Detecting Anomalous Activity in Computer and Phone Networks

Brian Thompson

James Abello

- Introduction and Motivation
- Model and Approach
- The MCD Algorithm
- Experimental Results
- Conclusions and Future Work

- Introduction and Motivation
- Model and Approach
- The MCD Algorithm
- Experimental Results
- Conclusions and Future Work

Communication Networks

• People like to talk

phone calls

email

Twitter

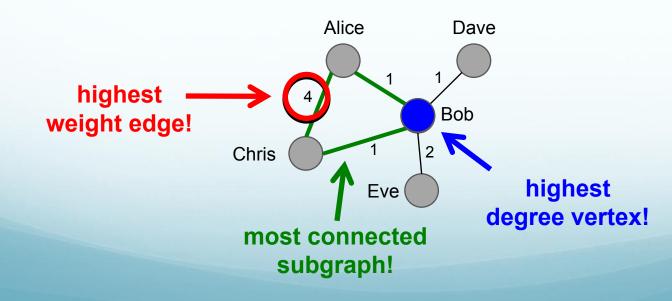
IP traffic

• May be stored in communication logs:

Sender	Receiver	Timestamp		
Alice	Bob	Nov. 16, 2010 5:20pm		
Alice	Chris	Nov. 17, 2010 9:45am		
Bob	Dave	Nov. 17, 2010 7:00pm		

Communication Networks

- Commonly visualized as graphs, where nodes are people and edges signify communication
- Edge weights may indicate the quantity or rate of communication
- Graph analysis tools may then be applied to gain insights into network structure or identify outliers



Motivation

- Communication networks are **BIG** and *highly volatile*
- Traditional techniques are ineffective for analyzing network dynamics, dealing with lots of streaming data
- We address questions of temporal and structural nature

Traditional Question	Our Question	
Which nodes have the highest degree?	Which nodes have seen a recent change in connectivity patterns?	
Which subgraphs are the most well- connected?	Which subgraphs have shown a sudden increase in activity?	

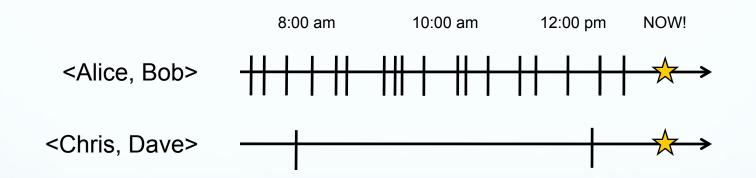
Applications

- Monitor suspected malicious individuals or groups
- Detect the spread of viruses on a local network
- Identify blog posts that have achieved sudden popularity among a small subset of users, that might otherwise fall below the radar
- Flag suspicious email or calling patterns without examining the content or recording conversations

- Introduction and Motivation
- Model and Approach
- The MCD Algorithm
- Experimental Results
- Conclusions and Future Work

Recency

- Our goal is to detect anomalous activity as it is happening.
- Key idea: more recent = more relevant
- For each pair of people, how recently did they communicate?

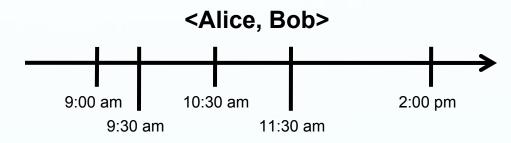


 Problem: The most frequent communicators will always seem "recent", overshadowing others' behavior.

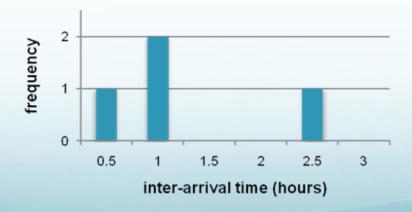
We call this *time scale bias*.

An Edge Model

 We model communication across an edge as a renewal process: a sequence of time-stamped events

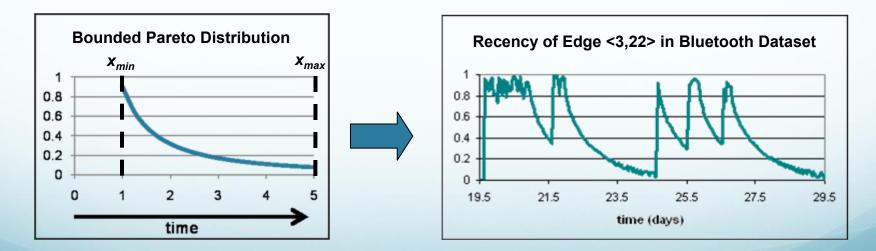


sampled from a distribution of inter-arrival times (IATs)



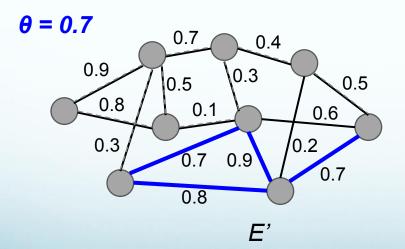
Recency

- The recency function Rec : 2^T x T → [0,1] assigns a weight to an edge e at time t based on the age of the renewal process (time since the last event), decreasing from age = 0 to x_{max}.
- Given an IAT distribution, there is a unique such function that is uniform over [0,1] when sampled uniformly in time.
- This property eliminates time scale bias.



Divergence

- Consider the weighted graph G = (V,E) representing a communication network, with w(e) = Rec(e).
- For $E' \subseteq E$, let $X_{E',\theta} = \#$ of edges in E' with $Rec(e) \ge \theta$. We define $Div_{\theta}(E') = \frac{1}{P(X \ge X_{E',\theta})}$, where $X \sim Bin(|E'|, 1 - \theta)$.



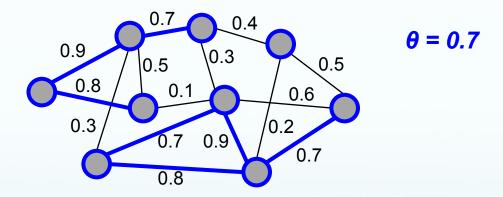
■ |*E′*| = 6

•
$$X_{E',0.7} = 4$$

- $P(X \ge 4) = 0.07$
- $Div_{0.7}(E') = 14.19$

Maximal Components

- A (maximal) θ-component of G = (V,E) is a connected subgraph C = (V',E') such that
 - 1. $w(e) \ge \theta$ for all e in E'
 - 2. $w(e) < \theta$ for all e not in E' incident to V'



 The set of θ-components form a partition of V, for all θ in [0,1].

Algorithmic Challenges

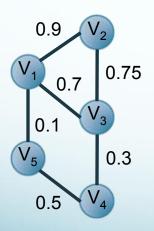
- Combinatorial explosion: There are too many possible subgraphs – 2^{|E(G)|} to be exact!
 - Only look at connected components
- There are still too many possible subgraphs!
 - Only look at maximal θ -components
- How do we know what's the right θ threshold?
 - Try them all!

We now present the MCD (Maximal Component Divergence) Algorithm.

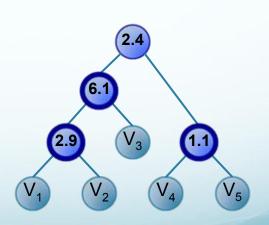
- Introduction and Motivation
- Model and Approach
- The MCD Algorithm
- Experimental Results
- Conclusions and Future Work

The MCD Algorithm

- 1. Calculate edge weights using the Recency function
- 2. Gradually decrease the threshold, updating components and divergence values as necessary
- 3. Output: Disjoint components with max divergence

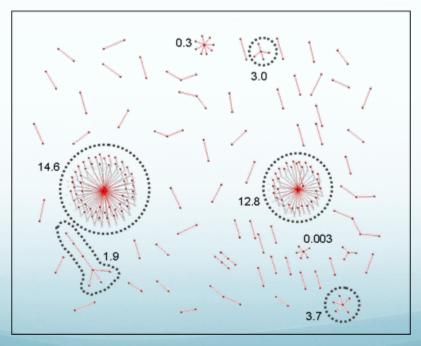


θ	Component	Div(C)
0.9	$\{V_1, V_2\}$	2.908
0.75	$\{V_1, V_2, V_3\}$	2.723
0.7	$\{V_1, V_2, V_3\}$	6.132
0.5	$\{V_4, V_5\}$	1.143
0.3	$\{V_1, V_2, V_3, V_4, V_5\}$	2.380
0.1	$\{V_1, V_2, V_3, V_4, V_5\}$	1.882



Sample Output

MCD	θ	#V(C)	E-frac	%E(C)	%E(G)
14.57	0.07	54	53/212	0.25	0.08
12.84	0.08	32	31/88	0.35	0.08
3.70	0.10	6	5/7	0.71	0.10
2.97	0.18	5	4/4	1.00	0.14
1.91	0.05	7	6/41	0.15	0.04



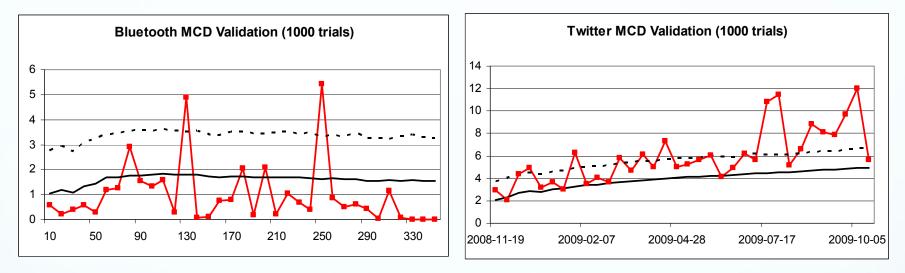
- Introduction and Motivation
- Model and Approach
- The MCD Algorithm
- Experimental Results
- Conclusions and Future Work

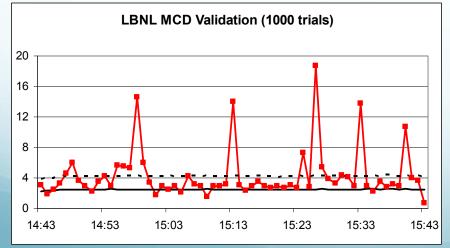
Data

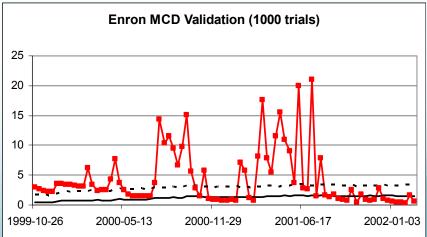
Dataset	# Nodes	# Edges	# Timestamps
ENRON – email network of Enron employees	1141	2017	4847
BLUETOOTH – proximity of mobile devices	101	2815	102563
LBNL – logs of IP traffic	3317	9637	9258309
TWITTER – directed messages	262932	307816	1134722

Validation of Results

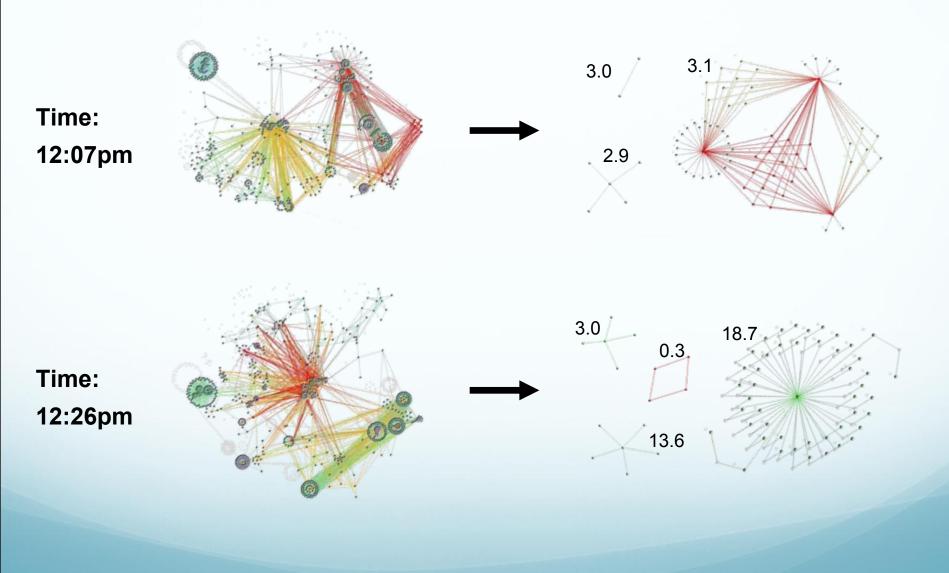
---- Actual ----- Avg (μ) - - - - μ + 3σ





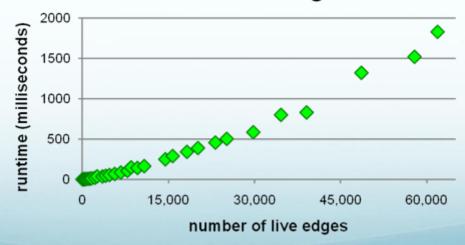


LBNL Case Study



Complexity Analysis

- Dataset: Twitter messages, Nov. 2008 Oct. 2009 (263k nodes, 308k edges, 1.1 million timestamps)
- Updates *O(1)* per communication
- MCD Algorithm O(m log m), where m = # of edges; can be approximated in effectively O(m) time



Runtime for MCD Algorithm

- Introduction and Motivation
- Model and Approach
- The MCD Algorithm
- Experimental Results
- Conclusions and Future Work

Future Work

- Incorporate duration of communication and other edge properties into our model
- Extend our method to accommodate other data types, such as recommendation systems or hypergraphs
- Develop techniques to take past correlation of edges into account (to avoid recurring "anomalies")
- Make it even more efficient linear in number of nodes?

Acknowledgements

- Part of this work was conducted at Lawrence Livermore National Laboratory, under the guidance of Tina Eliassi-Rad.
- This project is partially supported by a DHS Career Development Grant, under the auspices of CCICADA, a DHS Center of Excellence.

Command, Control, and Interoperability Center for Advanced Data Analysis

Questions?