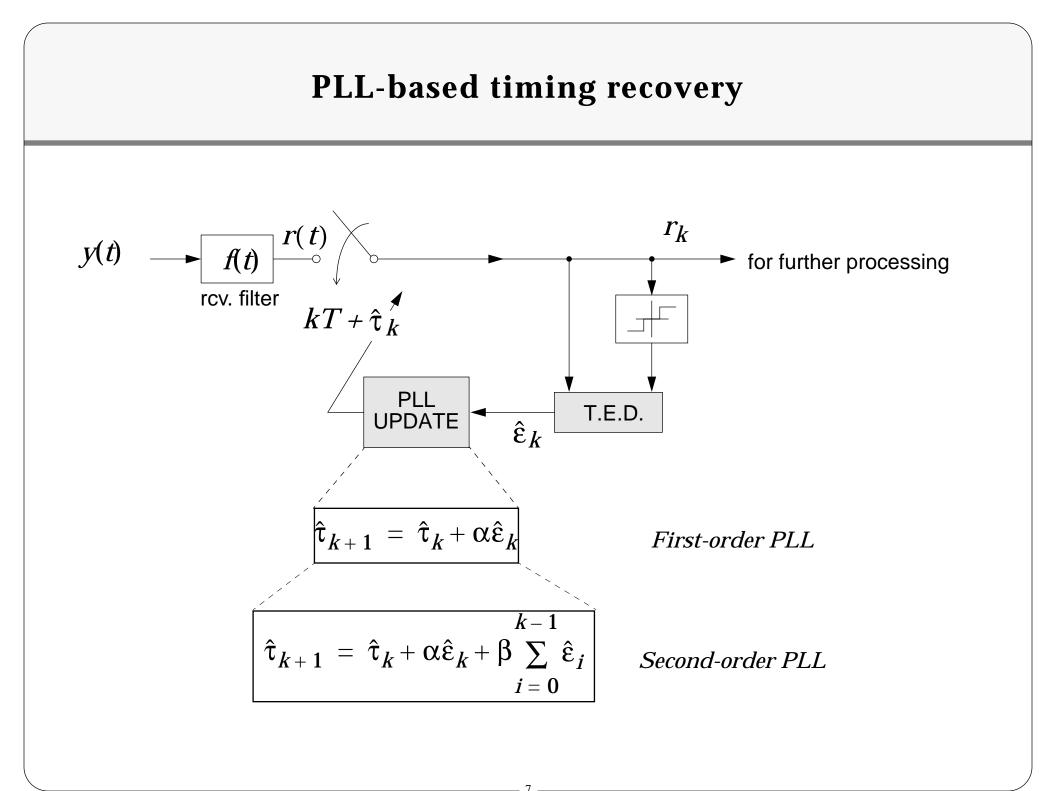
Let $\hat{\tau}_i$ be the current timing estimate.

Timing error: $\varepsilon_i = \tau_i - \hat{\tau}_i = \tau - \hat{\tau}_i$.

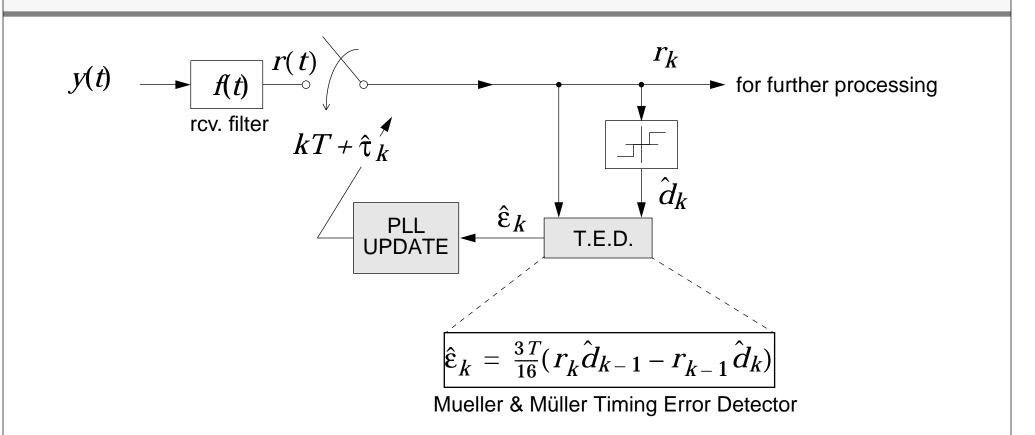
With a perfect timing error detector (TED), we get $\hat{\varepsilon}_i = \varepsilon_i$.

Update:
$$\hat{\tau}_{i+1} = \hat{\tau}_i + \hat{\varepsilon}_i = \tau$$

With imperfect TED: $\hat{\tau}_{i+1} = \hat{\tau}_i + \alpha \hat{\varepsilon}_i$



Timing Error Detector (TED)



- TED is a decision-directed device
- Usually, instantaneous hard quantization
- Better decisions entail delay that destabilizes the loop

Improving timing recovery

- Improve the quality of decisions (Approach I)
 - \Rightarrow Need to get around the delay induced by better decisions.
 - \Rightarrow Feedback from the ECC decoder and equalizer to timing recovery.

Dr. Barry's presentation!

- Improve the timing recovery architecture (Approach II)
 - \Rightarrow Need to assume perfect decisions for tractability.
 - \Rightarrow Methods based on gradient search and projection operation.
 - \Rightarrow Use Cramer-Rao bound to evaluate competing methods.

This presentation!

Overview: Approach II

Questions:

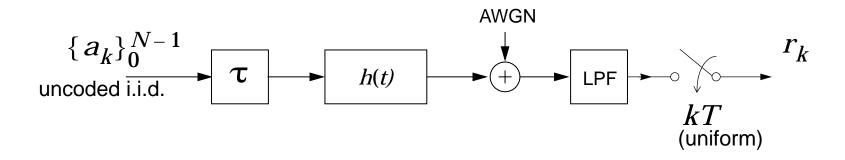
- How good is the PLL-based system?
- Can it be improved upon?

Method:

- Derive fundamental performance limits.
- Compare the PLL performance with these limits.
- Develop methods that outperform the PLL.

Problem statement

We consider the following *uncoded* system:



The uniform samples are:

$$r_k = \sum_{l=0}^{N-1} a_l h(kT - lT - \tau_l) + n_k$$
,

where σ^2 is the noise variance, and h(t) is the impulse response.

Problem: Given samples $\{r_k\}$ and knowledge of channel model, estimate

- the N uncoded i.i.d. data symbols $\{a_k\}$
- the *N* timing offsets $\{\tau_k\}$.

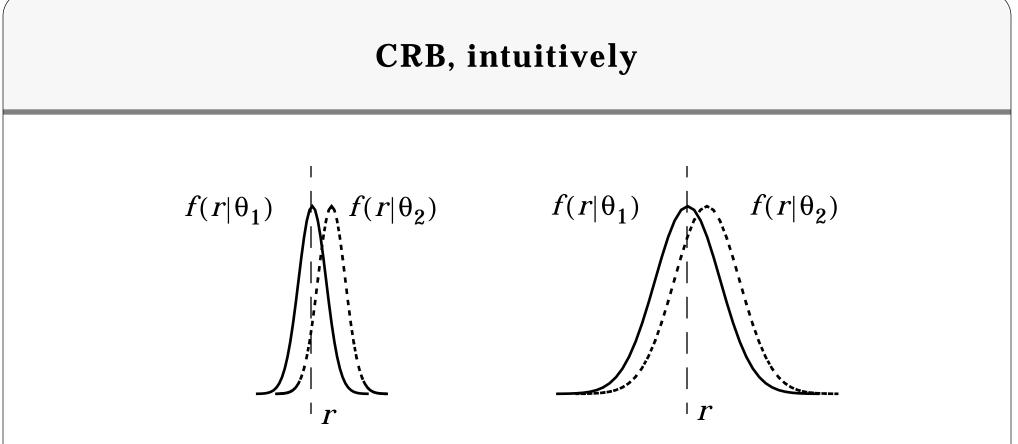
Cramer-Rao bound (CRB)

Cramer-Rao bound

• answers the following question:

"What is the best any estimator can do?"

- is independent of the estimator itself.
- is a lower bound on the error variance of any estimator.



 $\theta \rightarrow$ fixed, unknown parameter to be estimated

 $r \rightarrow \text{observations}$

- Sensitivity of $f(r|\theta)$ to changes in θ determines quality of estimation.
- If $f(r|\theta)$ is narrow, for a given *r*, probable θ s lie in a narrow range.

 $\Rightarrow \theta$ can be estimated better, *i.e.*, with lesser error variance.

• CRB uses $\frac{\partial}{\partial \theta} \log f(r|\theta)$ as a measure of narrowness.

CRB for a random parameter

If θ is random as opposed to being fixed and unknown,

- θ is characterized by a *p.d.f.* $f(\theta)$ and
- r, θ are characterized by the joint *p.d.f.* $f(r, \theta)$.

The measure for narrowness in this case is

 $\frac{\partial}{\partial \theta} \log f(r, \theta)$

For any unbiased estimator $\hat{\theta}(r)$, the estimation error covariance matrix is lower bounded by

$$E[(\hat{\theta}(r) - \theta)(\hat{\theta}(r) - \theta)^{T}] \ge J^{-1}$$

where *J* is the information matrix given by $J = E\left\{ \left[\frac{\partial}{\partial \theta} \log f(r, \theta) \right] \left[\frac{\partial}{\partial \theta} \log f(r, \theta) \right]^T \right\}$

In particular,

$$E[(\hat{\theta}_i(r) - \theta_i)^2] \ge J^{-1}(i, i)$$

Efficient estimators

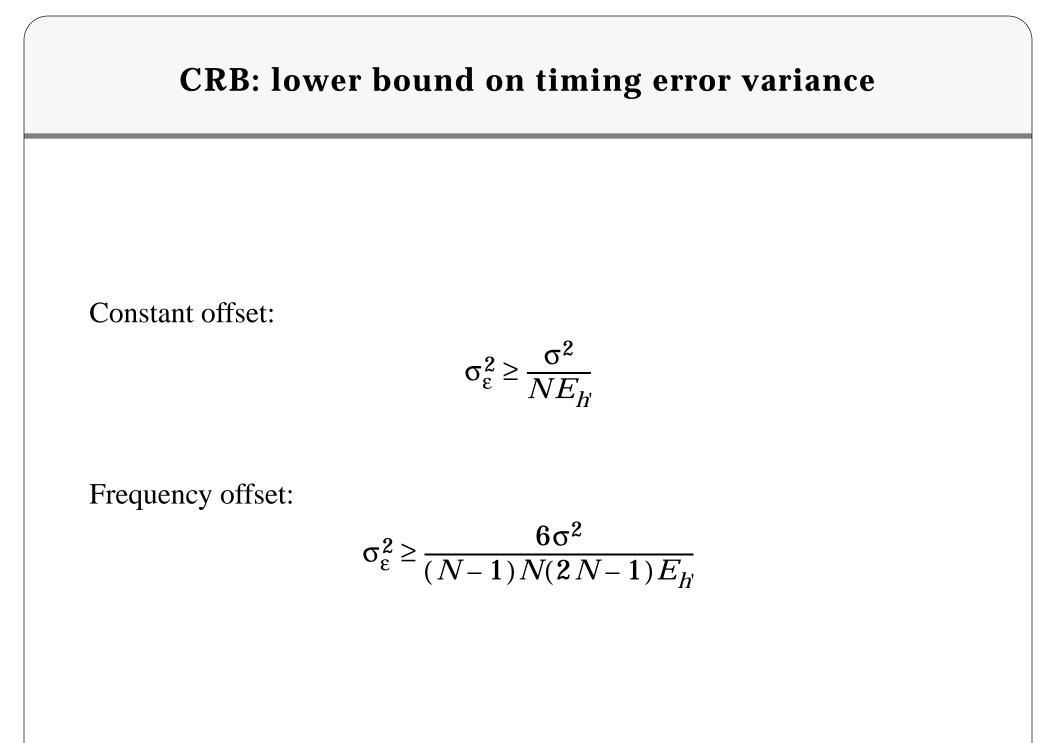
- An estimator that achieves the CRB is called *efficient*.
- Efficient estimators do not always exist.

Fixed, unknown θ : ML is efficient

$$\frac{\partial}{\partial \theta} \log f(r|\theta) = \mathbf{0}$$

Random θ : MAP is efficient

$$\frac{\partial}{\partial \theta} \log f(r, \theta) = \mathbf{0}$$



- 17

CRB for a random walk

The Cramer-Rao bound on the error variance of any unbiased timing estimator:

$$\mathrm{E}[(\hat{\tau}_k - \tau_k)^2] \ge h \cdot f(k)$$

where

$$h = \sigma_W^2 \frac{\eta}{\eta^2 - 1}$$
 is the steady state value,

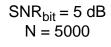
$$f(k) = \tanh((N+0.5)\log\eta) \left[1 - \frac{\sinh((N+0.5-2(k+1))\log\eta)}{\sinh((N+0.5)\log\eta)} \right],$$

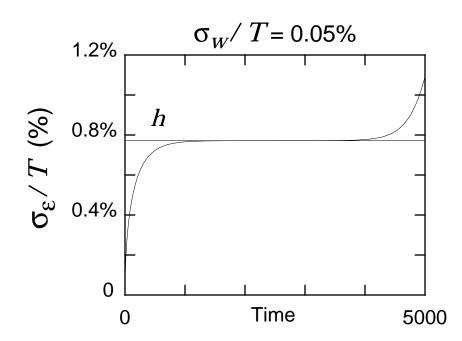
18

$$\eta = \frac{\lambda + \sqrt{\lambda^2 - 4}}{2}$$
 and $\lambda = 2 + \left(\frac{2\pi^2}{3} - 1\right) \frac{\sigma_w^2}{\sigma^2 T^2}$

CRB: Steady-state value

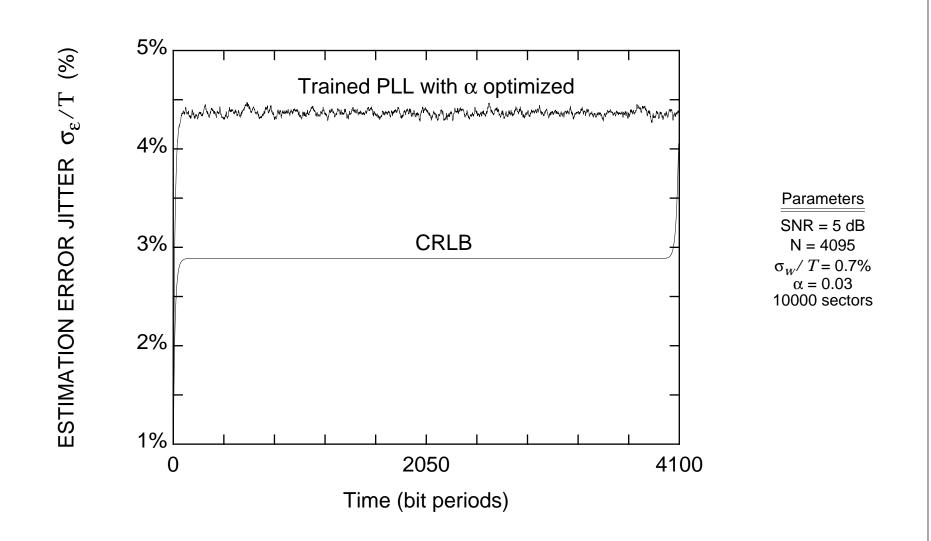
Parameters





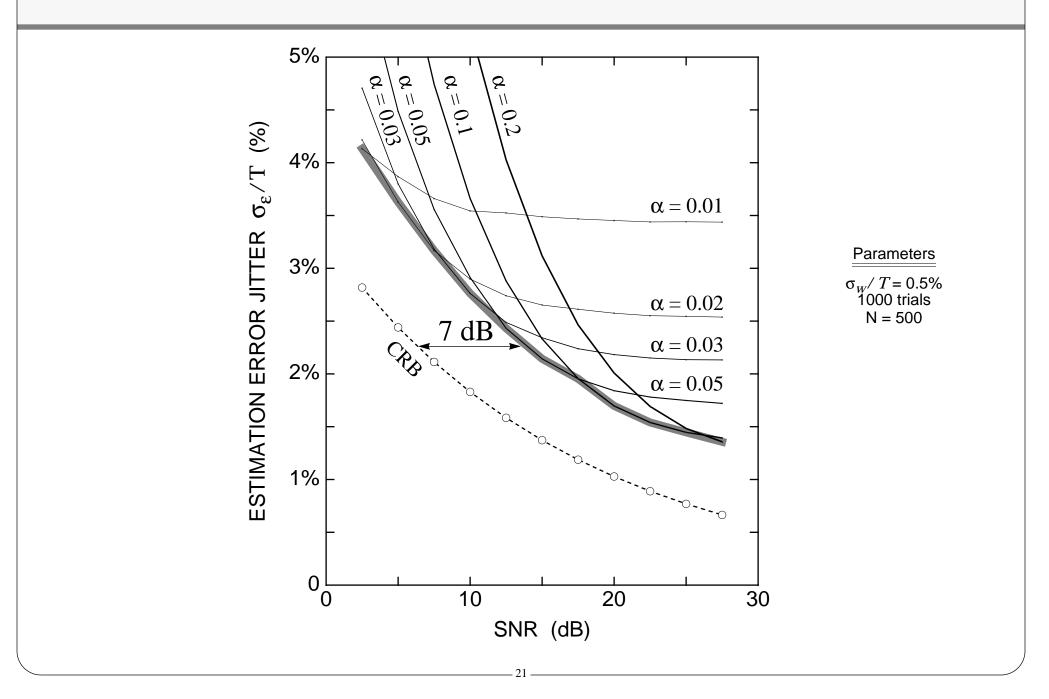
Steady-state value becomes more representative as SNR and N increase.

Trained PLL away from the CRB



Trained PLL does not achieve the steady-state CRB.

Trained PLL vs. Steady-state CRB



Outperforming the PLL: Block processing

• As in the random walk case, the PLL does not achieve the CRB in the constant offset and the frequency offset cases.

- Using Kalman filtering analysis, we can show that PLL is the optimal causal timing recovery scheme.
 - \Rightarrow Eliminate causality constraint to improve performance.
 - \Rightarrow Block processing.

Constant offset: Gradient search

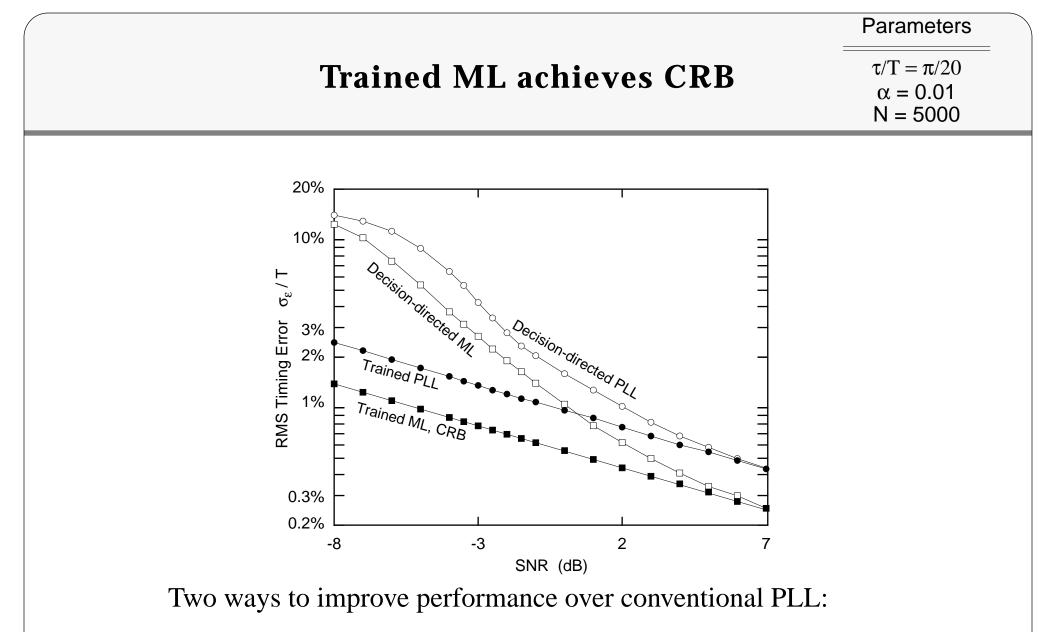
The trained maximum-likelihood (ML) estimator picks τ to minimize

$$J(\hat{\tau};\underline{a}) = \sum_{k=-\infty}^{\infty} \left(r_k - \sum_l a_l h(kT - lT - \hat{\tau}) \right)^2$$

This minimization can be implemented using gradient descent:

$$\hat{\tau}_{i+1} = \hat{\tau}_i - \mu J(\hat{\tau}_i;\underline{a})$$

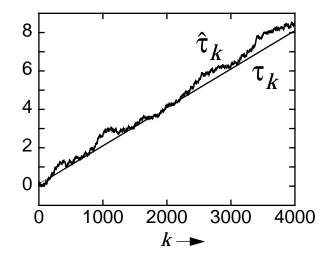
- Initialization using PLL.
- Without training, use $J(\hat{\tau};\underline{\hat{a}})$ instead of $J(\hat{\tau};\underline{a})$.



- * Better architecture ML for example.
- * Better decisions exploit error correction codes.

Frequency offset: Least squares estimation

Let
$$\boldsymbol{k} = [0, 1, ..., N-1]^T$$
,
 $\tau = [\tau_0, \tau_1, ..., \tau_{N-1}]^T$,
 $\hat{\tau} = [\hat{\tau}_0, \hat{\tau}_1, ..., \hat{\tau}_{N-1}]^T$ from PLL.



Model:

 $\tau = (\Delta T) \boldsymbol{k} + \tau_0$

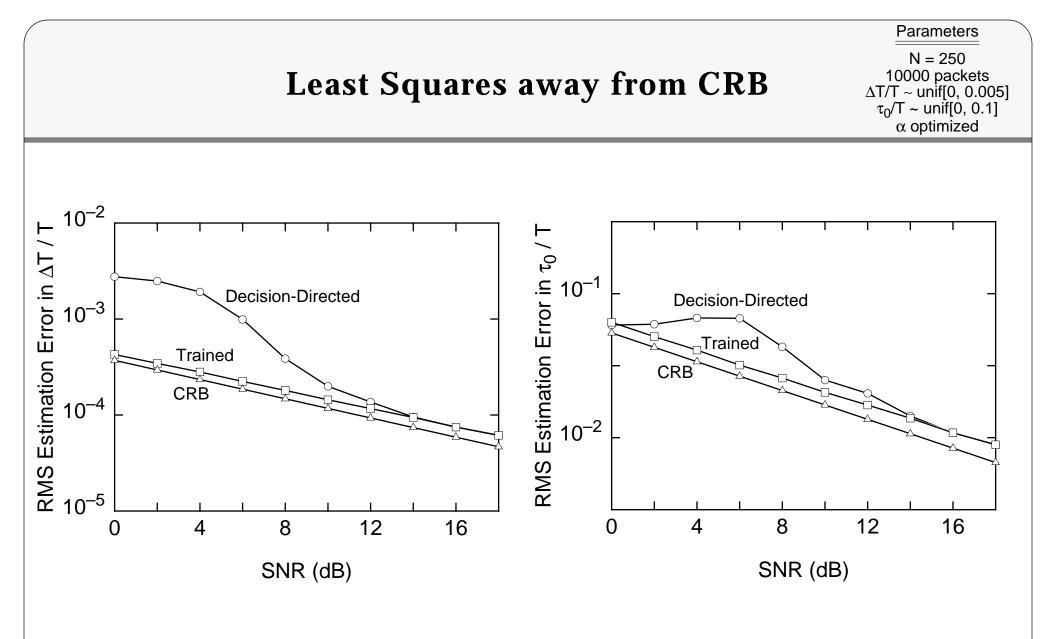
Problem:

Find $\hat{\Delta T}$ and $\hat{\tau}_0$ to minimize

$$\left\|\hat{\boldsymbol{\tau}} - ((\hat{\Delta T})\boldsymbol{k} + \hat{\boldsymbol{\tau}_0})\right\|^2$$

Solution:

$$\hat{\Delta T} = \frac{N \sum k \hat{\tau}_k - \sum k \sum \hat{\tau}_k}{N \sum k^2 - (\sum k)^2} \text{ and } \hat{\tau}_0 = \frac{1}{N} \sum (\hat{\tau}_k - k \hat{\Delta T})$$

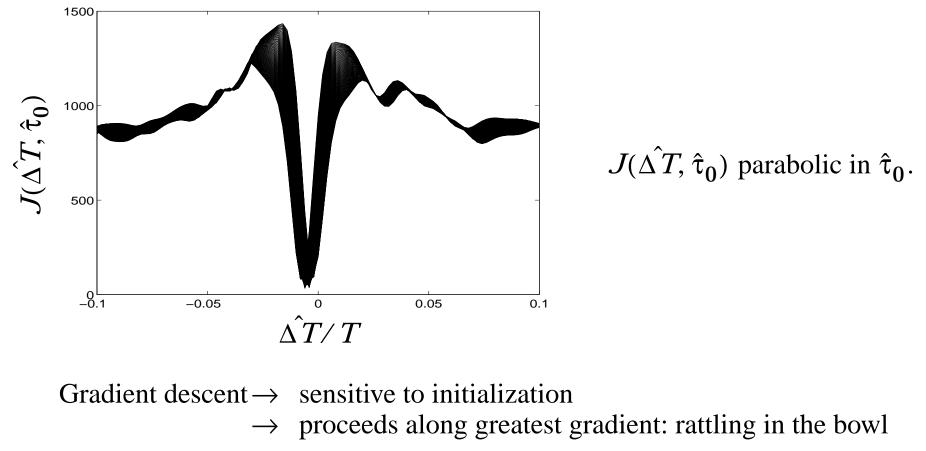


* Trained MM + PLL + LS about 2 dB away from the CRB \Rightarrow Gradient descent?

26

Gradient descent not suitable

Given uniform samples
$$\{r_k\}$$
, pick ΔT and $\hat{\tau}_0$ to minimize
 $J(\Delta T, \hat{\tau}_0; \underline{a}) = \sum_k \left(r_k - \sum_l a_l h(kT - lT - l\Delta T - \hat{\tau}_0)\right)^2$



Levenberg-Marquardt method

Gradient descent:

- Moves along the direction of greatest gradient,
- Long, narrow valley \Rightarrow this is not a good idea.

Newton's method:

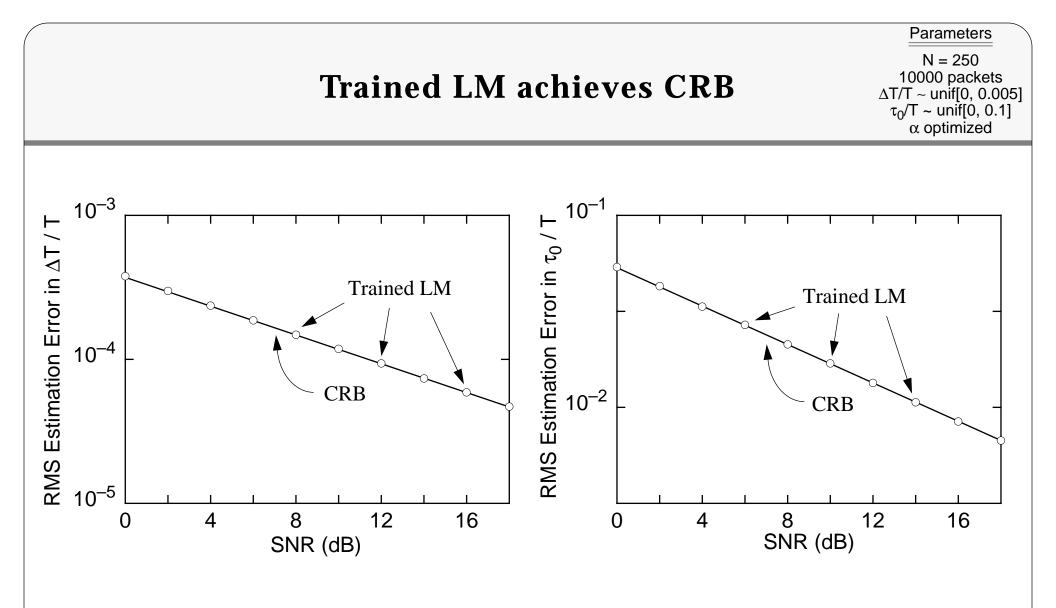
- Makes parabolic approximation,
- Directly computes the location of the minimum,
- Efficacy depends on how good the parabolic approximation is.

LM combines these two estimates using a weight factor λ .

Levenberg-Marquardt (LM) method \hat{W}_0 r(t)τ LS PLL Initialization Ĵ Uniform Compute Sampler Ŵ Update Levenberg-Marquardt

The update box

- * updates the estimate $w_i \rightarrow w_{i+1}$,
- * increases λ if error increased; decreases λ if error decreased.



* Trained MM + PLL + LS + LM method achieves the CRB.

Random walk: Linearization and Projection

- N-dimensional estimation problem,
- ML estimation prohibitively complex.

Instead:

- Linearize the PLL-based system,
- Apply projection operator.

Linear Gaussian model from PLL

TED equation:

$$\hat{\varepsilon}_k = \varepsilon_k + n_k = \tau_k - \hat{\tau}_k + n_k$$

Define:

$$y_k = \hat{\tau}_k + \hat{\varepsilon}_k$$

Therefore, we get the following linear Gaussian model:

$$y_k = \tau_k + n_k$$

- Output y_k is the sum of the PLL and the TED outputs.
- Validity of model depends on linearity of TED characteristics.
- $\hat{\tau}_k$ is an estimate based on previous observations (*a priori*).
- y_k is based on previous and present observsations (*a posteriori*).

MAP estimator

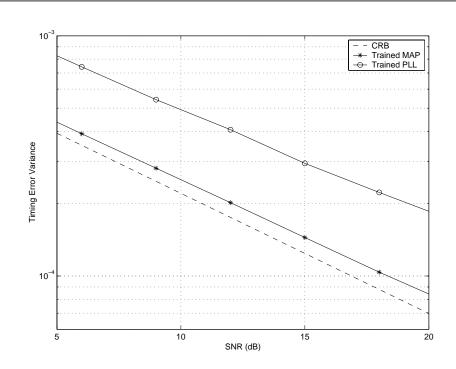
For the linear Gaussian model, the MAP estimator is

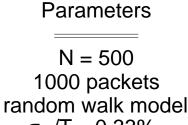
$$\hat{\boldsymbol{\tau}}_{\mathrm{map}}(\boldsymbol{y}) = (\boldsymbol{K}_{\tau} + \boldsymbol{\sigma}_{n}^{2}\boldsymbol{I})^{-1}\boldsymbol{K}_{\tau}\boldsymbol{y}$$

where

- y is the vector of a posteriori observations
- K_{τ} is the covariance matrix of the timing offset vector τ
- σ_n^2 is the variance of the noise n_k

MAP estimator: Performance





 $\sigma_w/T = 0.33\%$ first order PLL MM TED α optimized

- 5.5 dB gain over PLL.
- 1.5 dB away from CRB.
- CRB not attainable with the timing model chosen. (The *a posteriori* density $f(\theta|r)$ needs to be Gaussian, which is not the case here.)
- Gap partly due to loss due to linearization of the TED characteristics.

MAP estimator: Reduced-complexity Implementation

MAP estimator takes the form of a matrix operation:

$$\hat{\tau}_{map}(\boldsymbol{y}) = (\boldsymbol{K}_{\tau} + \sigma_n^2 \boldsymbol{I})^{-1} \boldsymbol{K}_{\tau} \boldsymbol{y}$$

Using the structure of the matrices involved, we can rewrite this as

$$\hat{\boldsymbol{\tau}}_{\mathrm{map}}(\boldsymbol{y}) \approx \boldsymbol{A}_1 \boldsymbol{A}_2 \boldsymbol{y}$$

where

- A_2 is a convolution matrix,
 - \Rightarrow implemented as a **time-invariant filter**,
- A_1 is diagonal matrix with different diagonal entries,
 - \Rightarrow implemented as **time-varying scaling** of the filter output.

Summary

- Conventional timing recovery based on the PLL.
- Cramer-Rao bound gives a bound on performance of any timing estimator.
- Derived the CRB for different timing offset models.
- PLL does not achieve the CRB.

- With constant offset, gradient descent achieves the CRB.
- With frequency offset, the Levenberg-Marquardt method achieves the CRB.
- With a random walk, the MAP estimator significantly outperforms the CRB. *(Caveat:* With a random walk, the CRB is not achievable.)

