## Ranked Query Processing: a) Order-based Paradigm

Kevin Chen-Chuan Chang

Query models for order-based paradigm-
On the better-than graph

- Better-than graph

- Best-Matches-Only (BMO) query model
- Retrieve maximal elements
- Thus also called maximal vector
- These maximal elements form the "skyline"!
- On better-than graph, how to process BMO ?

Ranking- Ordering according to the degree of some fuzzy notions:

- Similarity (or dissimilarity)
- Relevance


When multipledimensions areavailable--

- Assume the database stores the information of a set of flights
- For each flight
- Its price
a Its route (travel-time or distance traveled)
- A user would retrieve all the "interesting" flights
- A flight is interesting if and only if there is no other cheaper and shorter (route) at the same time


The overall preference combines the dimensions

- P1 LOWEST(price)
- $a \rightarrow b \rightarrow i \rightarrow c, h \rightarrow g \rightarrow d, m \rightarrow f \rightarrow n \rightarrow k, e \rightarrow l$
- P2 LOWEST(distance)
- $k \rightarrow m, i \rightarrow h, n \rightarrow l \rightarrow f \rightarrow g \rightarrow d \rightarrow c \rightarrow a \rightarrow b, e$
- $\mathrm{P}:=(\{$ price, distance $\},<\mathrm{P} 1 \otimes \mathrm{P} 2)$
- BMO: Maximal elements of P ?
- Is $a$ maximal?
- Is $b$ maximal?
- Is $c$ maximal?

| Distance |  | Price |
| :---: | ---: | ---: |
| $a$ | 1 | 9 |
| $b$ | 2 | 10 |
| $c$ | 4 | 8 |
| $d$ | 6 | 7 |
| $e$ | 9 | 10 |
| $f$ | 7 | 5 |
| $g$ | 5 | 6 |
| $h$ | 4 | 3 |
| $i$ | 3 | 2 |
| $k$ | 9 | 1 |
| $l$ | 10 | 4 |
| $m$ | 6 | 2 |
| $n$ | 8 | 3 |

Why is it called "skyline"?
(A lso called: Pareto curve, M aximum V ector)

- What do you see in the Chicago skyline?


Skyline Operation

- Dominance:
- A point dominates another point if it is no worse in all dimensions, and better in at least one dimension
- Skyline:
- A set of all points in the dataset that are not dominated by any other point in the dataset

What is skyline: An example

- Query:

SELECT * FROM flights
SKYLINE OF price MIN, distance MIN

- What dominates what?
- What points constitute the skyline?


Skyline Algorithms: We will look at a few examples

- Block nested loop (BNL)
- Divide and Conquer
- Bitmap
- NN

Block Nested Loop [Börzsönyi et al., 2001]

- Conceptually: Nested loop joins-
- Joining the table with itself
- Compare every pair of points to check dominance

|  | Price | Distance |
| :---: | ---: | ---: |
| $a$ | 1 | 9 |
| $b$ | 2 | 10 |
| $c$ | 4 | 8 |
| $d$ | 6 | 7 |
| $e$ | 9 | 10 |
| $f$ | 7 | 5 |
| $g$ | 5 | 6 |
| $h$ | 4 | 3 |
| $i$ | 3 | 2 |
| $k$ | 9 | 1 |
| $l$ | 10 | 4 |
| $m$ | 6 | 2 |
| $n$ | 8 | 3 |



Block N ested Look- Improvements How if the window overflow?

- Multi-pass algorithm
- Scan the table, write any overflow to temp file
- Scan the temp file; repeat till done


Block Nested Look- Improvements
How if the window overflow? [Börrsönyi et al., 2001]

- Divide and conquer
- Divide all the points into several groups such that each group fits in memory
- Process the groups separately
- Merge their results
- Smart merging possible
- If s3 not empty then disregard s2
- Use s3 to purge s1, s4


H owever, BNL-based approaches are not incremental - Want progressive processing!

Desired:

- Compute the first few Skyline points almost instantaneously
- Compute more and more results incrementally

Bitmap Algorithm: Representation [Tan et. al. 2001]

- For each dimension:
- $n$ distinct values $\rightarrow \mathrm{n}$ bits
- A value as a bitmap of all no-higher bits $=1$

|  |  | d1: price |  |  |  | d2; dist |  |  | d3: rating |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 4 | 3 | 2 | 1 | 3 | 2 | 1 | 2 | 1 |
| a | $(1,1,2)$ | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 |
| $b$ | $(3,2,1)$ | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
| c | $(4,1,1)$ | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
| d | $(2,3,2)$ | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

Is b $=(3,2,1)$ in the skyline?

- Any point with no-worse values in all dimensions? - 0110 \& 0101 \& $1111=0100$
- Any point with a better value in some dimension? - $0010|0001| 1001=1011$
- Any point satisfying both? - $0100 \& 1011=0000$
- So, is $b=(3,2,1)$ in the skyline?
d1: price d2: dist d3: rating

|  |  | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ |  | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ |  | $\mathbf{2}$ | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $a$ | $(1,1,2)$ | 0 | 0 | 0 | 1 |  | 0 | 0 | 1 |  | 1 | 1 |
| $b$ | $(3,2,1)$ | 0 | 1 | 1 | 1 |  | 0 | 1 | 1 |  | 0 | 1 |
| $c$ | $(4,1,1)$ | 1 | 1 | 1 | 1 |  | 0 | 0 | 1 |  | 0 | 1 |
| $d$ | $(2,3,2)$ | 0 | 0 | 1 | 1 |  | 1 | 1 | 1 |  | 1 | 1 |

## The Bitmap Algorithm

- for each point $x$ in DB:
- check if $x$ is in skyline
- output $x$ if so
- Incremental indeed; bitmap computation efficient
- However, any problem?

Bitmap Algorithm: Problems

- Bitmaps are not dynamic structures
- Hard to update
- Bitmaps can have prohibitive space overhead
- How if there are many distinct values?
- E.g., How about continuous values?
- No focus of directions at all in skyline search - Depend on what points you check first

NN - Finding the First Skyline Point [Kossmann et. al. 2002]

- Start by finding the nearest neighbor of the origin
- I.e., the point $p=(x, y)$ with the smallest $\operatorname{dist}(o, p)=\sqrt{x^{2}+y^{2}}$
- How to find NN: Use NN algorithm based on R-tree.
- This NN point must be in the skyline - Otherwise?

NN-A re there other skyline points?

- Pruning-- What cannot be in the skyline?
- Those dominated by point $I$
- Iteration- What may be in the skyline?
- Non-dominated region 2 and 3



Order-based rank query evaluation-- Still ongoing research.

- How optimal are these algorithms? Further improvement?
- Scale to high dimensionality?
- Generalize to non-BMO type of aggregations?


## Thank You!

## Ranking Query Processing: b) Score-based Paradigms

Kevin Chen-Chuan Chang


[^0]

Relational DBMS scenarios- A brief overview
Relational DBMS-

- Value mapping: [Chaudhuri and Gravano, 1999]
- Mapping top-k scores to Boolean selection ranges
- May have to restart
- Cardinality mapping: [Carey and Kossmann, 1997, 1998]
- Pushing "limit k" down query tree
- May have to restart

Our Focus: Middleware scenarios


Top-k algorithms rely on accesses to evaluate query scores

To each predicate $p_{i}$ :

- Random access: $\mathrm{ra}_{\mathrm{i}}\left(\mathrm{u}_{\mathrm{i}}\right)$
- Return score of $u_{j}$ for $p_{i}$
- Sorted access: $\mathrm{Sa}_{\mathrm{i}}$
- Return some next best object and its score for $p_{i}$


An algorithm performs a sequence of accesses:
A simple algorithm

- Sorted access on P1 then random accesses to P2, P2


Goal: Minimize the "access" cost


Access costs dominate in "middleware" scenarios $\rightarrow$ Cost model: aggregate of all access costs

Assumption: M onotonic scoring functions

- Monotonic:
- $f\left(x_{1}, \ldots, x_{n}\right) \leq f\left(x_{1}{ }^{\prime}, \ldots, x_{n}{ }^{\prime}\right)$ if $x_{i} \leq x_{i}{ }^{\prime}$ for all $i$
- Why good for query evaluation?
- Gives bounds for pruning data
- Gives a simple function "surface" to maximize $f$
- Reasonable?
- Analogy: Negation rarely used in Boolean queries
- But, new "function-inference" front -ends also found this to be violated in many cases

The N aïve Algorithm

- Get all $p_{i}[u]$ score for every object $u$
- e.g., by complete sorted accesses
- Compute $\mathrm{F}[\mathrm{u}]=\mathrm{F}\left(p_{1}[u], \ldots, p_{\mathrm{m}}[u]\right)$ for every $u$
- Sort
- Return top $k$
- Obviously expensive. Can we do better?
- Note $k$ is typically small

FA- Fagin's Algorithm (or the "First Algorithm") [Fagin, 1996] [Wimmerset al., 1999]

## Scenario: Sorted + Random Access Available

- Go in the lists with SA in parallel
- Do complete RA for every seen object to complete scores
- Maintain a buffer of current top-k objects
- Maintain a threshold $\boldsymbol{T}$ :
- Upper-bound for all the unseen objects
- Stop:
- When all lists so far share at least $k$ objects
- Return the current top-k objects

FA- Fagin's Algorithm

- Scoring function: $F=p_{1}+p_{2}$


Why is FA correct?

- At stop time, all seen objects are compared
- Can unseen objects have higher scores? a e.g., How about object 4? Upper bound?


Buffer

How is FA "optimal"? Can you make it more efficient?

- FA:
- For string, monotone F, sorted accesses optimal up to a constant factor, with high probability.
- Can you stop earlier than round 3 ?


Then, there have been various algorithms, for different scenarios...

| Sorted <br> Access | Random Access |  |  |
| :--- | :---: | :---: | :---: |
|  | $r=1$ <br> (cheap) | $r=h$ <br> (expensive) | $r=\infty$ <br> (impossible) |
|  | FA, TA, <br> QuickCombine | CA, <br> SR-Combine | NRA, <br> StreamCombine |
| $s=h$ <br> (expensive) |  | FA, TA, <br> QuickCombine | NRA, <br> StreamCombine |
| $s=\infty$ <br> (impossible) | TAz, <br> MPro, Upper | TAz, <br> MPro, Upper |  |
|  |  |  |  |

TA, Quick-combine, Multi-step
$F=p_{1}+p_{2}$


Buffer 39

Improving FA: TA [Fagin et al., 2001], Quick-combine
[Guentzer et al., 2000], M ulti-Step [Nepal and Ramakrishna, 1999]
Scenario: Sorted + Random Access Available

- Go in the lists with SA in parallel
- Do complete RA for every seen object to complete scores
- Maintain a buffer of current top-k objects
- Maintain a threshold $\boldsymbol{T}$ :
- Upper-bound for all the unseen objects
- Stop:
- When all current top-k objects scored greater than $\boldsymbol{T}$
- Return these objects as top-k


## Why is TA correct?

- At stop time, all seen objects are compared
- Can unseen objects have higher scores?
- e.g., How about object 4? Upper bound?

Threshold



Buffer

## Observations: A ny Problem with TA?

- How does it handle SA?
- Equal-depth parallel SA to every list
- How does it handle RA?
- Exhaustive RA for every seen object
- How if RA expensive? (Algorithm CA)
- How if RA not possible? (Algorithm NRA)

How if random accesses not supported?

- The combined score of an object has two parts:
- Upper bound score:
- From seen exact scores and unseen max score
- Lower bound score:
- From seen exact scores and unseen min score
- An object is in top-k if
- Its lower bound score is greater than the upper bound scores of all unseen objects

NRA [FFagin etal., 2001], Stream-combine [Guentzer et al., 2001]-When random accesses not possible

- Scoring function: $F=p_{1}+p_{2}$


Buffer 43

In contrast, how if sorted accesses not possible?

Scenario: When SA not supported

- Perform random "probes" when necessary
- The object with current highest score
- Schedule predicates to minimize probes
- Return an object as top-k when
- It is fully probed
- Its score is higher than the (upper bounds of) the rest not in top-k


So, what do wehave so far...

| Sorted <br> Access | Random Access |  |  |
| :--- | :---: | :---: | :---: |
|  | $r=1$ <br> (cheap) | $r=h$ <br> (expensive) | $r=\infty$ <br> (impossible) |
|  | FA, TA, <br> QuickCombine | CA, <br> SR-Combine | NRA, <br> StreamCombine |
| $s=h$ <br> (expensive) |  | FA, TA, <br> QuickCombine | NRA, <br> StreamCombine |
| $s=\infty$ <br> (impossible) | TAZ, <br> MPro, Upper | TAz, <br> MPro, Upper |  |

What do you think?

Probe optimization- Is the cost of random probes minimal?

- What object to probe next?
- By necessary probes to analytically determine [Chang and Hwang, 2002]
- Current top object must be further probed (by any algorithm)
- For such object, what predicate to probe next?
- MPro: Global scheduling - one schedule for all
- Cost-based optimization based on selectivity and cost
- Upper: Local scheduling - schedule for each obj
- Use expected scores of unknown objects

Challenge: Various Cost Scenarios

- Vary in capabilities
- Vary in costs:
- over sources
- over access types
- over time

*Thus requires " generality" over cost scenarios and "adaptivity" to the given runtime setting

Score-based ranked query evaluation- Still ongoing research

- A unified algorithms for all?
- Currently: ad-hoc algorithms for each scenario
- Do not cover all scenarios


## Thank You!

- How optimal are these algorithms?
- Cost-based optimization studied at MPro
- Unified, cost-based optimization?


[^0]:    $T$ mo oatanase Tan intom
    The Database and Information Systems Laboratory

