Ranking and Preference in D atabase Search: a) Similarity and Relevance

Kevin Chen-Chuan Chang

I Trooatanasenant
M11~,

Ranking- Ordering according to the degree of some fuzzy notions:

- Similarity (or dissimilarity)
- Relevance

2

Similarity!-- A re they similar?

- Two images

Similarity- A re they similar?

- Two strings

> Virginia Vermont

Similarity-based ranking -by a "distance" function (or "dissimilarity")

The "space" - Defined by the objects and their distances

- Object representation- Vector or not?
- Distance function- Metric or not?

Vector space- What is a vector space?
(S, d) is a vector space if:

- Each object in S is a k-dimensional vector
- $x=\left(x_{1}, \ldots, x_{k}\right)$
- $y=\left(y_{1}, \ldots, y_{k}\right)$
- The distance $d(x, y)$ between any x and y is metric

Vector space distance functionsThe L_{p} distance functions

- The general form:

$$
L_{P}\left(x:\left(x_{1}, \ldots, x_{k}\right), y:\left(y_{1}, \ldots, y_{k}\right)\right)=\left(\sum_{i=1}^{k}\left|x_{i}-y_{i}\right|^{P}\right)^{\frac{1}{p}}
$$

- AKA: p-norm distance, Minkowski distance
- Does this look familiar?

Vector space distance functions-
L_{1} : The M anhattan distance

- Let $p=1$ in L_{p} :

$$
L_{1}\left(x:\left(x_{1}, \ldots, x_{k}\right), y:\left(y_{1}, \ldots, y_{k}\right)\right)=\sum_{i=1}^{k}\left|x_{i}-y_{i}\right|
$$

- Manhattan or "block" distance:

Vector space distance functions L_{2} : The Euclidean distance

- Let $p=2$ in L_{p} :

$$
L_{P}\left(x:\left(x_{1}, \ldots, x_{k}\right), y:\left(y_{1}, \ldots, y_{k}\right)\right)=\left(\sum_{i=1}^{k}\left|x_{i}-y_{i}\right|^{2}\right)^{\frac{1}{2}}
$$

- The shortest distance

Sounds abstract? That's actually how Web search engines (likeGoogle) work

Vector space modeling Or the "TFID F" model

Cosine measure
$\mathbf{Q}:$ "apple computer" $\left\lvert\, \begin{aligned} & \mathbf{Q}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{k}}\right) \\ & \mathbf{D}\end{aligned}\right.$

Vector space distance functionsThe Cosinemeasure
$\operatorname{sim}(x, y)=\cos (\theta)=\frac{x \bullet y}{|x| \times|y|}=\frac{\sum x_{i} \times y_{i}}{\sqrt{\sum x_{i}^{2}} \times \sqrt{\sum y_{i}^{2}}}$

14

How to evaluate vector-space queries?
Consider Lp measure--

- Consider L_{2} as the ranking function
- Given object Q, find O_{i} of increasing $d\left(Q, O_{i}\right)$
- How to evaluate this query? What index structure?
- As nearestneighbor queries
- Using multidimensional or spatial indexes. e.g., Rtree [Guttman, 1984]

How to evaluate vector-space queries?
Consider Cosine measure--

- $\operatorname{Sim}(Q, D)=\sum x_{i} \times y_{i}$
- How to evaluate this query? What index structure?
- Simple computation: multiply and sum up
- Inverted index to find document with non-zero weights for query terms

Is vector space always possible?

- Can you always express objects as k-dimensional vectors, so that
- distance function compares only corresponding dimensions?
- Counter examples?

How about comparing two strings? Is it natural to consider in vector space?

- Two strings

Metric space- What is a metric space?

- Set S of objects
- Global distancefunction d, (the "metric")
- For every two points x, y in S :
- Positiveness: $\quad d(x, y) \geq 0$
- Symmetry $\quad d(x, y)=d(y, x)$
- Reflexivity $\quad d(x, x)=0$
- Triangle inequity $d(x, y) \leq d(x, z)+d(z, y)$

Vector space is a special case of metric spaceE.g., consider L_{2}

- Let $p=2$ in L_{p} :

$$
L_{P}\left(x:\left(x_{1}, \ldots, x_{k}\right), y:\left(y_{1}, \ldots, y_{k}\right)\right)=\left(\sum_{i=1}^{k}\left|x_{i}-y_{i}\right|^{2}\right)^{\frac{1}{2}}
$$

- The shortest distance

A nother example- Edit distance

- The smallest number of edit operations (insertions, deletions, and substitutions) required to transform one string into another
\square Virginia
- Verginia
- Verminia
- Vermonta
- Vermonta
- Vermont
- http://urchin.earth.li/~twic/edit-distance.html

Is edit distance metric?

- Can you show that it is symmetric?
- Such that d (Virginia, Vermont $)=d($ Vermont, Virginia $) ?$
- Virginia
- Verginia
- Verminia
- Vermonta
- Vermonta
- Vermont
- Check other properties

How to evaluate metric-space ranking
queries? [Chávez et al., 2001]

- Can we still use R-tree?
- What property of metric space can we leverage to "prune" the search space for finding near objects?

Metric-space indexing

- What is the range of u ?
- How does this help in focusing our search?

Si milarity-based relevance- We just tal ked about this "vector-space modeling" [Salton et al., 1975]

Vector space modeling Or the "TFID F" model

Q: "apple computer" $\quad \mathbf{Q}=\left(x_{1}, \ldots, x_{k}\right)$

- TF-IDF for term weights in vectors
- TF: term frequency (in this document)
- the more term occurrences in this doc, the better

IDF: inverse document frequency (in entire DB)

- the fewer documents contain this term, the better

Relevance-based ranking - for text retrieval

What is being "relevant"?
Many different ways modeling relevance

- Similarity
- How similar is D to Q?
- Probability
- How likely is D relevant to Q ?
- Inference
- How likely can D infer Q?

Probabilistic relevance

- View: Probability of relevance - the "probabilistic ranking principle" [Robertson, 1977]
"If a retrieval system's responseto each request is a ranking of the documents in the collections in order of decreasing probability of usefulness to the user who submitted the request, where the probabilities are estimated as accurately as possible on the basis of whatever data made available to the system for this purpose, then the overall effectiveness of the system to its users will be the best that is obtainable on the basis of that data.
- Initial idea proposed in [Maron and Kuhns, 1960] many models followed.

Probabilistic models (e.g.: [Croft and Harper, 1979])

- Estimate and rank by $\mathrm{P}(\mathrm{R} \mid \mathrm{Q}, \mathrm{D})$, or $\log \frac{P(R \mid Q, D)}{P(\bar{R} \mid Q, D)}$ al.e., $\log \prod_{n \in Q, D} \frac{p_{i}}{1-p_{i}} \cdot \frac{1-q_{i}}{q_{i}}$, where $p_{i}=P\left(t_{i} \mid R\right)$ $q_{i}=P\left(t_{i} \mid \bar{R}\right)$
- Assume
- p_{i} the same for all query terms
- $q_{i}=n_{i} / N$, where N is DB size
- (i.e., "all" docs are non-relevant)
- $\log \prod_{n \in Q, D} \frac{p_{i}}{1-p_{i}} \cdot \frac{1-q_{i}}{q_{i}} \propto \log \prod_{N \in Q, D} \frac{1-q_{i}}{q_{i}}=\log \prod_{n \in Q, D} \frac{N-n_{i}}{n_{i}}=\sum_{n \in Q, D} \log \frac{N-n_{i}}{n_{i}}$
- Similar to using "IDF" a intuition: e.g., "apple computer" in a computer DB

This is how we derive the ranking function:

- To rank by $\log \frac{P(R \mid Q, D)}{P(\bar{R} \mid Q, D)}$

$$
\begin{aligned}
& \frac{P(R \mid Q, D)}{P(\bar{R} \mid Q, D)}=\frac{P(Q, D \mid R) P(R)}{P(Q, D \mid \bar{R}) P(\bar{R})} \propto \frac{P(Q, D \mid R)}{P(Q, D \mid \bar{R})} \\
& P(Q, D \mid R)=\prod_{v \in Q, D} P\left(t_{i} \mid R\right) \prod_{t \in Q, D}\left(1-P\left(t_{j} \mid R\right)\right)=\prod_{v \in Q, D} p_{i} \prod_{v \in Q, D}\left(1-p_{i}\right) \\
& P(Q, D \mid \bar{R})=\prod_{v \in Q, D} P\left(t_{i} \mid \bar{R}\right) \prod_{v \in Q, D}\left(1-P\left(t_{j} \mid \bar{R}\right)\right)=\prod_{\| \in Q, D} q_{i} \prod_{y \in Q, \bar{D}}\left(1-q_{j}\right) \\
& \frac{P(R \mid Q, D)}{P(\bar{R} \mid Q, D)}=\frac{\prod_{n \in Q, D} p_{i} \prod_{V \in Q, D}\left(1-p_{j}\right)}{\prod_{i} \prod_{v \in Q, D}\left(1-q_{i}\right)} \propto \frac{\prod_{v \in Q, D} p_{i}\left(1-q_{i}\right)}{\prod_{v \in Q, D} q_{i}\left(1-p_{i}\right)}=\prod_{n \in Q, D} \frac{p_{i}}{1-p_{i}} \cdot \frac{1-q_{i}}{q_{i}}
\end{aligned}
$$

Inference-based relevance

- Motivation
- Is there any "objective" way of defining relevance?
- Hint from a logic view of database querying: retrieve all objects s.t., $O \rightarrow Q$
- E.g., $\mathrm{O}=$ (john, cs, 3.5) \rightarrow gpa>3.0 AND dept=cs
- What about "Retrieve D iff we can prove $D \rightarrow Q$ "?
- Challenges: Uncertainty in inference? [van Rijsbergen, 1986]
- Representation of documents and queries
- Quantify the uncertainty of inference $P(D \rightarrow Q)=P(Q \mid D)$

Inference network [Turtle and Croft, 1990]

- Given doc as evidence, prove that info need is satisfied
- Inference based on Bayesian belief networks

Using and constructing the network

- Using the network: Suppose all probabilities known - Document network can be pre-computed
- For any given query, query network can be evaluated
- $P(Q \mid D)$ can be computed for each document
- Documents can be ranked according to $P(Q \mid D)$
- Constructing the network: Assigning probabilities
- Subjective probabilities
- Heuristics, e.g., TF-IDF weighting
- Statistical estimation
- Need "training"/relevance data

Ranking and Preference in D atabase Search: b) Preference M odeling

Kevin Chen-Chuan Chang

T The opatasase and int
The Database and Information Systems Laboratory $1 \perp 11$ ant

Ranking- Ordering according to the degree of some fuzzy notions:

- Similarity (or dissimilarity)
- Relevance

35

What do you prefer? For a job.

Stating your dream job? It's all about preferences

- Expressing preferences:
- P1: Pay well - The more salary the better!
- P2: Not much work - The less work the better!
- P3: Close to home - The closer the better!
- Combining preferences:
- How to combine your multiple wishes?
- Querying preferences:
- How to then match the perfect job?

Different approaches

- Qualitative
- Preferences are specified directly using relations - E.g., I prefer X to Y; you like Y better than X

- Quantitative

- Preferences are specified indirectly using scoring functions
aE.g., I like X with score .3 , and Y with .5

This setting is somehow different from typical voting scenarios

Quantitative approach [Agrawal and Wimmers, 2000]

- Preference can be measured by "utility" values - Quantification of how useful things are
- Such quantification facilitates the search for optimal decisions as maximal utility scores

Expressing preference: Preference functions

- Preference function:
- Mapping a record of a given type to a numeric score.
E.g. Laptopl('dell',1600,5.6,14,'P4 2GHZ')

Alice's preference function			
brand	price	weight	score
dell	>1500	$*$	0.3

$\mathrm{A}($ laptop 1$)=0.3$

Bob's preference function			
brand	price	weight	score
$*$	$*$	>5	veto

B(laptop1)=veto

Combining preferences: Value function that consider relevant scores and the record
$\operatorname{combin} \& f)\left(p_{1}, \ldots, p_{n}\right)(r)=f\left(\operatorname{Scores}\left(p_{1}, r\right), \ldots, \operatorname{Scores}\left(p_{n}, r\right), r\right)$

- Value function f - for merging scores
- Consider only
- all relevant scores of r
- the record r itself

Combining preferences: Example

- Considering the record Laptop1('dell',1600,5.6,14,'P4 2GHZ')
- $A($ laptop1 1$)=\{0.3,0.9\}$
- B (laptop1) $=\{0.6,0.8\}$

Rules:

- Bob has veto power over any laptop they buy.
- If price is higher than $\$ 1550$, Bob will decide; otherwise listen to Alice.
- f(Alice's score set, Bob's score set, laptop1)
\{ if (veto in Bob's score set) then return veto else if price> 1550 then return max(Bob's score set) else return average(Alice's score set) \}
- combine $(\mathrm{f})(\mathrm{A}, \mathrm{B})($ laptop 1$)=$
$\mathrm{f}(\mathrm{A}($ laptop 1$), \mathrm{B}($ laptop 1$)$, laptop1 $)=0.8$

Properties of combining functions: Closure

- Closure

- Why is this desirable?
- Allow flexible compositions of preferences

Properties of combining functions: M odular

- Modular
- Combined score of r only depends on the scores of r
- Why is this desirable?
- Pref are autonomous:
- Change IBM will no affect Dell
- Ease of implementation
- "Context free", or "first order"
- Counter example?

Querying preferences -

Ranking by preference scores

- Top-k queries-
- Finding top k answers with highest scores
- Much research effort in this area
- We will see next time

Quantitative model: Advantages

- Advantages:
- Discriminative scoring and tie resolution
- Efficient implementation
- Problems?

Quantitative model: Problems

- Problems:
- Not obvious how to specify scores
- Not obvious how to decide combining functions
- Total ordering by scores is not always reasonable

Quantitative approach? [Chomicki, 2003]

Book No.	ISBN	Vender	Price
1	0679726691	BooksForLess	$\$ 14.75$
2	0679726691	LowestPrices	$\$ 13.50$
3	0679726691	QualityBooks	$\$ 18.80$
4	0062059041	BooksForLess	$\$ 7.30$
5	0374164770	LowestPrices	$\$ 21.88$

Preference-1. (Preference on Best Price)
If the same ISBN, prefer the one with lower Price
\Rightarrow Score (Book2) > Score $($ Book1) $>$ Score $($ Book3)
Score(anyof Book 1, 2, 3) = Score(Book4) = Score(Book 5) \Rightarrow Score $($ Book 1) $=$ Score $($ Book2 $)=$ Score (Book3)
$\overline{\text { There is no score function that captures Preference } 1}$

Qualitative approach: Specify pairwise ordering relation between objects

Book No.	ISBN	Vender	Price
1	0679726691	BooksForLess	$\$ 14.75$
2	0679726691	LowestPrices	$\$ 13.50$
3	0679726691	QualityBooks	$\$ 18.80$
4	0062059041	BooksForLess	$\$ 7.30$
5	0374164770	LowestPrices	$\$ 21.88$

Preference-1. (Preference on Best Price)
If the same ISBN, prefer lower Price to higher price
\Rightarrow Preference 1 can be expressed as a binary relation (b1,b2) such that:
$b 1 . I S B N=b 2 . I S B N \wedge$ b1. Price $<$ b2. Price

Qualitative \supset Quantitative

- Qualitative: Preference relation
- Quantitative: Scoring function
- Scoring-based ordering can be captured by preference relations
- But, not every intuitively plausible preference relation can be captured by scoring function

Preference as ordering [Kießling, 2002; Chomicki, 2003]

- It is natural, intuitive that people express their wishes:
"I like X better than Y " or "I prefer X to Y "
- Better-than can be captured by a binary relation
- X and Y can be any records, as a set of attributes
- E.g., Book (ISBN, Vender, Price)
- E.g., Let $<\mathrm{P} 1$ be the relation for Preference 1 in Book (0679726691,BooksForLess,\$14.75)
<P1 (0679726691,LowestPrices,\$13.50)

Preference: Strict partial order

- Given a set \mathbf{A} of attribute names with value domain $\operatorname{dom}(\mathbf{A})$
- A preference \mathbf{P} is a strict partial order $\mathrm{P}=(\mathrm{A}, \angle \mathrm{P})$ on $\operatorname{dom}(\mathrm{A})$
- $x<P y$ is interpreted as "I like y better than x ",
- x and y are indifferent iff
- neither $\mathrm{x}<\mathrm{P}$ y nor $\mathrm{y}<\mathrm{P} \mathrm{x}$
- Properties of preferences
- Irreflexive : $x($ not $<P$) x
- Transitive: $\mathrm{x}<\mathrm{P}$ y and $\mathrm{y}<\mathrm{Pz} \rightarrow \mathrm{x}<\mathrm{Pz}$
- Asymmetric: $x<P$ y $\rightarrow y($ not $<P) x$
- Strict partial order
- Strict:
- Since if $\mathrm{x}<\mathrm{P} \mathrm{y}$ hold then $\mathrm{y}<\mathrm{P} \mathrm{x}$ doesn't, like "less than" (asymmetric)
- Partial:
- Since $<\mathrm{P}$ not enforced on every pair of objects

Preference graph, or the "better than" graph

Directed, acyclic graph (why acyclic?)

- An edge $(y \rightarrow x)$ exists for $x<P y$
t2 $<\mathrm{P} \mathrm{t1}, \mathrm{t} 2<\mathrm{P} \mathrm{t3}, \mathrm{t} 1<\mathrm{Pt} 4, \mathrm{t} 1<\mathrm{P}$ t3

- Nodes in G without a predecessor are maximal elements of $\mathrm{P}(\max (\mathrm{P}))$, being at level 1
- x is on level j, if the longest path from x to a maximal node has j-1 edges
- x, y are unranked If no directed path exists between x and y

Expressing preference:

Base preference constructors

- Non-numerical base preferences
dom(Color)=\{red, yellow, green\}
- Specify the items which is preferred
- POS(color, \{green\})

- Specify the items which is not preferred
- NEG(color, \{red\})

Explicitly specify the preference between pairs of items ${ }^{\text {green }}$

- EXP(color, $\{($ yellow,green), (red,yellow) $\}$)

Expressing preference:

Base preference constructors

- Numerical base preferences
- Prefer the value around a specific value - AROUND (price, 40000)
- Prefer the value within a specific range
- BETWEEN (mileage, [20000,30000])
- Prefer the value as low (high) as possible
- LOWEST (price)
- Preference is based on some scoring function
- f(price)
- $x<P$ y iff $f(x)<f(y)$

Combining preferences: Complex Preference Constructors-- Pareto

- If P1 and P2 are considered equally important, how to combine then?
- Pareto: Only preserve those orders in consensus

Combining preferences:

Complex Preference Constructors-- Priority

- If P1 is more important than P2, how to combine?
- Priority: P1 first then P2

Querying preferences

Given $\mathrm{P}=(\mathrm{A},<\mathrm{P})$ and a relation $\mathrm{R}, \mathrm{R}[\mathrm{A}] \subseteq \operatorname{dom}(\mathrm{A})$
A preference query $\sigma P](R)$ is a soft selection operation on R

- Best-Matches-Only (BMO) query model
- Retrieve perfect choices, if present in R
- Perfect choices are maximal elements of P
- Otherwise deliver best-matching alternatives (tuples with lowest level), but nothing worse
- Ranking ("top-k") or iterated preferences
- Order tuples according their level value

The BMO query model

- Suppose base preferences: - P1: LOWEST(price)
- $E \rightarrow D \rightarrow C \rightarrow B \rightarrow A$
- P2: LOWEST(weight)
- $C \rightarrow B \rightarrow E \rightarrow A \rightarrow D$
- Combined preference: P1 P2 - Better-than Graph:

Laptop	price	weight
A	4000	5.4
B	3200	5
C	3000	4.8
D	1200	5.8
E	1000	5.2

Level 1

Level 2

- BMO answers: $\sigma[P](R)=\{C, E\}$
- Challenge: Answer BMO without fully computing P1 \otimes P2 (Next time)

Qualitative or quantitative?

- Consider different aspects:
- Query expression?
- Query processing?
- Result presentation?
- What do you suggest?

Conjecture- Perhaps a hybrid...

- Front-end: Rank expression
- Let user specify preference in partial orders
- Back-end: Rank processing
- Process with an approximate score-based ordering

Thank You!

