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Constrained Codes and Error-Correcting Codes

Constrained Code: transforms data into constrained sequences that are suitable for the

channel

Error-Correcting Code (ECC): transforms data into sequences with large distance

Standard Concatenation:

ECC
Encoder

Constrained
Encoder

Channel
Constrained

Decoder
ECC

Decoder

Problem: error propagation from constrained decoder
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Constrained Systems with Unconstrained Positions

Example [van Wijngaarden and Immink, 2001]

The MTR(2) constraint requires every runlength of 1 to be ≤ 2.

Consider the constrained block code {10101, 01101} for MTR(2).

No violation if bits 3 and/or 5 are flipped.
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Systematic

ECC Encoder
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We say that the code rate is 1/5 and the insertion rate is 2/5.

Bottom line: Some positions in the code are left unconstrained.
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Constrained Systems with Unconstrained Positions

Questions:

• Given an insertion rate, what is the maximum possible code rate?

• Given an insertion rate, what are the unconstrained positions that (nearly) achieve the

maximum code rate?
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Constrained Systems and Their Presentations

G: labeled graph

(with vertex set V = VG)

S = S(G): constrained system,

set of all words obtained from

reading labels of paths of G

Say that G is a presentation of S

Note: We consider the empty word ε to be in S

0 11
0

1

G

S(G) = set of all words that

do not contain 00
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Examples of Constrained Systems

Runlength Limited RLL(d, k)

0 1 d d+1 k· · · · · ·
0 0

1 1 1

0 0 0 0

• d ≤ run of zeros ≤ k

Maximum Transition Run MTR(j, k)

1 2 3 j

123k

· · ·

· · ·
0000

1

1 1 1 1

0

0 0 0

111

• run of ones ≤ j

• run of zeros ≤ k
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Capacity

S: a constrained system

Suppose that the insertion rate is zero. What is the maximum code rate?

We need to count the number of words in S.

The capacity of a constrained system S is

cap(S) = lim
q→∞

log M(q)

q
,

where M(q) is the number of words of length q in S.
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Introducing the Unconstrained Symbol

Suppose that the insertion rate is not zero. What is the maximum code rate?

Fix a word length, say 5. Fix the unconstrained positions, say {3, 5}, that yield the desired

insertion rate. We need to count the number of words of the form

� �,

where � can be replaced by 0 and 1 and the constraint is still satisfied.

For this reason, we are interested in words over {0, 1, �}.

Let w be a word over {0, 1, �}. Define Φ(w) to be the set of binary words obtained from w

by replacing every � independently with 0 or 1.

Example: If w = 0�1�, then Φ(w) = {0010, 0011, 0110, 0111}.

Let S be a constrained system. Define

Ŝ = {w : Φ(w) ⊆ S}.
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Tradeoff Functions

Let I ⊆ N be a set of unconstrained positions.

M(q, I): number of words w of length q in Ŝ such that wi = � if and only if i ∈ I .

Let ρ ∈ [0, 1] be an insertion rate.

I(ρ): set of all sequences (Iq) such that Iq ⊆ {1, . . . , q} and |Iq|/q → ρ.

Example: ρ = 1/3. Iq = {3n : n ≥ 1, 3n ≤ q}.

I1 I2 I3 I4 I5 I6 · · ·

∅ ∅ {3} {3} {3} {3, 6} · · ·

(Iq) corresponds to � � � . . .

(Iq) ∈ I(1/3).
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Tradeoff Functions

Tradeoff function:

f(ρ) = sup
(Iq)∈I(ρ)

lim sup
q→∞

log M(q, Iq)

q
.

Maximum insertion rate:

µ = sup
f(ρ)>0

ρ.

��

1

1
0

µ

−∞

code rate

insertion rate ρ

cap(S)

f(ρ)
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Follower Sets and Follower Set Graphs

F(x) = FS(x) = {y ∈ S : xy ∈ S}: set of all words that can follow a word x ∈ S.

If x is the empty word ε, then F(ε) = S.

Fact: S has finitely many follower sets since it has a finite-state presentation.

Follower set graph:

• states: F(x) for all x ∈ S

• transitions: F(x)
a

−→ F(xa), where a ∈ {0, 1} and xa ∈ S

Example: RLL(1, 3)
F(ε)

F(1) F(0) F(00) F(000)0 0 0
1

0

1

1

1
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The Graph Ĝ

States: All intersections of the follower sets of words in S

Transitions:
k⋂

i=1

F(xi)
0

−→
k⋂

i=1

F(xi0) if xi0 ∈ S for all 1 ≤ i ≤ k

k⋂

i=1

F(xi)
1

−→
k⋂

i=1

F(xi1) if xi1 ∈ S for all 1 ≤ i ≤ k

k⋂

i=1

F(xi)
�
−→

1⋂

b=0

k⋂

i=1

F(xib) if xi0, xi1 ∈ S for all 1 ≤ i ≤ k

Example: RLL(1, 3)
F(ε) F(1) ∩ F(0) F(1) ∩ F(00) {ε}

F(1) F(0) F(00) F(000)

1
0

0 0 0

1

1

1

�

0 0

� �
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The Graph Ĝ

Theorem: Ŝ is the constrained system presented by Ĝ.

Proof: Suppose w ∈ S(Ĝ).

⋂k

i=1 F(xi)
⋂

y∈Φ(w)

⋂k

i=1 F(xiy)
w

=⇒ xiy ∈ S for all i and y ∈ Φ(w)

=⇒ y ∈ S for all y ∈ Φ(w)

=⇒ w ∈ Ŝ

Conversely, suppose w ∈ Ŝ.

F(ε)
⋂

y∈Φ(w) F(y)
w

�

For RLL(d, k), Ĝ has dk + k + 2d + 1 − d2 states.

For MTR(j, k), Ĝ has (j + 1)(k + 1) states.
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Irreducibility and Shannon Cover

Irreducible graph: For any states u and v, there is a path from u to v and v to u.

ReducibleIrreducible

A reducible graph can be decomposed into irreducible components with transitional edges

between them.

An irreducible component is called trivial if it consists of a single state and no edge.

A constrained system is irreducible if it has an irreducible presentation.

Fact: Every irreducible constrained system has a unique minimal presentation called the

Shannon cover.
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Embedding of Shannon Cover in Ĝ

S: irreducible constrained system

Proposition: There is a unique subgraph H of Ĝ that is isomorphic to the Shannon cover

for S.

Example: RLL(1, 3)

0 0 0

1
1

1

F(ε) F(1) ∩ F(0) F(1) ∩ F(00) {ε}

F(1) F(0) F(00) F(000)0 0 0

1

1

1

1
0

�

0 0

� �

Shannon cover Ĝ
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Maximum Insertion Rates

γ: path in Ĝ

ν(γ): ratio of number of � in the label of π to its length

A cycle that maximizes ν is called a max-insertion-rate cycle.

Example: MTR(2)

F(ε) F(1) F(11)1 1

0

� �

0
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Maximum Insertion Rates

Proposition: Let γ be a max-insertion-rate cycle. Then µ = ν(γ).

Proof (sketch): Any path π in Ĝ can be written as

u1 u2 um−1 ume1 e2
· · ·

em−1 em

α1 α2 αm

where m ≤ |VĜ| and ui are distinct.

number of � in label of π ≤ ν(α1)|α1| + · · · + ν(αm)|αm| + |VĜ|

≤ ν(γ)(|α1| + · · · + |αm|) + |VĜ|

≤ ν(γ)|π| + |VĜ|

ratio of � in label of π ≤ ν(γ) +
|VĜ|

|π|
→ ν, as |π| → ∞.

Therefore µ ≤ ν(γ).
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Maximum Insertion Rates

Conversely, periodically replace some � in the label of π with 0 and 1 to obtain insertion rate

ρ slightly below ν(γ) such that f(ρ) > 0.

(� � 0) (� � 0) (� � 0) (� � 0) . . .

Therefore ν(γ) ≤ µ. �

With this result, we can apply the Karp’s algorithm [Karp, 1978] to Ĝ to find the maximum

insertion rate.
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Maximum Insertion Rates for RLL(d, k)

For RLL(d, k), k < ∞,

µ =

⌊
k − d
d + 1

⌋

⌊
k + 1
d + 1

⌋

(d + 1)
.

This is achieved by the sequence

1

d
︷︸︸︷

0 0 0 �

d
︷︸︸︷

0 0 0 �

d
︷︸︸︷

0 0 0
︸ ︷︷ ︸

≤k

1 . . .

For RLL(d,∞),

µ =
1

d + 1
.

This is achieved by the sequence

�

d
︷︸︸︷

0 0 0 �

d
︷︸︸︷

0 0 0 � . . .
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Maximum Insertion Rates for MTR(j, k)

For MTR(j, k), if gcd(j + 1, k + 1) 6= 1,

µ = 1 −
1

j + 1
−

1

k + 1
.

If gcd(j + 1, k + 1) = 1,

let m be the smallest positive integer such that m(j + 1) = k mod (k + 1),

let n be the smallest positive integer such that n(j + 1) = 1 mod (k + 1).

Then

µ =







L1 if m > n,

max{L0, L1} if m < n,

where

L0 = 1 −
n

n(j + 1) − 1
−

1

k + 1
,

L1 = 1 −
1

j + 1
−

m(j + 1) + 1

m(j + 1)(k + 1)
.

20



Maximum Insertion Rates for Higher-Dimensional Constraints

S: a constrained system

Sn: the n-dimensional constrained system such that every coordinate satisfies S

µn: maximum insertion rate for Sn, defined similarly to the one-dimensional case

Proposition: µ = µ2 = µ3 = · · · .

Proof (sketch):

� � 0

=⇒

0 � �

� 0 �

� � 0

Therefore µ ≤ µ2 ≤ µ3 ≤ · · · .

Conversely, let P be a pattern of size q × q in Ŝ2.

number of � in each row ≤ µq + c

number of � in P ≤ µq2 + cq

ratio of � ≤ µ +
c

q
→ µ, as q → ∞

Therefore µ ≥ µn.
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Maximum Insertion Rate and Capacity

Proposition: cap(Sn) ≥ µ.

Proof: Let P be a q × q × · · · × q pattern in Ŝn such that

• ratio of � equals maximum insertion rate,

• P can be freely concatenated.

Fill every � with 0 and 1 to obtain 2µqn

patterns.

Therefore

cap(Sn) ≥
log 2µqn

qn
= µ.
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Maximum Insertion Rate and Capacity

Corollary:

C∞ = lim
n→∞

cap(Sn) ≥ µ.

Recall for RLL(d, k),

µ =

⌊
k − d
d + 1

⌋

⌊
k + 1
d + 1

⌋

(d + 1)
.

[Ito et al., 1999]: C∞ = 0 if and only if k ≤ 2d.

Recall for RLL(d,∞),

µ =
1

d + 1
.

[Ordentlich and Roth, 2002]:

C∞ =
1

d + 1
.
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Conclusion

• Constrained systems with unconstrained positions

• Introduce a constrained system Ŝ and a presentation Ĝ with unconstrained symbol

• Define tradeoff function and maximum insertion rate

• maximum insertion rate is rational and represented by certain cycles in Ĝ

• maximum insertion rate for higher-dimensional constraints

To be continued...

• More properties of Ĝ

• Properties of the tradeoff function

• Bounds for the tradeoff function
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