
1

Ranked Query Processing:
a) Order-based Paradigm

Kevin Chen-Chuan Chang

2

Ranking– Ordering according to the degree of
some fuzzy notions:

n Similarity (or dissimilarity)
n Relevance
n Preference Q

ranking

3

Query models for order-based paradigm–
On the better-than graph

n Better-than graph

n Best-Matches-Only (BMO) query model
q Retrieve maximal elements
q Thus also called maximal vector

n These maximal elements form the “skyline”!

n On better-than graph, how to process BMO?

t4

t1
t2

t3

4

When multiple dimensions are available--

n Assume the database stores the information of a set of flights
n For each flight

q Its price
q Its route (travel -time or distance traveled)

n A user would retrieve all the “interesting” flights
q A flight is interesting if and only if there is no other cheaper and

shorter (route) at the same time

x

y
b

a

i k

h

g
d

f

e
c

l

o
1 2 3 4 5 6 7 8 9 1 0

1
2

3
4

5

6

7

8

9

1 0

m

n

price

distance

2

5

The overall preference combines the
dimensions
n P1 LOWEST(price)

q aà bà ià c, hà g à d, m à f à n à k, e à l

n P2 LOWEST(distance)
q k à m, i à h, n à l à f à g à d à c à a à b, e

n P :=({price,distance},<P1⊗P2)

n BMO: Maximal elements of P?
q Is a maximal?
q Is b maximal?
q Is c maximal?

Distance Price
a 1 9
b 2 10
c 4 8
d 6 7
e 9 10
f 7 5
g 5 6
h 4 3
i 3 2
k 9 1
l 10 4

m 6 2
n 8 3 6

Skyline Operation

n Dominance:
q A point dominates another point if it is no worse in all

dimensions, and better in at least one dimension

n Skyline:
q A set of all points in the dataset that are not

dominated by any other point in the dataset

7

Why is it called “skyline”?
(Also called: Pareto curve, Maximum Vector)

n What do you see in the Chicago skyline?

8

n Query:
SELECT * FROM flights
SKYLINE OF price MIN, distance MIN

n What dominates what?
n What points constitute the skyline?

What is skyline: An example

x

y
b

a

i k

h

g
d

f

e
c

l

o
1 2 3 4 5 6 7 8 9 1 0

1
2

3
4

5

6

7

8

9

1 0

m

n

price

distance

3

9

Skyline Algorithms: We will look at a few examples

n Block nested loop (BNL)
n Divide and Conquer
n Bitmap
n NN

10

Block Nested Loop [Börzsönyi et al., 2001]

n Conceptually: Nested loop joins—
q Joining the table with itself
q Compare every pair of points to check dominance

Price Distance
a 1 9
b 2 10
c 4 8
d 6 7
e 9 10
f 7 5
g 5 6
h 4 3
i 3 2
k 9 1
l 10 4

m 6 2
n 8 3

Price Distance
a 1 9
b 2 10
c 4 8
d 6 7
e 9 10
f 7 5
g 5 6
h 4 3
i 3 2
k 9 1
l 10 4

m 6 2
n 8 3

11

Block Nested Loop -- Implementation

n One-pass scan:
q Scan the table; maintain a window of current skyline points
q Return the window at the end

n Any problems?

Price Distance Skyline Discarded
a 1 9 a
b 2 10 a b
c 4 8 a,c
d 6 7 a,c,d
e 9 10 a ,c,d e
f 7 5 a,c,d,f
g 5 6 a,c,f, g d
h 4 3 a, h c,f,g
i 3 2 a, i h
k 9 1 a,i,k
l 10 4 a, i ,k l

Scan

12

Block Nested Look– Improvements
How if the window overflow?

n Multi-pass algorithm
q Scan the table, write any overflow to temp file
q Scan the temp file; repeat till done

Price Distance Skyline Discarded TempFile
a 1 9 a
b 2 10 a b
c 4 8 a,c
d 6 7 a,c,d
e 9 10 a ,c,d e
f 7 5 a,c,d f
g 5 6 a,c,g d
h 4 3 a,h c,g
i 3 2 a, i h
k 9 1 a,i,k
l 10 4 a, i ,k l

Scan Pass 1 Pass 2

Scan
TempFile

4

13

Block Nested Look– Improvements
How if the window overflow? [Börzsönyi et al., 2001]

n Divide and conquer
q Divide all the points into several groups such that each group

fits in memory
q Process the groups separately
q Merge their results

n Smart merging possible
q If s3 not empty then disregard s2
q Use s3 to purge s1, s4

x

y
b

a

i k

h

g
d

f

e

c

l

o
1 2 3 4 5 6 7 8 9 10

1
2

3

4
5
6
7

8

9

10

m

n

s
1 s2

s3 s4

14

However, BNL-based approaches are not
incremental – Want progressive processing!

Desired:
n Compute the first few Skyline points almost instantaneously
n Compute more and more results incrementally

15

Bitmap Algorithm: Representation [Tan et. al.
2001]

n For each dimension:
q n distinct values à n bits
q A value as a bitmap of all no-higher bits = 1

4 3 2 1 3 2 1 2 1
a (1,1,2) 0 0 0 1 0 0 1 1 1
b (3,2,1) 0 1 1 1 0 1 1 0 1
c (4,1,1) 1 1 1 1 0 0 1 0 1
d (2,3,2) 0 0 1 1 1 1 1 1 1

d2: dist d3: ratingd1: price

16

Is b = (3, 2, 1) in the skyline?

n Any point with no-worse values in all dimensions?
q 0110 & 0101 & 1111 = 0100

n Any point with a better value in some dimension?
q 0010 | 0001 | 1001 = 1011

n Any point satisfying both?
q 0100 & 1011 = 0000

n So, is b = (3,2,1) in the skyline?
d2: dist d3: ratingd1: price

4 3 2 1 3 2 1 2 1
a (1,1,2) 0 0 0 1 0 0 1 1 1
b (3,2,1) 0 1 1 1 0 1 1 0 1
c (4,1,1) 1 1 1 1 0 0 1 0 1
d (2,3,2) 0 0 1 1 1 1 1 1 1

5

17

The Bitmap Algorithm

n for each point x in DB:
q check if x is in skyline
q output x if so

n Incremental indeed; bitmap computation efficient

n However, any problem?

18

Bitmap Algorithm: Problems

n Bitmaps are not dynamic structures
q Hard to update

n Bitmaps can have prohibitive space overhead
q How if there are many distinct values?
n E.g., How about continuous values?

n No focus of directions at all in skyline search
q Depend on what points you check first

19

NN – Finding the First Skyline Point [Kossmann et.
al. 2002]
n Start by finding the nearest neighbor of the origin

q I.e., the point p = (x, y) with the smallest
q How to find NN: Use NN algorithm based on R-tree.

n This NN point must be in the skyline
q Otherwise?

x

y
b

a

i k

h

g
d
f

e
c

l

o
1 2 3 4 5 6 7 8 9 10

1
2

3
4
5
6
7
8
9

10

m

n

22),(yxpodist +=

20

NN– Are there other skyline points?

n Pruning-- What cannot be in the skyline?
q Those dominated by point I

n Iteration– What may be in the skyline?
q Non-dominated region 2 and 3

x

y
b

a

i k

h

g
d

f

e
c

l

o
1 2 3 4 5 6 7 8 9 10

1
2

3
4

5
6

7
8

9

10

m

n

1 2

3 4

6

21

NN– Iteratively Process All the “ToDo”
Regions until All Done

x

y
b

a

i k

h
g

d
f

e
c

l

o
1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

m

n

1 2

3 4

x

y
b

a

i k

h
g

d
f

e
c

l

o 1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

m

n
1

3 4

2

x

y
b

a

i k

h

g
d
f

e
c

l

o
1 2 3 4 5 6 7 8 9 10

1
2

3
4
5
6
7
8
9

10

m

n

1
3

24

i

a

k

22

Order-based rank query evaluation-- Still
ongoing research.

n How optimal are these algorithms? Further
improvement?

n Scale to high dimensionality?

n Generalize to non-BMO type of aggregations?

23

Thank You!
Ranking Query Processing:
b) Score-based Paradigms

Kevin Chen-Chuan Chang

7

25

Ranking– Ordering according to the degree of
some fuzzy notions:

n Similarity (or dissimilarity)
n Relevance
n Preference Q

ranking

26

Relational DBMS scenarios– A brief overview

Relational DBMS–
n Value mapping: [Chaudhuri and Gravano, 1999]

n Mapping top-k scores to Boolean selection ranges
n May have to restart

n Cardinality mapping: [Carey and Kossmann , 1997, 1998]

n Pushing “limit k” down query tree
n May have to restart

27

Our Focus: Middleware scenarios

Top -k
Algorithm

F=min(p1, p2, p3)

k=10
p1

p3

top results

select h.id, h.address from Hotel h
order by F=min (p1:rating (h.rate), p2:cheap(h.price), p3:safe(h.zip))
stop after k=10

p2

RDBMS

hotels.com

apbs.com

28

Top-k algorithms rely on accesses to evaluate
query scores

To each predicate pi:
n Random access:rai(uj)

q Return score of uj for pi

n Sorted access: sai
q Return some next best object and

its score for p i

p1

uj

p1[uj]

u3: .70

u2: .65

u1: .60
p1

8

29

n Sorted access on P1 then random accesses to P2, P2

An algorithm performs a sequence of accesses:
A simple algorithm

Sort

p1

p3

top resultp2

RDBMS

hotels.com

apbs.com

c:.80 b:.45 a:.30

a:.8 b:.90 c:.90

a:.9 b:.70 c:.95

c:.80

F=min(p1, p2, p3)

k=1

30

Goal: Minimize the “access” cost

Access costs dominate in “middleware” scenarios
à Cost model: aggregate of all access costs

RDBMS

cheap

safe

rating

Top -k
Algorithm

F, k

hotels.com

apbs.com

s2=44ms, r2=466ms

s3=∞, r3=700ms

s1=3ms, r1=20ms

31

Assumption: Monotonic scoring functions

n Monotonic:
q f(x1, …, xn) ≤ f(x1′, …, x n′) if xi ≤ xi′ for all i

n Why good for query evaluation?
q Gives bounds for pruning data
q Gives a simple function “surface” to maximize f

n Reasonable?
q Analogy: Negation rarely used in Boolean queries
q But, new “function-inference” front -ends also found this to be

violated in many cases

32

The Naïve Algorithm

n Get all pi[u] score for every object u
q e.g., by complete sorted accesses

n Compute F[u] = F (p1[u],…, pm [u]) for every u
n Sort
n Return top k

n Obviously expensive. Can we do better?
q Note k is typically small

9

33

FA– Fagin’s Algorithm (or the “First Algorithm”) [Fagin,
1996] [Wimmers et al., 1999]

Scenario: Sorted + Random Access Available
n Go in the lists with SA in parallel
n Do complete RA for every seen object to complete scores
n Maintain a buffer of current top-k objects
n Maintain a threshold T:

q Upper-bound for all the unseen objects

n Stop:
q When all lists so far share at least k objects

n Return the current top-k objects

34

FA– Fagin’s Algorithm

n Scoring function: F= p1+p2

ID

3
2
1
4
5

p2

.50

.40

.30

.20

.10

p1

.50

.40

.30

.20

.10

ID

5
1
3
2
4

Buffer

3: (.80)
5: (.60)
3: (.80)
1: (.70)
5: (.60)
2: (.60)

Intersection

{}
{}
{1, 3}

35

Why is FA correct?

n At stop time, all seen objects are compared
n Can unseen objects have higher scores?
q e.g., How about object 4? Upper bound?

ID

3
2
1
4
5

p2

.50

.40

.30

.20

.10

p1

.50

.40

.30

.20

.10

ID

5
1
3
2
4

Intersection

{}
{}
{1, 3}

Buffer

3: (.80)
1: (.70)
5: (.60)
2: (.60)

36

How is FA “optimal”? Can you make it more
efficient?

n FA:
q For string, monotone F, sorted accesses optimal up

to a constant factor, with high probability.
n Can you stop earlier than round 3?

ID

3
2
1
4
5

p2

.50

.40

.30

.20

.10

p1

.50

.40

.30

.20

.10

ID

5
1
3
2
4

Intersection

{}
{}
{1, 3}

Buffer

3: (.80)
1: (.70)
5: (.60)
2: (.60)

10

37

Then, there have been various algorithms, for
different scenarios...

FA, TA,
QuickCombine

r =1
(cheap)

r = h
(expensive)

r = ∞
(impossible)

CA,
SR-Combine

NRA,
StreamCombine

TAz,
MPro, Upper

s =1
(cheap)

s = h
(expensive)

s = ∞
(impossible)

Random Access
Sorted
Access

FA, TA,
QuickCombine

TAz,
MPro, Upper

NRA,
StreamCombine

38

Improving FA: TA [Fagin et al., 2001], Quick-combine
[Guentzer et al., 2000], Multi-step [Nepal and Ramakrishna, 1999]

Scenario: Sorted + Random Access Available
n Go in the lists with SA in parallel
n Do complete RA for every seen object to complete scores
n Maintain a buffer of current top-k objects
n Maintain a threshold T:

q Upper-bound for all the unseen objects

n Stop:
q When all current top-k objects scored greater than T

n Return these objects as top-k

39

T = 1.00

TA, Quick-combine, Multi-step

F= p1 + p2

ID

3
2
1
4
5

S2

.50

.40

.30

.20

.10

S1

.50

.40

.30

.20

.10

ID

5
1
3
2
4

Buffer

3: (.80)
1: (.70)
5: (.60)
2: (.60)

T = .80

Threshold

3: (.80)
5: (.60)

40

Why is TA correct?

n At stop time, all seen objects are compared
n Can unseen objects have higher scores?
q e.g., How about object 4? Upper bound?

T = 1.00

ID

3
2
1
4
5

S2

.50

.40

.30

.20

.10

S1

.50

.40

.30

.20

.10

ID

5
1
3
2
4

Buffer

3: (.80)
1: (.70)
5: (.60)
2: (.60)

T = .80

Threshold

3: (.80)
5: (.60)

11

41

Observations: Any Problem with TA?

n How does it handle SA?
q Equal-depth parallel SA to every list

n How does it handle RA?
q Exhaustive RA for every seen object
q How if RA expensive? (Algorithm CA)
q How if RA not possible? (Algorithm NRA)

42

How if random accesses not supported?

n The combined score of an object has two parts:
q Upper bound score:

n From seen exact scores and unseen max score
q Lower bound score:

n From seen exact scores and unseen min score

n An object is in top-k if
q Its lower bound score is greater than the upper bound

scores of all unseen objects

43

NRA [Fagin et al., 2001], Stream-combine [Guentzer et al., 2001] --
When random accesses not possible

n Scoring function: F= p1 + p2

ID

3
2
1
4
5

S2

.50

.40

.30

.20

.10

S1

.50

.40

.30

.20

.10

ID

5
1
3
2
4

Buffer

5: (.50 – 1.00)
3: (.50 – 1.00)
5: (.50 – .90)
3: (.50 – .90)
1: (.40 – .80)
2: (.40 – .80)

3: (.80 – .80)
1: (.70 – .70)
5: (.50 – .80)
2: (.40 – .70)

44

In contrast, how if sorted accesses not
possible?

Scenario: When SA not supported
n Perform random “probes” when necessary
q The object with current highest score

n Schedule predicates to minimize probes
n Return an object as top-k when
q It is fully probed
q Its score is higher than the (upper bounds of) the

rest not in top-k

12

45

MPro [Chang and Hwang, 2002], Upper [Bruno et. al. 2002] –
When sorted accesses not possible

.75

.78

.20

.60

.50

.75

.90

.20

.90

.80

.85

.78

.75

.90

.70

0.90
0.80
0.70
0.60
0.50

a
b
c
d
e

Min(x,p1,p2)p2p1xID
a: 0.9a: 0.85

Uunseen=

a: 0.85

b: 0.8

b: 0.8

a: 0.75

b: 0.78

a: 0.75

0.7

b: 0.78

a: 0.75

c: 0.7

b: 0.78

a: 0.75

c: 0.7
Candidates
Queue

Upper -bound of the unseen scores

46

Probe optimization– Is the cost of random
probes minimal?

n What object to probe next?
q By necessary probes to analytically determine

[Chang and Hwang, 2002]

n Current top object must be further probed (by any algorithm)

n For such object, what predicate to probe next?
q MPro: Global scheduling – one schedule for all

n Cost- based optimization based on selectivity and cost

q Upper: Local scheduling – schedule for each obj
n Use expected scores of unknown objects

47

So, what do we have so far…

FA, TA,
QuickCombine

r =1
(cheap)

r = h
(expensive)

r = ∞
(impossible)

CA,
SR-Combine

NRA,
StreamCombine

TAz,
MPro, Upper

s =1
(cheap)

s = h
(expensive)

s = ∞
(impossible)

Random Access
Sorted
Access

FA, TA,
QuickCombine

TAz,
MPro, Upper

NRA,
StreamCombine

FWhat do you think?

48

Challenge: Various Cost Scenarios

n Vary in capabilities
n Vary in costs:
q over sources
q over access types
q over time

FThus requires “generality” over cost scenarios
and “adaptivity” to the given runtime setting

RDBMS

cheap

safe

rating

Top -k
Algorithmhotels.com

apbs.com

s2=44ms, r2=466ms

s3=∞, r3=700ms

s1=3ms, r1=20ms

13

49

Score-based ranked query evaluation– Still
ongoing research

n A unified algorithms for all?
q Currently: ad-hoc algorithms for each scenario
q Do not cover all scenarios

n How optimal are these algorithms?
q Cost-based optimization studied at MPro

n Unified, cost-based optimization?

50

Thank You!

