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Constrained Codes and Error-Correcting Codes

Constrained Code: transforms data into constrained sequences that are suitable for the

channel
Error-Correcting Code (ECC): transforms data into sequences with large distance

Standard Concatenation:

ECC Constrained Constrained ECC
BN N __5[ channel —> nedl___
Encoder Encoder Decoder Decoder

Problem: error propagation from constrained decoder



Constrained Systems with Unconstrained Positions

Example [van Wijngaarden and Immink, 2001]

The MTR(2) constraint requires every runlength of 1 to be < 2.

Consider the constrained block code {10101,01101} for MTR(2).

No violation if bits 3 and/or 5 are flipped.

message 100

010

user bit

0 Constrained 100
—

1 Encoder 010

Systematic

ECC Encoder

11

parity 00

We say that the code rate is 1/5 and the insertion rate is 2/5.

Bottom line: Some positions in the code are left unconstrained.

10101
01000



Constrained Systems with Unconstrained Positions

Questions:

e Given an insertion rate, what is the maximum possible code rate?

e Given an insertion rate, what are the unconstrained positions that (nearly) achieve the

maximum code rate?

code rate
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capacity -
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Constrained Systems and Their Presentations

(:: labeled graph o 0
(with vertex set V' = V5)

1

S = S(G): constrained system,

set of all words obtained from S(G) = set of all words that

reading labels of paths of G do not contain 00

Say that (5 is a presentation of S

Note: We consider the empty word € to be in .S



Examples of Constrained Systems

Runlength Limited RLL(d, k)
O OZE O TR0

v/ e d <runofzeros< k

Maximum Transition Run MTR(j, k)

e runofones <

e runofzeros < k




Capacity
S': a constrained system
Suppose that the insertion rate is zero. What is the maximum code rate?
We need to count the number of words in S.

The capacity of a constrained system S is

log M
cap(S) = qh_{glo 0g , (Q)’

where M (q) is the number of words of length ¢ in S.



Introducing the Unconstrained Symbol
Suppose that the insertion rate is not zero. What is the maximum code rate?

Fix a word length, say 5. Fix the unconstrained positions, say {3, 5}, that yield the desired

insertion rate. We need to count the number of words of the form
__O_0,

where ] can be replaced by 0 and 1 and the constraint is still satisfied.
For this reason, we are interested in words over {0, 1, [1}.

Let w be a word over {0, 1, [1}. Define ®(w) to be the set of binary words obtained from w

by replacing every [ independently with O or 1.
Example: If w = 0LJ107, then ®(w) = {0010,0011,0110,0111}.

Let S be a constrained system. Define

S={w: &(w) CS}.



Tradeoff Functions
Let / C N be a set of unconstrained positions.
M (g, I): number of words w of length ¢ in S such that w; = Cif and only if i € 1.
Let p € [0, 1] be an insertion rate.
Z(p): set of all sequences (I,) suchthat I, C {1,...,q}and |I,|/q — p.
Example: p=1/3. I, ={3n : n>1, 3n < ¢}.

L L, I, I, Iy Iq
00 {3+ {3y {3} {3,6}

(I,) correspondsto_ _ O __O__0O ...

(I,) € Z(1/3).



Tradeoff Functions

Tradeoff function:

flp) =

log M (q, I
sup limsup og M (g, q).

(Iq)€Z(p) a—o0

Maximum insertion rate:

ft = sup p.
f(p)>0
code rate
1-.
cap(S) -
f(p)
0 — insertion rate p
H 1
— 00 A —
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Follower Sets and Follower Set Graphs

Fx)=Fs(x)={y €S : xy € S} setof all words that can follow a word z € S.

If  is the empty word ¢, then F(€) = S.

Fact: .S has finitely many follower sets since it has a finite-state presentation.

Follower set graph:
e states: F(x)foralz € S

e transitions: F(z) — F(xa), where a € {0,1} and za € S

Example: RLL(1, 3)

il\ ; ;

) —2 5 F0) —Ys 7 (00) —L> F(000)
W

1
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The Graph é’

States: All intersections of the follower sets of words in .S

k k
Transitions: (M) F(z;) 5 () F(x:0) if2;0 € Sforalll <i <k
'é;l iil
ﬂf(:lfz) S mf(%'l) ifx;1 € Sforalll <i <k
iil ] ’i:11 N
F(x;)) — m ﬂ F(x;b) ifx;0,2;,1 € Storalll <i<k
i=1 b=0i=1
Example: RLL(1, 3)

1 12



The Graph G

Theorem: S is the constrained system presented by G.

A

Proof: Suppose w € S(G).
w

ﬂf:l F(xl) \O/O\O > myGCI)(w) mf:l f(xzy)

—> x;y € Sforalliandy € ®(w)
— gy € Sforaly € d(w)
— wels

Conversely, suppose w & S.
W

f(e)\o/o\o_/) my@p(w) F(y)

For RLL(d, k), G has dk + k 4+ 2d + 1 — d? states.
For MTR(j, k), G has (j + 1)(k + 1) states.
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Irreducibility and Shannon Cover

Irreducible graph: For any states u and v, there is a path from u to v and v to w.

Irreducible Reducible

A reducible graph can be decomposed into irreducible components with transitional edges
between them.

An irreducible component is called trivial if it consists of a single state and no edge.
A constrained system is irreducible if it has an irreducible presentation.

Fact: Every irreducible constrained system has a unique minimal presentation called the

Shannon cover.

14



Embedding of Shannon Cover in G

S': irreducible constrained system

Proposition: There is a unique subgraph H of é that is isomorphic to the Shannon cover

for S.

Example: RLL(1, 3)

Fl) > F)nFO)  FA)NnFO0) {e}
0 0
e W Ng WU F(1) —2— 7(0) —2— F(00) % F(000)
- W
1 1 /
1

Shannon cover G
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Maximum Insertion Rates
7y: path in G
v(7y): ratio of number of [J in the label of 7 to its length

A cycle that maximizes v is called a max-insertion-rate cycle.

Example: MTR(2)

16



Maximum Insertion Rates
Proposition: Let «y be a max-insertion-rate cycle. Then u = v(7y).

Proof (sketch): Any path 7 in é can be written as

Am

a1 a2
Q Q = e o o
1 e 2 5

—_— Um—1 ———> Um
Em—1 m

where m < |Vz| and u; are distinct.

number of D in labelof 7 < v(an)|aq| + -+ - + v(am)|am| + V4
< v)(lagf+ -+ lam])
< v(y)lm
ratio of Jin label of 1 < v(7y) + % — v, as|m| — oo.

Therefore p < v(7y).



Maximum Insertion Rates

Conversely, periodically replace some L1 in the label of 7 with 0 and 1 to obtain insertion rate

p slightly below () such that f(p) > 0.

MO0) (OO0 (CD0) (MT0)...

Therefore v(7y) < p. |

With this result, we can apply the Karp’s algorithm [Karp, 1978] to é to find the maximum

insertion rate.
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Maximum Insertion Rates for RLL(d, k)

ForRLL(d, k), k < oo,

bt
[

This is achieved by the sequence

<k
For RLL(d, 00),
B 1
S
This is achieved by the sequence
d d

A~ =
LJoooJooo ...
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Maximum Insertion Rates for MTR(7J, k)
For MTR(j, k), ifged(j + 1,k + 1) # 1,

1 1
j4+1 k+1

p=1

fged(7+ 1, k+1) =1,

let m be the smallest positive integer such that m(j + 1) = k£ mod (k + 1),

let n be the smallest positive integer such that n(j +1) =1 mod (k + 1).
Then

LA if m > n,
/’L p—
maX{LQ, Ll} if m < n,
where
n 1
Lo = 1- - —
° nj+1)—1 k—+1
1 )+ 1 1
L, — 1-_L _ mU+h+

7+1 m@G+1)(k+1)
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Maximum Insertion Rates for Higher-Dimensional Constraints
S': a constrained system
S,,: the n-dimensional constrained system such that every coordinate satisfies .S
4y Maximum insertion rate for S,,, defined similarly to the one-dimensional case
Proposition: (4t = g = 4z = -+ -.
Proof (sketch): 0 0O U
— L0 O
1 0O 0 b O 0
Therefore p < o < g < -+ -

Conversely, let P be a pattern of size ¢ X ¢ in Sg.

number of Llineachrow < pug+c
numberof L1in P < ,uq2 + cq
c
ratoof (1 < pu+4+ - —pu, asq — o0

Therefore (. > fiy,.
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Maximum Insertion Rate and Capacity
Proposition: cap(S,) > pu.
Proof: Let Pbeaq X ¢ X --- X q patternin Sn such that
e ratio of [] equals maximum insertion rate,
e P can be freely concatenated.

Fill every (J with 0 and 1 to obtain 2#9 " patterns.

Therefore
log 24

cap(Sp) > q—” = M.



Maximum Insertion Rate and Capacity

Corollary:
Cs = lim cap(S,) > u
Recall for RLL(d, k),
Eeni
= d—+1
| k+1
] @+

[Ito et al., 1999]: C, = Oifand only if £ < 2d.

Recall for RLL(d, 00),

[Ordentlich and Roth, 2002]:
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Conclusion
e Constrained systems with unconstrained positions
e Introduce a constrained system S and a presentation é with unconstrained symbol
e Define tradeoff function and maximum insertion rate
® maximum insertion rate is rational and represented by certain cycles in é
e maximum insertion rate for higher-dimensional constraints
To be continued...
e More properties of CA}'
e Properties of the tradeoff function

e Bounds for the tradeoff function
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