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The deep-space optical channel

• Mars Telesat, scheduled to

launch in 2009

• 5W , 10–100 Mbps optical link

demonstration

• 100W, 1.1 Mbps X-band

• 35W, 1.5 Mbps Ka-band

Deep-space optical communications channel

Constraints non-coherent, direct detection

Ts = slot duration (pulse-width) ≥ 2 ns

Pav = average signal photons/slot

Ppk = maximum signal photons/pulse

Model Memoryless Poisson
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Poisson channel

X
p(y|x = 0)

p(y|x = 1)
Y

Deep space optical channel modeled as binary-input, memoryless, Poisson.

p0(k) = p(y = k|x = 0) =
nk

be
−nb

k!

p1(k) = p(y = k|x = 1) =
(nb + ns)

ke−(nb+ns)

k!

P (x = 1) =
1

M
= duty cycle (mean pulses per slot)

Peak power ns ≤ Ppk photons/pulse

Average power ns/M ≤ Pav photons/slot

⇒ ns ≤ min{MPav, Ppk}
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Poisson channel

Capacity parameterized by Pav, optimized over M .

C(M) =
1

M
EY |1 log

p1(Y )

p(Y )
+

M − 1

M
EY |0 log

p0(Y )

p(Y )
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Pulse-position-modulation
We can achieve low duty cycles and high peak to average power ratios by using PPM.

M -PPM maps a binary log2 M tuple to a M -ary binary vector with a single one in the

slot indicated by the input. Example: M = 8, mapping of 101001.

7 6 5 4 3 2 04 3 2 1 0 7 6 15

• PPM achieves a duty cycle of 1/M

• Straight-forward to implement and analyze

• Known to be an efficient modulation for the Poisson channel [Pierce, 78], [McEliece,

Welch, 79], [Butman et. al., 80], [Lipes, 80],[Wyner, 88]

• PPM satisfies the property that each symbol is a coordinate permutation of another

• Generalized PPM : a set of vectors S such that there is a group of coordinate permu-

tations that fix∗ the set (a transitive set), e.g., PPM, multipulse PPM.

∗a group of permutations G such that for each g ∈ G, gS = S and for each xi,xj ∈ S there exists g ∈ G

such that xi = σg(xj), where σg is the mapping imposed by g.
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Capacity of Generalized PPM

X
p0 = p(y|x = 0)

p1 = p(y|x = 1)
Y

binary DMC

Let S = {x1,x2, . . . ,xs} be a set of length n vectors and pX(·) a probability distribu-

tion on S.

C = max
pX

I(X;Y)

Theorem 1 If S is a transitive set, then CS if achieved by a uniform distribution on S.

Theorem 2 On a binary input channel with p1(y)/p0(y) < ∞,

C = dHD (p1||p0)−D (p(y)||p(y|0)) bits/symbol

where D(·||·) is the Kullback-Liebler distance, dH is the symbol Hamming weight, p(y) is

the density of n-vector Y, p(y|0) the density of n-vector of noise slots.
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Capacity of PPM

Corollary 1 For the binary M-ary PPM channel,

C(M) = D(p1||p0)−D(p(y)||p(y|0)) ≤ D(p1||p0)

Theorem 3 For fixed ns, nb, limM→∞ C(M) = D(p1||p0).

Poisson channel: D(p1||p0) = (ns + nb) log(1 + ns/nb) − ns. This term is also tight for

small ns.
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Poisson PPM Capacity: small ns asymptotes, concavity in ns

•

C(M)

M
=





M−1
2M log 2

n2
s

nb
+ O(n3

s) , nb > 0

ns log2 +O(n2
s) , nb = 0

• for fixed order M , asymptotic slope

in log-log domain is 1 for nb = 0, 2

for nb > 0

• implies 1 dB increase in signal

power compensates for 2 dB in-

crease in noise power (for small ns)

• C is concave in ns for nb = 0 but not

for nb > 0 (single inflection point)

• time-sharing (using pairs ns,1, ns,2)

is advantageous (up to peak power

constraint)
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Poisson PPM Capacity: convexity in M?

Theorem 4 For n ≤ m,

C(km) + C(n) ≤ C(kn) + C(m)

C(km) ≤ C(k) + C(m)

¤

This is essentially a subadditivity property. Let f(x) = C(ex). Then

f(x + y) ≤ f(x) + f(y) subadditive

f(αx + (1− α)y)
?≤ αf(x) + (1− α)f(y) convex ∩

In practice, M chosen to be a power of 2.

Corollary 2 For M = 2j, (take k = 2,m = M, n = M/2 in above Theorem)

C(2M)− C(M) ≤ C(M)− C(M/2) convex ∩
C(M)

M
is decreasing in M

¤
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Poisson PPM Capacity: invariance to slot width

• For M a power of two, and fixed

ns, C(M)/M is monotonically

decreasing in M .

• Suppose Ppk/Pav is a power of

two. Then optimum order sat-

isfies M ≤ Ppk/Pav.

• Let Ts be the slot width. Nor-

malize photon arrival rates and

capacity by the slot width. Let

λs = nsTs photons/second,

λb = nbTs photons/second. For

small ns,

C(M)

MTs

≈ M(M − 1)

2 ln 2

(
λ2

s

λb

)
bits/second.
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Achieving capacity: Coding and Modulation

∏outer
code code

inner

modulation
interleaver

x

received

y

user data
u

channel

outer code inner code

RSPPM Reed-Solomon (n, k) = (Mα − 1, k), M -PPM

α = 1, [McEliece, 81],α > 1, [Hamkins, Moi-

sion, 03]

SCPPM convolutional code accumulate-M -PPM

(w/o accumulate)[Massey, 81], (iterate with

PPM) [Hamkins, Moision, 02]

PCPPM parallel concatenated convolutional code M -PPM

[Kiasaleh, 98],[Hamkins, 99],(DTMRF, iter-

ate with PPM) [Peleg, Shamai, 00]
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Predicting iterative decoding performance

Prob(bit error) =
1

2k

∑

u,û

d(u, û)

k
P (û|u)

The Bhattacharrya bound is commonly used to bound the pairwise error probability

P (û|u) ≤ P2(x̂|x) <

(∑

k

√
p0(k)p1(k)

)d(x,x̂)

=: zd(x,x̂)

For constant Hamming weight coded sequences (such as generalized binary PPM) on

any channel with a monotonic likelihood ratio p1(k)/p0(k) (Gaussian, Poisson, Webb-

McIntyre-Conradi), we have

x̂ = arg max
x

∑

k:xk=1

yk

Hence the ML pairwise codeword error may be bounded as

P (û|u) ≤ P2(x̂|x) = P (S < N) +
1

2
P (S = N)

= P2(d(x̂,x)) ≤ zd(x̂,x)

Where S is the sum of d/2 signal slots, N is the sum of d/2 noise slots.
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IOWEF PPM bounds

∏

inner code

x

user data
PPM

u

outer code

interleaver

w

1

1+D

PPM is a non-linear mapping, however, we can bound the distance in terms of the

codeword weights

2

⌈
d(w, ŵ)

log2 M

⌉
≤ d(x, x̂) ≤ 2 min

{
n

log2 M
,d(w, ŵ)

}
.

Now we have

Pb ≤
∑

u6=0

d(u)

k
P2

(
2

⌈
d(x)

log2 M

⌉)
=

k∑
w=1

n∑

h=1

w

k
Aw,hP2

(
2

⌈
h

log2 M

⌉)

where Aw,h is the input-output-weight-enumerating-function (IOWEF)
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BER and FER bounds

repeat-9 ⇒ accumulate ⇒ M = 64 PPM. Interleaver lengths 0.5 Kbit, 32 Kbit.
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Performance
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BER=10−6, Poisson channel

SCPPM 0.75 dB

RSPPM 2.75 dB
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(SCPPM: |Π| = 16384, stopping rule, max 32 operations)
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High average power, bandwidth constraints

• Can continue to use PPM at high av-

erage powers with no loss by decreasing

the slot width Ts up to the Bandwidth

constraints of the system.

• Past that point, we see increasing losses

by restricting modulation to PPM.

• For example, uplink has high average

power and low Bandwidth.

• How to populate this region?
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Variable-pulse modulation

Allow variable pulses per symbol. Now sym-

bol mapping may be an issue.

input

Gray anti-Gray symbol

0 0 0 0 0 0 1 0 0 0

0 1 0 1 1 1 1 0 0 1

1 1 0 0 1 0 0 0 0 1

1 0 0 1 0 1 0 0 1 1

1 0 1 1 1 0 0 0 1 0

1 1 1 0 0 1 0 1 1 1

0 1 1 1 0 0 0 1 0 0

0 0 1 0 1 1 1 1 0 0
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