Constrained Systems with Unconstrained Positions: Graph Constructions and Tradeoff Functions

Lei Poo
Stanford University
Panu Chaichanavong
Center for Magnetic Recording Research, UCSD
Brian Marcus
University of British Columbia

March 25, 2004

Constrained Codes and Error-Correcting Codes

Constrained Code: transforms data into constrained sequences that are suitable for the channel

Error-Correcting Code (ECC): transforms data into sequences with large distance Standard Concatenation:

Problem: error propagation from constrained decoder

Constrained Systems with Unconstrained Positions

Example [van Wijngaarden and Immink, 2001]
The $\operatorname{MTR}(2)$ constraint requires every runlength of 1 to be ≤ 2.
Consider the constrained block code $\{10101,01101\}$ for MTR (2).
No violation if bits 3 and/or 5 are flipped.

We say that the code rate is $1 / 5$ and the insertion rate is $2 / 5$.
Bottom line: Some positions in the code are left unconstrained.

Constrained Systems with Unconstrained Positions

Questions:

- Given an insertion rate, what is the maximum possible code rate?
- Given an insertion rate, what are the unconstrained positions that (nearly) achieve the maximum code rate?

Constrained Systems and Their Presentations

G : labeled graph (with vertex set $V=V_{G}$)
G

$S=S(G)$: constrained system, set of all words obtained from reading labels of paths of G
$S(G)=$ set of all words that do not contain 00

Say that G is a presentation of S

Note: We consider the empty word ϵ to be in S

Examples of Constrained Systems

Runlength Limited $\operatorname{RLL}(d, k)$

- $\quad d \leq$ run of zeros $\leq k$

Maximum Transition Run MTR (j, k)

- run of ones $\leq j$
- run of zeros $\leq k$

Capacity

S : a constrained system

Suppose that the insertion rate is zero. What is the maximum code rate?
We need to count the number of words in S.
The capacity of a constrained system S is

$$
\operatorname{cap}(S)=\lim _{q \rightarrow \infty} \frac{\log M(q)}{q}
$$

where $M(q)$ is the number of words of length q in S.

Introducing the Unconstrained Symbol

Suppose that the insertion rate is not zero. What is the maximum code rate?
Fix a word length, say 5 . Fix the unconstrained positions, say $\{3,5\}$, that yield the desired insertion rate. We need to count the number of words of the form

where \square can be replaced by 0 and 1 and the constraint is still satisfied.
For this reason, we are interested in words over $\{0,1, \square\}$.
Let w be a word over $\{0,1, \square\}$. Define $\Phi(w)$ to be the set of binary words obtained from w by replacing every \square independently with 0 or 1 .

Example: If $w=0 \square 1 \square$, then $\Phi(w)=\{0010,0011,0110,0111\}$.
Let S be a constrained system. Define

$$
\hat{S}=\{w: \Phi(w) \subseteq S\}
$$

Tradeoff Functions

Let $I \subseteq \mathbb{N}$ be a set of unconstrained positions.
$M(q, I)$: number of words w of length q in \hat{S} such that $w_{i}=\square$ if and only if $i \in I$.
Let $\rho \in[0,1]$ be an insertion rate.
$\mathcal{I}(\rho)$: set of all sequences $\left(I_{q}\right)$ such that $I_{q} \subseteq\{1, \ldots, q\}$ and $\left|I_{q}\right| / q \rightarrow \rho$.
Example: $\rho=1 / 3 . I_{q}=\{3 n: n \geq 1,3 n \leq q\}$.

I_{1}	I_{2}	I_{3}	I_{4}	I_{5}	I_{6}	\cdots
\emptyset	\emptyset	$\{3\}$	$\{3\}$	$\{3\}$	$\{3,6\}$	\cdots

$\left(I_{q}\right)$ corresponds to ${ }_{-} \square_{--} \square_{--} \square \ldots$
$\left(I_{q}\right) \in \mathcal{I}(1 / 3)$.

Tradeoff Functions

Tradeoff function:

$$
f(\rho)=\sup _{\left(I_{q}\right) \in \mathcal{I}(\rho)} \limsup _{q \rightarrow \infty} \frac{\log M\left(q, I_{q}\right)}{q} .
$$

Maximum insertion rate:

$$
\mu=\sup _{f(\rho)>0} \rho .
$$

Follower Sets and Follower Set Graphs

$\mathcal{F}(x)=\mathcal{F}_{S}(x)=\{y \in S: x y \in S\}:$ set of all words that can follow a word $x \in S$. If x is the empty word ϵ, then $\mathcal{F}(\epsilon)=S$.

Fact: S has finitely many follower sets since it has a finite-state presentation.

Follower set graph:

- states: $\mathcal{F}(x)$ for all $x \in S$
- transitions: $\mathcal{F}(x) \xrightarrow{a} \mathcal{F}(x a)$, where $a \in\{0,1\}$ and $x a \in S$

Example: $\operatorname{RLL}(1,3)$

The Graph \hat{G}

States: All intersections of the follower sets of words in S
Transitions:

$$
\begin{array}{lll}
\bigcap_{i=1}^{k} \mathcal{F}\left(x_{i}\right) & \xrightarrow{0} & \bigcap_{i=1}^{k} \mathcal{F}\left(x_{i} 0\right)
\end{array} \quad \text { if } x_{i} 0 \in S \text { for all } 1 \leq i \leq k
$$

Example: $\operatorname{RLL}(1,3)$

The Graph \hat{G}

Theorem: \hat{S} is the constrained system presented by \hat{G}.
Proof: Suppose $w \in S(\hat{G})$.

$$
\begin{aligned}
\bigcap_{i=1}^{k} \mathcal{F}\left(x_{i}\right) \longrightarrow & \mathrm{O} \xrightarrow{ } \longrightarrow \mathrm{O} \longrightarrow \bigcap_{y \in \Phi(w)} \bigcap_{i=1}^{k} \mathcal{F}\left(x_{i} y\right) \\
& \Longrightarrow \quad x_{i} y \in S \text { for all } i \text { and } y \in \Phi(w) \\
& \Longrightarrow y \in S \text { for all } y \in \Phi(w) \\
& \Longrightarrow w \in \hat{S}
\end{aligned}
$$

Conversely, suppose $w \in \hat{S}$.

For $\operatorname{RLL}(d, k), \hat{G}$ has $d k+k+2 d+1-d^{2}$ states.
For $\operatorname{MTR}(j, k), \hat{G}$ has $(j+1)(k+1)$ states.

Irreducibility and Shannon Cover

Irreducible graph: For any states u and v, there is a path from u to v and v to u.

Irreducible

Reducible

A reducible graph can be decomposed into irreducible components with transitional edges between them.

An irreducible component is called trivial if it consists of a single state and no edge.
A constrained system is irreducible if it has an irreducible presentation.
Fact: Every irreducible constrained system has a unique minimal presentation called the Shannon cover.

Embedding of Shannon Cover in \hat{G}

S : irreducible constrained system
Proposition: There is a unique subgraph H of \hat{G} that is isomorphic to the Shannon cover for S.

Example: $\operatorname{RLL}(1,3)$

Shannon cover

Maximum Insertion Rates

γ : path in \hat{G}
$\nu(\gamma)$: ratio of number of \square in the label of π to its length
A cycle that maximizes ν is called a max-insertion-rate cycle.
Example: MTR(2)

Maximum Insertion Rates

Proposition: Let γ be a max-insertion-rate cycle. Then $\mu=\nu(\gamma)$.
Proof (sketch): Any path π in \hat{G} can be written as

where $m \leq\left|V_{\hat{G}}\right|$ and u_{i} are distinct.

$$
\begin{aligned}
\text { number of } \square \text { in label of } \pi & \leq \nu\left(\alpha_{1}\right)\left|\alpha_{1}\right|+\cdots+\nu\left(\alpha_{m}\right)\left|\alpha_{m}\right|+\left|V_{\hat{G}}\right| \\
& \leq \nu(\gamma)\left(\left|\alpha_{1}\right|+\cdots+\left|\alpha_{m}\right|\right)+\left|V_{\hat{G}}\right| \\
& \leq \nu(\gamma)|\pi|+\left|V_{\hat{G}}\right| \\
\text { ratio of } \square \text { in label of } \pi & \leq \nu(\gamma)+\frac{\left|V_{\hat{G}}\right|}{|\pi|} \rightarrow \nu, \text { as }|\pi| \rightarrow \infty .
\end{aligned}
$$

Therefore $\mu \leq \nu(\gamma)$.

Maximum Insertion Rates

Conversely, periodically replace some \square in the label of π with 0 and 1 to obtain insertion rate ρ slightly below $\nu(\gamma)$ such that $f(\rho)>0$.

Therefore $\nu(\gamma) \leq \mu$.
With this result, we can apply the Karp's algorithm [Karp, 1978] to \hat{G} to find the maximum insertion rate.

Maximum Insertion Rates for $\operatorname{RLL}(d, k)$

For $\operatorname{RLL}(d, k), k<\infty$,

$$
\mu=\frac{\left\lfloor\frac{k-d}{d+1}\right\rfloor}{\left\lfloor\frac{k+1}{d+1}\right\rfloor(d+1)}
$$

This is achieved by the sequence

For $\operatorname{RLL}(d, \infty)$,

$$
\mu=\frac{1}{d+1}
$$

This is achieved by the sequence

Maximum Insertion Rates for $\operatorname{MTR}(j, k)$

For $\operatorname{MTR}(j, k)$, if $\operatorname{gcd}(j+1, k+1) \neq 1$,

$$
\mu=1-\frac{1}{j+1}-\frac{1}{k+1}
$$

If $\operatorname{gcd}(j+1, k+1)=1$,
let m be the smallest positive integer such that $m(j+1)=k \bmod (k+1)$, let n be the smallest positive integer such that $n(j+1)=1 \bmod (k+1)$. Then

$$
\mu= \begin{cases}L_{1} & \text { if } m>n \\ \max \left\{L_{0}, L_{1}\right\} & \text { if } m<n\end{cases}
$$

where

$$
\begin{aligned}
L_{0} & =1-\frac{n}{n(j+1)-1}-\frac{1}{k+1} \\
L_{1} & =1-\frac{1}{j+1}-\frac{m(j+1)+1}{m(j+1)(k+1)}
\end{aligned}
$$

Maximum Insertion Rates for Higher-Dimensional Constraints

S : a constrained system
S_{n} : the n-dimensional constrained system such that every coordinate satisfies S
μ_{n} : maximum insertion rate for S_{n}, defined similarly to the one-dimensional case
Proposition: $\mu=\mu_{2}=\mu_{3}=\cdots$.
Proof (sketch):

Therefore $\mu \leq \mu_{2} \leq \mu_{3} \leq \cdots$.
Conversely, let P be a pattern of size $q \times q$ in \hat{S}_{2}.

$$
\begin{aligned}
\text { number of } \square \text { in each row } & \leq \mu q+c \\
\text { number of } \square \text { in } P & \leq \mu q^{2}+c q \\
\text { ratio of } \square & \leq \mu+\frac{c}{q} \rightarrow \mu, \text { as } q \rightarrow \infty
\end{aligned}
$$

Therefore $\mu \geq \mu_{n}$.

Maximum Insertion Rate and Capacity

Proposition: $\operatorname{cap}\left(S_{n}\right) \geq \mu$.
Proof: Let P be a $q \times q \times \cdots \times q$ pattern in \hat{S}_{n} such that

- ratio of \square equals maximum insertion rate,
- P can be freely concatenated.

Fill every \square with 0 and 1 to obtain $2^{\mu q^{n}}$ patterns.
Therefore

$$
\operatorname{cap}\left(S_{n}\right) \geq \frac{\log 2^{\mu q^{n}}}{q^{n}}=\mu
$$

Maximum Insertion Rate and Capacity

Corollary:

$$
C_{\infty}=\lim _{n \rightarrow \infty} \operatorname{cap}\left(S_{n}\right) \geq \mu
$$

Recall for $\operatorname{RLL}(d, k)$,

$$
\mu=\frac{\left\lfloor\frac{k-d}{d+1}\right\rfloor}{\left\lfloor\frac{k+1}{d+1}\right\rfloor(d+1)}
$$

[lto et al., 1999]: $C_{\infty}=0$ if and only if $k \leq 2 d$.
Recall for $\operatorname{RLL}(d, \infty)$,

$$
\mu=\frac{1}{d+1}
$$

C_{\infty}=\frac{1}{d+1}
\]

Conclusion

- Constrained systems with unconstrained positions
- Introduce a constrained system \hat{S} and a presentation \hat{G} with unconstrained symbol
- Define tradeoff function and maximum insertion rate
- maximum insertion rate is rational and represented by certain cycles in \hat{G}
- maximum insertion rate for higher-dimensional constraints

To be continued...

- More properties of \hat{G}
- Properties of the tradeoff function
- Bounds for the tradeoff function

References

[Ito et al., 1999] Ito, H., Kato, A., Nagy, Z., and Zeger, K. (1999). Zero capacity region of multidimensional run length constraints. Electr. J. Combinatorics, 6(R33).
[Karp, 1978] Karp, R. M. (1978). A characterization of the minimum cycle mean in a digraph. Disc.Math, 23:309-311.
[Ordentlich and Roth, 2002](%5B) Ordentlich, E. and Roth, R. M. (2002). The asymptotic capacity of multi-dimensional runlength-limited constraints and independent sets in hypergraphs. Technical report, HP Labs. HPL-2002-348.
[van Wijngaarden and Immink, 2001] van Wijngaarden, A. J. and Immink, K. A. S. (2001). Maximum runlength-limited codes with error control capabilities. IEEE J. Select. Areas Commun., 19(4):602-611.

