Iterative Timing Recovery

John R. Barry

School of Electrical and Computer Engineering, Georgia Tech Atlanta, Georgia U.S.A. barry@ece.gatech.edu

Outline

Timing Recovery Tutorial

- Problem statement
- TED: M&M, LMS, S-curves
- PLL

Iterative Timing Recovery

- Motivation (powerful FEC)
- 3-way strategy
- Per-survivor strategy
- Performance comparison

The Timing Recovery Problem

Receiver expects the k-th pulse to arrive at time kT:

Instead, the k-th pulse arrives at time $kT + \tau_k$.

Notation: τ_k is *offset* of *k*-th pulse.

Sampling

Best sampling times are $\{kT + \tau_k\}$.

Timing Offset Models

The PR4 Model and Notation

Define:

- $d_k = a_k a_{k-2} \in \{0, \pm 2\} = 3$ -level "PR4" symbol
- \hat{d}_k = receiver's estimate of d_k
- $\tau_k = \text{timing offset}$
- $\hat{\tau}_k$ = receiver's estimate of τ_k
- $\varepsilon_k = \tau_k \hat{\tau}_k$ estimate error, with std σ_{ε} .
- $\hat{\varepsilon}_k$ = receiver's estimate of ε_k

ML Estimate: Trained, Constant Offset

The ML estimate $\hat{\tau}$ minimizes $J(\tau \mid \boldsymbol{a}) = \int_{-\infty}^{\infty} \left(r(t) - \sum_{i} d_{i}g(t - iT - \tau) \right)^{2} dt$. Exhaustive search:

Try all values for τ , pick one that best represents r(t) in MMSE sense.

ANIMATION 1

Achieves Cramer-Rao Bound

$$r(kT + \hat{\tau}) = \sum_{i} d_{i}g(kT - iT + \hat{\tau} - \tau) + n_{k}$$

= $s_{k}(\varepsilon) + n_{k}$, where $\varepsilon = \tau - \hat{\tau}$ is the estimation error.

The CRB on the variance of the estimation error:

$$\frac{\sigma_{\varepsilon}^2}{T^2} \ge \frac{\sigma^2}{N} \cdot \frac{1}{E\left[\left(\frac{\partial}{\partial \varepsilon} s_k(\varepsilon)\right)^2\right]} = \frac{3\sigma^2}{\pi^2 N}.$$

Implementation

Gradient search:

$$\hat{\boldsymbol{\tau}}_{i\,+\,1} = \hat{\boldsymbol{\tau}}_{i} - \boldsymbol{\mu} \frac{\partial}{\partial \boldsymbol{\tau}} J(\boldsymbol{\tau} \mid \boldsymbol{a})_{\boldsymbol{\tau} \,=\, \hat{\boldsymbol{\tau}}_{i}}$$

Direct calculation of gradient:

$$\frac{1}{2}\frac{\partial}{\partial\tau}J(\tau \mid \boldsymbol{a}) = \sum_{i} d_{i} \int_{-\infty}^{\infty} r(t)g'(t-iT-\tau)dt$$
$$= \sum_{i} d_{i}r_{i}'.$$

- Susceptible to local minima \Rightarrow initialize carefully.
- Block processing.
- Requires training.

Conventional Timing Recovery

After each sample:

- Step 1. Estimate residual error, using a timing-error detector (TED)
- Step 2. Update $\hat{\tau}$, using a phase-locked loop (PLL)

LMS Timing Recovery

MMSE cost function:

LMS approach: 1

$$\hat{\tau}_{k+1} = \hat{\tau}_k + \mu \hat{\varepsilon}_k$$

where
$$\hat{\varepsilon}_k = -\frac{\partial}{\partial \hat{\tau}} \left(r_k - d_k \right)^2 \Big]_{\hat{\tau} = \hat{\tau}_k}.$$

LMS TED

But:
$$\frac{1}{2}\frac{\partial}{\partial\hat{\tau}}\left(r_k - d_k\right)^2\Big]_{\hat{\tau} = \hat{\tau}_k} = (r_k - d_k)\frac{\partial}{\partial\hat{\tau}}\sum_i d_i g(kT - iT + \hat{\tau} - \tau)$$

$$= (r_k - d_k) \sum_i d_i g'(kT - iT + \hat{\tau} - \tau)$$
$$= (r_k - d_k) \sum_i d_i \frac{p_{k-i}^{(\varepsilon_k)}}{\partial \tau}$$
where $p_n^{(\varepsilon_k)} = \frac{\partial}{\partial \tau} g(nT - \varepsilon)$:

From LMS to Mueller & Müller

$$\hat{\varepsilon}_k \propto \approx (r_k - d_k)(d_{k-1} - d_{k+1}) + \text{smaller terms}$$
$$= r_k d_{k-1} - r_k d_{k+1} - d_k d_{k-1} + d_k d_{k+1}$$

Independent of τ

Delay second term and eliminate last two:

$$\hat{\varepsilon}_k \propto r_k d_{k-1} - r_{k-1} d_k \Rightarrow$$
 Mueller & Müller (M&M) TED

An Interpretation of M&M

Consider the *complex* signal r(t) + jr(t - T). Its noiseless trajectory:

- It passes through $\{0, \pm 2, \pm 2 \pm 2j, \pm 2j\}$ at times $\{kT + \tau\}$.
- More often than not, in a counterclockwise direction.

ANIMATION 2

Sampling Late by 20%

The angle between R_k and D_k predicts timing error:

$$\theta \approx \sin\theta = \operatorname{Im}\left\{\frac{R^*D}{|RD|}\right\} \propto r_k d_{k-1} - r_{k-1} d_k \implies M\&M.$$

Decision-Directed TED

Replace training by decisions $\{\hat{d}_k\} \implies \hat{\epsilon}_k \propto r_k \hat{d}_{k-1} - r_{k-1} \hat{d}_k$.

Instantaneous decisions:

• Hard: Round r_k to nearest symbol.

• Soft:
$$\hat{d}_k = \operatorname{E}[d_k | r_k] = \frac{2 \sinh(2r_k / \sigma^2)}{\cosh(2r_k / \sigma^2) + e^{2/\sigma^2}}$$
:

Reliability versus Delay

Three places to get decisions:

Inherent trade-off: reliability versus delay.

- to get more reliable decisions requires more decoding delay D
- delay decreases agility to timing variations

Decision Delay Degrades Performance

The Instantaneous-vs-Reliable Trade-Off

Linearized Analysis

Assume

 $\hat{\varepsilon}_k = \varepsilon_k + \text{independent noise}$ = $\tau_k - \hat{\tau}_k + n_k$

 \Rightarrow 1st order PLL, $\hat{\tau}_{k+1} = \hat{\tau}_k + \alpha(\tau_k - \hat{\tau}_k + n_k)$, is a linear system:

Ex: Random walk

The PLL Update

1st-order PLL:
$$\hat{\tau}_{k+1} = \hat{\tau}_k + \alpha \hat{\varepsilon}_k$$

- Already introduced using LMS
- Easily motivated intuitively:
 - > if $\hat{\varepsilon}_k$ is accurate, $\alpha = 1$ corrects in one step
 - > Smaller α attenuates noise at cost of slower response

<u>2nd-order PLL</u>: $\hat{\tau}_{k+1} = \hat{\tau}_k + \alpha \hat{\varepsilon}_k + \beta \sum_{n=-\infty}^k \hat{\varepsilon}_n$

- Accumulate TED output to anticipate trends
- P+I control
- Closed-loop system is second-order LPF
- Faster response
- Zero steady-state error for frequency offset

Equivalent Views of PLL

<u>Analysis</u>: Sample at $\{kT + \hat{\tau}_k\}$, where

•
$$\hat{\tau}_{k+1} = \hat{\tau}_k + \alpha \hat{\varepsilon}_k + \beta \sum_{n=-\infty}^k \hat{\varepsilon}_n$$
,

• $\hat{\varepsilon}_k$ is estimate of timing error at time k.

Implementation:

Iterative Timing Recovery

Motivation

- Powerful codes \Rightarrow low SNR \Rightarrow timing recovery is difficult
- traditional PLL approach ignores presence of code

Key Questions

- How can timing recovery exploit code?
- What performance gains can be expected?
- Is it practical?

A Canonical Example

Simplest possible channel model:

- $\{\pm 1\}$ alphabet, ideal ISI-free pulse shape
- constant timing offset τ
- AWGN.

Add a rate-1/3 turbo code with $\{\pm 1\}$ alphabet:

Problem: Recover message in face of unknown noise, timing offset

Iterative ML Timing Recovery

The ML estimator *with training* minimizes:

$$J(\tau \mid \boldsymbol{a}) = \int_{-\infty}^{\infty} \left(r(t) - \sum_{i} a_{i} g(t - iT - \tau) \right)^{2} dt$$

Without training, the ML estimator minimizes $E_a[J(\tau \mid a)]$.

Useful in concept, but overstates complexity.

For example, the timing estimator might itself be iterative:

$$\hat{\tau}_{i\,+\,1} = \hat{\tau}_i - \mu J'(\hat{\tau}_i \mid \{\tilde{a}_i\}) \ . \label{eq:tau_integral}$$

A Reduced-Complexity Approach

Collapse three loops to a single loop.

```
Initialize \hat{\tau}_0

Iterate for i = 0, 1, 2, ...

decode component 1

decode component 2

update timing estimate, \hat{\tau}_{i+1} = \hat{\tau}_i - \mu J'(\hat{\tau}_i | \{\tilde{a}_i\})

interpolate

end
```

As a benchmark, an iterative receiver that *ignores* the presence of FEC will replace the pair of decoders by $\tilde{a}_k^{(i)} = \tanh((r(kT + \hat{\tau}_i))/\sigma^2)$.

New Model: Random Walk and ISI

Equivalent equalized readback waveform:

$$r(t) = \sum_k a_k h(t - kT - au_k) + AWGN$$
 .

Conventional Turbo Equalizer + PLL

Performance of Conventional Approach

Parameters

Known Timing: 10/5 Conventional: 25/5 max 10000000 words

Big penalty as σ_w / T increases: cycle slips.

Cycle-Slip Example

Nested Loops

Iterate between PLL and turbo equalizer, which in turn iterates between BCJR and LDPC decoder, which in turn iterates between bit nodes and check nodes.

A Decoder-Centric View

Iterative Timing Recovery and TEQ

Automatic Cycle-Slip Correction

Iterative receiver automatically corrects for cycle slips:

3 Approaches to Timing Recovery

Per-Survivor Processing [Raheli, Polydoros, Tzou 91-95]

- A general framework for estimating Markov process with unknown parameters and independent noise
- Basic idea: Add a separate estimator to each survivor of Viterbi algorithm
- Has been applied to channel identification, adaptive sequence detection, carrier recovery
- Application to timing recovery [Kovintaveat *et al.*, ISCAS 2003]:
 - □ Start with traditional Viterbi algorithm on PR trellis
 - □ Run a separate PLL on each survivor, based on its decision history
 - □ Motivations:
 - PLL is *fully trained* whenever correct path is chosen!
 - **2** Can avoid decision delay altogether

Per-Survivor BCJR?

Motivation: Exploit PSP concept in iterative receiver:

Problem: BCJR algorithm has no "survivors".

Proposal: Add depth-one "survivor" for purposes of timing recovery only.

The result is *PS-BCJR*

- □ Start with traditional BCJR algorithm on PR trellis
- **D** Embed timing-recovery process inside
- □ Run multiple PLL's in parallel, one for each "survivor"

PS-BCJR Branch Metric

<u>Key</u>: Each node $p \in \{0, 1, 2, 3\}$ in trellis at time *k* has *its own*

- $\tau_k(p)$, an estimate of the timing offset τ_k .
- $r_k(p) = r_k(kT + \tau_k(p))$, corresponding sample

The branch metrics depend on samples of the starting state:

Per-Survivor BCJR: Forward Recursion

Associate with each node $p \in \{0, 1, 2, 3\}$ at time k the following:

- forward metric $\alpha_k(p)$
- predecessor $\pi_k(p)$
- forward timing offset estimate $\tau_k(p)$

$$\begin{aligned} \alpha_{k+1}(1) &= 7 \times 3 + 9 \times 5 = 66 \\ \pi_{k+1}(1) &= \operatorname{argmax}_{0,2} \{7 \times 3, 9 \times 5\} = 2 \\ \tau_{k+1}(1) &= \tau_k(2) + \mu(r_k(2)d^{(\pi_k(2),2)} - r_{k-1}(\pi_k(2))d^{(2,1)}) \\ \overbrace{r(kT + \tau_k(2))}^{\leftarrow} r(kT + \tau_{k-1}(\pi_k(2))) \end{aligned}$$

Notation complicated, but idea is simple: update blue node timing using M&M PLL driven by the samples & inputs corresponding to blue branches.

Backward Recursion

Associate with each node $p \in \{0, 1, 2, 3\}$ at time k the following

- backward metric $\beta_k(p)$
- successor $\sigma_k(p)$
- backward timing offset estimate $\tau_k^{\ b}(p)$

$$\begin{cases} \beta_{k}(1) = 8 \times 1 + 9 \times 2 = 26 \\ \sigma_{k}(1) = \operatorname{argmax}_{2,3} \{8 \times 1, 9 \times 2\} = 3 \\ \tau_{k}^{b}(1) = \tau_{k+1}^{b}(3) + \mu(r_{k+1}(\sigma_{k+1}(3))d^{(1,3)} - r_{k}(3)d^{(3,\sigma_{k+1}(3))}) \\ r((k+1)T + \tau_{k+2}^{b}(\sigma_{k+1}(3))) \quad r(kT + \tau_{k+1}^{b}(3)) \end{cases}$$

Again, update blue node timing using *backward* M&M PLL driven by samples & inputs corresponding to blue branches.

()

1

 $\mathbf{2}$

3

3

Compare Forward/Backward Timing

Backward timing estimates can exploit knowledge of forward estimates.

Option 1: Ignore forward estimates during backward pass.

Option 2: Average backward with forward estimate whenever they differ by more than some threshold (say 0.1T) in absolute value.

New Encoder

Compare 3 Systems

Moderate Random Walk ($\sigma_w/T = 0.5\%$)

Severe Random Walk ($\sigma_w/T = 1\%$)

Example: PSP Corrects Quickly

Convergence Rate: ($\sigma_w/T = 1\%$)

How Long do Cycle Slips Persist?

Summary

- Powerful codes permit low SNR
 - conventional strategies fail
 - exploiting code is critical
- Problem is solvable
- We described two strategies for iterative timing recovery
 - Embed timing recovery inside turbo equalizer
 - Automatically corrects for cycle slips
- Challenges remaining
 - > complexity
 - > close gap to known timing