Modulation codes for the deep-space optical channel

Bruce Moision, Jon Hamkins, Matt Klimesh, Robert McEliece Jet Propulsion Laboratory Pasadena, CA, USA

DIMACS, March 25–26, 2004

The deep-space optical channel _

- Mars Telesat, scheduled to launch in 2009
- 5W, 10–100 Mbps optical link demonstration
- 100W, 1.1 Mbps X-band
- 35W, 1.5 Mbps Ka-band

Deep-space optical communications channel		
Constraints	non-coherent, direct detection	
	$T_s = \text{slot duration (pulse-width)} \ge 2 \text{ ns}$	
	P_{av} = average signal photons/slot	
	$P_{pk} = \text{maximum signal photons/pulse}$	
Model	Memoryless Poisson	

Poisson channel _____

$$X \longrightarrow \begin{bmatrix} p(y|x=0) \\ p(y|x=1) \end{bmatrix} \longrightarrow Y$$

Deep space optical channel modeled as binary-input, memoryless, Poisson.

$$p_0(k) = p(y = k | x = 0) = \frac{n_b^k e^{-n_b}}{k!}$$

$$p_1(k) = p(y = k | x = 1) = \frac{(n_b + n_s)^k e^{-(n_b + n_s)}}{k!}$$

$$P(x = 1) = \frac{1}{M} = \text{ duty cycle (mean pulses per slot)}$$

Peak power $n_s \leq P_{pk}$ photons/pulse Average power $n_s/M \leq P_{av}$ photons/slot $\Rightarrow n_s \leq \min\{MP_{av}, P_{pk}\}$

Poisson channel

Capacity parameterized by P_{av} , optimized over M.

$$C(M) = \frac{1}{M} E_{Y|1} \log \frac{p_1(Y)}{p(Y)} + \frac{M-1}{M} E_{Y|0} \log \frac{p_0(Y)}{p(Y)}$$

Pulse-position-modulation

We can achieve low duty cycles and high peak to average power ratios by using PPM. M-PPM maps a binary $\log_2 M$ tuple to a M-ary binary vector with a single one in the *slot* indicated by the input. Example: M = 8, mapping of 101001.

- PPM achieves a duty cycle of 1/M
- Straight-forward to implement and analyze
- Known to be an efficient modulation for the Poisson channel [Pierce, 78], [McEliece, Welch, 79], [Butman et. al., 80], [Lipes, 80], [Wyner, 88]
- PPM satisfies the property that each symbol is a coordinate permutation of another
- Generalized PPM: a set of vectors S such that there is a group of coordinate permutations that fix* the set (a transitive set), e.g., PPM, multipulse PPM.

*a group of permutations G such that for each $g \in G$, gS = S and for each $\mathbf{x}_i, \mathbf{x}_j \in S$ there exists $g \in G$ such that $\mathbf{x}_i = \sigma_g(\mathbf{x}_j)$, where σ_g is the mapping imposed by g.

Capacity of Generalized PPM_

binary DMC

$$X \longrightarrow \begin{bmatrix} p_0 = p(y|x=0) \\ p_1 = p(y|x=1) \end{bmatrix} \longrightarrow Y$$

Let $S = {\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_s}$ be a set of length *n* vectors and $p_{\mathbf{X}}(\cdot)$ a probability distribution on *S*.

$$C = \max_{p_{\mathbf{X}}} I(\mathbf{X}; \mathbf{Y})$$

Theorem 1 If S is a transitive set, then C_S if achieved by a uniform distribution on S. **Theorem 2** On a binary input channel with $p_1(y)/p_0(y) < \infty$,

 $C = d_H D(p_1||p_0) - D(p(\mathbf{y})||p(\mathbf{y}|\mathbf{0}))$ bits/symbol

where $D(\cdot || \cdot)$ is the Kullback-Liebler distance, d_H is the symbol Hamming weight, $p(\mathbf{y})$ is the density of n-vector \mathbf{Y} , $p(\mathbf{y}|\mathbf{0})$ the density of n-vector of noise slots.

Capacity of PPM

Corollary 1 For the binary M-ary PPM channel,

 $C(M) = D(p_1||p_0) - D(p(\mathbf{y})||p(\mathbf{y}|\mathbf{0})) \le D(p_1||p_0)$

Theorem 3 For fixed n_s, n_b , $\lim_{M\to\infty} C(M) = D(p_1||p_0)$.

Poisson channel: $D(p_1||p_0) = (n_s + n_b)\log(1 + n_s/n_b) - n_s$. This term is also tight for small n_s .

Poisson PPM Capacity: small n_s asymptotes, concavity in n_{s-}

ullet

$$\frac{C(M)}{M} = \begin{cases} \frac{M-1}{2M\log 2} \frac{n_s^2}{n_b} + O(n_s^3) &, n_b > 0\\ n_s \log_2 + O(n_s^2) &, n_b = 0 \end{cases}$$

- for fixed order M, asymptotic slope in log-log domain is 1 for $n_b = 0, 2$ for $n_b > 0$
- implies 1 dB increase in signal power compensates for 2 dB increase in noise power (for small n_s)
- C is concave in n_s for $n_b = 0$ but not for $n_b > 0$ (single inflection point)
- time-sharing (using pairs $n_{s,1}, n_{s,2}$) is advantageous (up to peak power constraint)

Poisson PPM Capacity: convexity in M?_____

Theorem 4 For $n \leq m$,

$$C(km) + C(n) \le C(kn) + C(m)$$
$$C(km) \le C(k) + C(m)$$

This is essentially a subadditivity property. Let $f(x) = C(e^x)$. Then

$$f(x+y) \le f(x) + f(y)$$
 subadditive
 $f(\alpha x + (1-\alpha)y) \stackrel{?}{\le} \alpha f(x) + (1-\alpha)f(y)$ convex \cap

In practice, M chosen to be a power of 2.

Corollary 2 For $M = 2^{j}$, (take k = 2, m = M, n = M/2 in above Theorem)

$$C(2M) - C(M) \le C(M) - C(M/2)$$
 convex \cap
 $\frac{C(M)}{M}$ is decreasing in M

Poisson PPM Capacity: invariance to slot width.

- For M a power of two, and fixed n_s , C(M)/M is monotonically decreasing in M.
- Suppose P_{pk}/P_{av} is a power of two. Then optimum order satisfies $M \leq P_{pk}/P_{av}$.
- Let T_s be the slot width. Normalize photon arrival rates and capacity by the slot width. Let $\lambda_s = n_s T_s$ photons/second, $\lambda_b = n_b T_s$ photons/second. For small n_s , $\frac{C(M)}{MT_s} \approx \frac{M(M-1)}{2\ln 2} \left(\frac{\lambda_s^2}{\lambda_b}\right)$ bits/second. 10⁻³

 $\frac{n_s}{MT_s}$ photons/second

Achieving capacity: Coding and Modulation _

	outer code	inner code
RSPPM	Reed-Solomon $(n, k) = (M^{\alpha} - 1, k),$	M-PPM
	$\alpha = 1$, [McEliece, 81], $\alpha > 1$, [Hamkins, Moision, 03]	
SCPPM	convolutional code	accumulate- <i>M</i> -PPM
	(w/o accumulate)[Massey, 81], (iterate with PPM) [Hamkins, Moision, 02]	
PCPPM	parallel concatenated convolutional code	M-PPM
	[Kiasaleh, 98],[Hamkins, 99],(DTMRF, iter- ate with PPM) [Peleg, Shamai, 00]	

Predicting iterative decoding performance_____

Prob(bit error) =
$$\frac{1}{2^k} \sum_{\mathbf{u}, \hat{\mathbf{u}}} \frac{d(\mathbf{u}, \hat{\mathbf{u}})}{k} P(\hat{\mathbf{u}} | \mathbf{u})$$

The Bhattacharrya bound is commonly used to bound the pairwise error probability

$$P(\hat{\mathbf{u}}|\mathbf{u}) \le P_2(\hat{\mathbf{x}}|\mathbf{x}) < \left(\sum_k \sqrt{p_0(k)p_1(k)}\right)^{d(\mathbf{x},\hat{\mathbf{x}})} =: z^{d(\mathbf{x},\hat{\mathbf{x}})}$$

For constant Hamming weight coded sequences (such as generalized binary PPM) on any channel with a monotonic likelihood ratio $p_1(k)/p_0(k)$ (Gaussian, Poisson, Webb-McIntyre-Conradi), we have

$$\hat{\mathbf{x}} = \arg\max_{\mathbf{x}} \sum_{k:x_k=1} y_k$$

Hence the ML pairwise codeword error may be bounded as

$$P(\hat{\mathbf{u}}|\mathbf{u}) \le P_2(\hat{\mathbf{x}}|\mathbf{x}) = P(S < N) + \frac{1}{2}P(S = N)$$
$$= P_2(d(\hat{\mathbf{x}}, \mathbf{x})) \le z^{d(\hat{\mathbf{x}}, \mathbf{x})}$$

Where S is the sum of d/2 signal slots, N is the sum of d/2 noise slots.

IOWEF PPM bounds_

PPM is a non-linear mapping, however, we can bound the distance in terms of the codeword weights

$$2\left\lceil \frac{d(\mathbf{w}, \hat{\mathbf{w}})}{\log_2 M} \right\rceil \le d(\mathbf{x}, \hat{\mathbf{x}}) \le 2\min\left\{\frac{n}{\log_2 M}, d(\mathbf{w}, \hat{\mathbf{w}})\right\}.$$

Now we have

$$P_b \le \sum_{\mathbf{u}\neq\mathbf{0}} \frac{d(\mathbf{u})}{k} P_2\left(2\left\lceil \frac{d(\mathbf{x})}{\log_2 M} \right\rceil\right) = \sum_{w=1}^k \sum_{h=1}^n \frac{w}{k} A_{w,h} P_2\left(2\left\lceil \frac{h}{\log_2 M} \right\rceil\right)$$

where $A_{w,h}$ is the input-output-weight-enumerating-function (IOWEF)

BER and FER bounds.

repeat-9 \Rightarrow accumulate \Rightarrow M = 64 PPM. Interleaver lengths 0.5 Kbit, 32 Kbit.

(SCPPM: $|\Pi| = 16384$, stopping rule, max 32 operations)

High average power, bandwidth constraints.

- Can continue to use PPM at high average powers with no loss by decreasing the slot width T_s up to the Bandwidth constraints of the system.
- Past that point, we see increasing losses by restricting modulation to PPM.
- For example, uplink has high average power and low Bandwidth.
- How to populate this region?

Variable-pulse modulation

Allow variable pulses per symbol. Now symbol mapping may be an issue.

