Modulation codes for the deep-space optical channel

Bruce Moision, Jon Hamkins, Matt Klimesh, Robert McEliece
Jet Propulsion Laboratory
Pasadena, CA, USA

DIMACS, March 25-26, 2004

The deep-space optical channel

- Mars Telesat, scheduled to launch in 2009
- $5 W, 10-100 \mathrm{Mbps}$ optical link demonstration
- 100W, 1.1 Mbps X-band
- $35 \mathrm{~W}, 1.5 \mathrm{Mbps}$ Ka-band

Deep-space optical communications channel	
Constraints	non-coherent, direct detection
	$T_{s}=$ slot duration (pulse-width) $\geq 2 \mathrm{~ns}$
	$P_{a v}=$ average signal photons/slot
	$P_{p k}=$ maximum signal photons/pulse
Model	Memoryless Poisson

Poisson channel

$$
\left.X \longrightarrow \left\lvert\, \begin{array}{l}
p(y \mid x=0) \\
p(y \mid x=1)
\end{array}\right.\right] Y
$$

Deep space optical channel modeled as binary-input, memoryless, Poisson.

$$
\begin{aligned}
p_{0}(k) & =p(y=k \mid x=0)=\frac{n_{b}^{k} e^{-n_{b}}}{k!} \\
p_{1}(k) & =p(y=k \mid x=1)=\frac{\left(n_{b}+n_{s}\right)^{k} e^{-\left(n_{b}+n_{s}\right)}}{k!} \\
P(x=1) & =\frac{1}{M}=\text { duty cycle (mean pulses per slot) }
\end{aligned}
$$

Peak power $\quad n_{s} \leq P_{p k}$ photons/pulse
Average power $n_{s} / M \leq P_{a v}$ photons/slot
$\Rightarrow n_{s} \leq \min \left\{M P_{a v}, P_{p k}\right\}$

Poisson channel

Capacity parameterized by $P_{a v}$, optimized over M.

$$
C(M)=\frac{1}{M} E_{Y \mid 1} \log \frac{p_{1}(Y)}{p(Y)}+\frac{M-1}{M} E_{Y \mid 0} \log \frac{p_{0}(Y)}{p(Y)}
$$

Pulse-position-modulation

We can achieve low duty cycles and high peak to average power ratios by using PPM. M-PPM maps a binary $\log _{2} M$ tuple to a M-ary binary vector with a single one in the slot indicated by the input. Example: $M=8$, mapping of 101001 .

7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0

- PPM achieves a duty cycle of $1 / M$
- Straight-forward to implement and analyze
- Known to be an efficient modulation for the Poisson channel [Pierce, 78], [McEliece, Welch, 79], [Butman et. al., 80], [Lipes, 80],[Wyner, 88]
- PPM satisfies the property that each symbol is a coordinate permutation of another
- Generalized PPM: a set of vectors S such that there is a group of coordinate permutations that fix* the set (a transitive set), e.g., PPM, multipulse PPM.
*a group of permutations G such that for each $g \in G, g S=S$ and for each $\mathbf{x}_{i}, \mathbf{x}_{j} \in S$ there exists $g \in G$ such that $\mathbf{x}_{i}=\sigma_{g}\left(\mathbf{x}_{j}\right)$, where σ_{g} is the mapping imposed by g.

Capacity of Generalized PPM

binary DMC

$$
X \longrightarrow \begin{aligned}
& p_{0}=p(y \mid x=0) \\
& p_{1}=p(y \mid x=1)
\end{aligned} \longrightarrow Y
$$

Let $S=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{s}\right\}$ be a set of length n vectors and $p_{\mathbf{X}}(\cdot)$ a probability distribution on S.

$$
C=\max _{p_{\mathbf{X}}} I(\mathbf{X} ; \mathbf{Y})
$$

Theorem 1 If S is a transitive set, then C_{S} if achieved by a uniform distribution on S.
Theorem 2 On a binary input channel with $p_{1}(y) / p_{0}(y)<\infty$,

$$
C=d_{H} D\left(p_{1} \| p_{0}\right)-D(p(\mathbf{y}) \| p(\mathbf{y} \mid \mathbf{0})) \text { bits/symbol }
$$

where $D(\cdot \| \cdot)$ is the Kullback-Liebler distance, d_{H} is the symbol Hamming weight, $p(\mathbf{y})$ is the density of n-vector $\mathbf{Y}, p(\mathbf{y} \mid \mathbf{0})$ the density of n-vector of noise slots.

Capacity of PPM

Corollary 1 For the binary M-ary PPM channel,

$$
C(M)=D\left(p_{1} \| p_{0}\right)-D(p(\mathbf{y}) \| p(\mathbf{y} \mid \mathbf{0})) \leq D\left(p_{1} \| p_{0}\right)
$$

Theorem 3 For fixed $n_{s}, n_{b}, \lim _{M \rightarrow \infty} C(M)=D\left(p_{1} \| p_{0}\right)$.
Poisson channel: $D\left(p_{1} \| p_{0}\right)=\left(n_{s}+n_{b}\right) \log \left(1+n_{s} / n_{b}\right)-n_{s}$. This term is also tight for small n_{s}.

Poisson PPM Capacity: small n_{s} asymptotes, concavity in n_{s-}

$$
\frac{C(M)}{M}= \begin{cases}\frac{M-1}{2 M \log 2} \frac{n_{s}^{2}}{n_{b}}+O\left(n_{s}^{3}\right) & , n_{b}>0 \\ n_{s} \log _{2}+O\left(n_{s}^{2}\right) & , n_{b}=0\end{cases}
$$

- for fixed order M, asymptotic slope in log-log domain is 1 for $n_{b}=0,2$ for $n_{b}>0$
- implies 1 dB increase in signal power compensates for 2 dB increase in noise power (for small n_{s})
- C is concave in n_{s} for $n_{b}=0$ but not for $n_{b}>0$ (single inflection point)

- time-sharing (using pairs $n_{s, 1}, n_{s, 2}$) is advantageous (up to peak power constraint)

Poisson PPM Capacity: convexity in M ?
 \qquad

Theorem 4 For $n \leq m$,

$$
\begin{aligned}
C(k m)+C(n) & \leq C(k n)+C(m) \\
C(k m) & \leq C(k)+C(m)
\end{aligned}
$$

This is essentially a subadditivity property. Let $f(x)=C\left(e^{x}\right)$. Then

$$
\begin{array}{rr}
f(x+y) \leq f(x)+f(y) & \text { subadditive } \\
f(\alpha x+(1-\alpha) y) \stackrel{?}{\leq} \alpha f(x)+(1-\alpha) f(y) & \text { convex } \cap
\end{array}
$$

In practice, M chosen to be a power of 2 .
Corollary 2 For $M=2^{j}$, (take $k=2, m=M, n=M / 2$ in above Theorem)

$$
\begin{aligned}
& C(2 M)- C(M) \leq C(M)-C(M / 2) \\
& \frac{C(M)}{M} \text { is decreasing in } M
\end{aligned}
$$

Poisson PPM Capacity: invariance to slot width

- For M a power of two, and fixed $n_{s}, C(M) / M$ is monotonically decreasing in M.
- Suppose $P_{p k} / P_{a v}$ is a power of two. Then optimum order satisfies $M \leq P_{p k} / P_{a v}$.

- Let T_{s} be the slot width. Normalize photon arrival rates and capacity by the slot width. Let $\lambda_{s}=n_{s} T_{s}$ photons/second, $\lambda_{b}=n_{b} T_{s}$ photons/second. For small n_{s},
$\frac{C(M)}{M T_{s}} \approx \frac{M(M-1)}{2 \ln 2}\left(\frac{\lambda_{s}^{2}}{\lambda_{b}}\right)$
bits/second

」PL

Achieving capacity: Coding and Modulation

	outer code	inner code
RSPPM	Reed-Solomon $(n, k)=\left(M^{\alpha}-1, k\right)$, $\alpha=1,[M c E l i e c e, 81], \alpha>1$, [Hamkins, Moi- sion, 03]	M-PPM
SCPPM	convolutional code (w/o accumulate)[Massey, 81], (iterate with PPM) [Hamkins, Moision, 02]	accumulate-M-PPM
PCPPM	parallel concatenated convolutional code [Kiasaleh, 98],[Hamkins, 99],(DTMRF, iter- ate with PPM) [Peleg, Shamai, 00]	M-PPM

••L

Predicting iterative decoding performance

$$
\operatorname{Prob}(\text { bit error })=\frac{1}{2^{k}} \sum_{\mathbf{u}, \hat{\mathbf{u}}} \frac{d(\mathbf{u}, \hat{\mathbf{u}})}{k} P(\hat{\mathbf{u}} \mid \mathbf{u})
$$

The Bhattacharrya bound is commonly used to bound the pairwise error probability

$$
P(\hat{\mathbf{u}} \mid \mathbf{u}) \leq P_{2}(\hat{\mathbf{x}} \mid \mathbf{x})<\left(\sum_{k} \sqrt{p_{0}(k) p_{1}(k)}\right)^{d(\mathbf{x}, \hat{\mathbf{x}})}=: z^{d(\mathbf{x}, \hat{\mathbf{x}})}
$$

For constant Hamming weight coded sequences (such as generalized binary PPM) on any channel with a monotonic likelihood ratio $p_{1}(k) / p_{0}(k)$ (Gaussian, Poisson, Webb-McIntyre-Conradi), we have

$$
\hat{\mathbf{x}}=\arg \max _{\mathbf{x}} \sum_{k: x_{k}=1} y_{k}
$$

Hence the ML pairwise codeword error may be bounded as

$$
\begin{aligned}
P(\hat{\mathbf{u}} \mid \mathbf{u}) & \leq P_{2}(\hat{\mathbf{x}} \mid \mathbf{x})=P(S<N)+\frac{1}{2} P(S=N) \\
& =P_{2}(d(\hat{\mathbf{x}}, \mathbf{x})) \leq z^{d(\hat{\mathbf{x}}, \mathbf{x})}
\end{aligned}
$$

Where S is the sum of $d / 2$ signal slots, N is the sum of $d / 2$ noise slots.

IOWEF PPM bounds

PPM is a non-linear mapping, however, we can bound the distance in terms of the codeword weights

$$
2\left\lceil\frac{d(\mathbf{w}, \hat{\mathbf{w}})}{\log _{2} M}\right\rceil \leq d(\mathbf{x}, \hat{\mathbf{x}}) \leq 2 \min \left\{\frac{n}{\log _{2} M}, d(\mathbf{w}, \hat{\mathbf{w}})\right\} .
$$

Now we have

$$
P_{b} \leq \sum_{\mathbf{u} \neq \mathbf{0}} \frac{d(\mathbf{u})}{k} P_{2}\left(2\left\lceil\frac{d(\mathbf{x})}{\log _{2} M}\right\rceil\right)=\sum_{w=1}^{k} \sum_{h=1}^{n} \frac{w}{k} A_{w, h} P_{2}\left(2\left\lceil\frac{h}{\log _{2} M}\right\rceil\right)
$$

where $A_{w, h}$ is the input-output-weight-enumerating-function (IOWEF)

BER and FER bounds

repeat $-9 \Rightarrow$ accumulate $\Rightarrow M=64$ PPM. Interleaver lengths 0.5 Kbit, 32 Kbit.

Performance

\qquad
$M=64, n_{b}=1.0$ photon/slot

$n_{b}=1$ photon/slot

Gaps to capacity

BER $=10^{-6}$, Poisson channel	
SCPPM	0.75 dB
RSPPM	2.75 dB
uncoded	4.7 dB

(SCPPM: $|\Pi|=16384$, stopping rule, max 32 operations)

High average power, bandwidth constraints \qquad

- Can continue to use PPM at high average powers with no loss by decreasing the slot width T_{s} up to the Bandwidth constraints of the system.
- Past that point, we see increasing losses by restricting modulation to PPM.
- For example, uplink has high average power and low Bandwidth.
- How to populate this region?

Variable-pulse modulation

Allow variable pulses per symbol. Now symbol mapping may be an issue.

input								
Gray			anti-Gray		symbol			
0	0	0	$0 \quad 0$	0	1	0	0	0
0	1	0	11	1	1	0	0	1
1	1	0	$0 \quad 1$	0	0	0	0	1
1	0	0	10	1	0	0	1	1
1	0	1	11	0		0	1	0
1	1	1	$0 \quad 0$	1	0	1	1	1
0	1	1	10	0		1	0	0
0	0		$0 \quad 1$	1		1	0	

••L

