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Criteria for a Unified Theory of
Decision Making

(Inspired by Luce and Suppes, Handbook of Math Psych,1965)

v Treat individual & group decision making in a unified way
v Reconcile normative & descriptive work

v' Integrate & compare competing normative benchmarks
v' Reconcile theory & data

v' Encompass & integrate multiple choice, rating and ranking
paradigms

v' Integrate & compare multiple representations of preference,
utilities & choices

v Develop dynamic models as extensions of static models

= Systematically incorporate statistics as a scientific decision
making apparatus
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Binary (Preference) Relations

For a standard reference with t lu* definitions used here, see, e.g., Roberts [Rob79]. A binary
relation on a fixed finite set C takes the form B C C x C. For anv binarv relation B3, its
reverse is B! = {(b,a)|(a,b) € B} and let B = [(  C| B Given binary relations B. B’,
let BB" = {({a,c) € C x C | db such that (a,b) € B dml (b, c) € B'}. This is also commonly
referred to as the relative product of B and B'. Let Id = {(c,c)|c € C} be the identity
relation on C.

A binary relation is said to be

reflexive, if Id C B

transitive, if BB C B;

asymmetric, if BB 1 =
antisvimetric, if BN B C Id;
negatively transitive, if BB C B;
strongly complete, if BB ' =(C % C;

complete, if BUB *UId=C xC.



Binary (Preference) Relations

A linear order is a transitive, antisymmetric, and sf mu(el& complete hilmn relation.
A strict linear order is a transitive, asyvmmetric, and complete binary relation.
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Binary (Preference) Relations

A linear order is a transitive, antisymmetric, and strongly complete binary relation.
A strict linear order is a transitive, asyvmmetric, and complete binary relation.

A weak order is a transitive and strongly complete binary relation.

A strict weak order is an asymmetric and negatively transitive binary relation.
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Binary (Preference) Relations

A linear order is a transitive, antisymmetric, and strongly complete binary relation.
A strict linear order is a transitive, asyvmmetric, and complete binary relation.

A weak order is a transitive and strongly complete binary relation.

A strict weak order is an asymmetric and negatively transitive binary relation.

A binary relation B is a partial order if it is reflexive, transitive, and antisymmetric.

A strict partial order is a partial order B which is transitive and asymmetric
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Binary (Preference) Relations

A binary relation B is a partial order if it is reflexive, transitive, and antisymmetric.
A strict partial order is a partial order 3 which = transitive and asymmétrié

An interval order is a strict partial order B with the additional property BB 'B C B.

QD
O

@y
o

A semiorder is an interval order B with the additional property that BBB ! C B.

a
v



Deterministic Models:
Real Representations

AXxiomatic
Measurement
Theory

Qualitative |[«——> [Quantitative

AXIoms Real VValued Functions

Theorem 2.1.8 Let B be a binary relation on a finite set C. B is a strict weak order if and
only if it has a real representation u : C — R of the following form:

aBb < ula) > u(b).

If B is a linear order. then it has the above representation. bul the converse holds only if u
15 a one-to-one mapping.



Deterministic Models: Real Representations

AXxiomatic
Measurement
Theory

Qualitative |[«——> [Quantitative

Axioms Real Valued Functions
B is a semiorder if and only if il has a real representation w : C — R of the following

form:

aBb < ula) > u(b) + .

where e € R is a fizved strictly positive real valued (utility) threshold.
B is an anterval order if and only if it has a real representation [,u : C — R, with

[{x) < ulx) (for all x ). of the following form:

aBb < l{a) = ulb).



Deterministic Models:
Real Representations

Axiomatic
Measurement
Theory
Qualitative |4¢——>
Axioms

(Normative)
Utility Theory

Quantitative

Real VValued Functions

Expected Utility Theory

Prospect Theory




Rating, Ranking, Choice

Data:
Qualitative |[«——> [Quantitative
Axioms Real Valued Functions
Example:

Violations of Expected Utility Theory




Why Probabilistic Models?

Data: Result of Random Sampling

Preferences/Utilities Vary

Between Subjects:
Social Choice (e.g., Voting)

Between and Within Subjects:
Persuasion (e.g., Campaigns)




Deterministic Models:
Real Representations

Preferences |e=— | Utilities

Binary Relation Real Valued Function

Strict Weak a b ’
Preference C ' Utility Function:

Order d a”d.;?”'y u(a) = u(b) > ... > u(e)
e |



Probabilistic Models:
Random Utility Representations

Preferences |e=— | Utilities

Binary Relation Real Valued Function
Probabilities over | > Real Valued
Binary Relations Random Variables

ab
Probability of the C

strict weak order d Prob[U(a) = U(b) > ... > U(e)]



Probabilistic Models:
Random Utility Representations

Theorem 2.1.10 A family of jointly distributed real valued utility random variables U =
(U, )izt hece satisfies the following properties:

RANDOM UTILITY REPRESENTATIONS OF LINEAR ORDERS: If k=1 and noncoincidence
holds, that is. P(U. = Uy) = 0,¥e,d € C. then P induces a probability distribution w - P(m)
on the set 11 of linear orders over C through. for any linear order m = cyca...cn (1 is best,
c. L O 1S worst),

Plr)=2U, > U, - > U.,). (2.12)
Ranpom UTILITY REPRESENTATIONS OF WEAK ORDERS: If k = 1, then, regardless of

the joint distribution of U, P induces a probability distribution B~ P{B) on the set SWO
of strict weak orders over C through

P(B)="P N (U, =U,)| N N (U.< Uy : (2.13)

(ab)EB (e, d)eC2—B



Probabilistic Models:
Random Utility Representations

RanxpoM UTILITY REPRESENTATIONS OF SEMIORDERS: If k = 1, then. regardless of the
joint distribution of U, P induces a probability distribution B + P(B) on the set SO of
semiorders over C through, given a strictly positive threshold e € R7 T,

P(B)=P N (U,>U,+¢| N N (U.—-U;<¢) . (2.14)
(a.b)el (e.d)eC2-B

RANDOM UTILITY REPRESENTATIONS OF INTERVAL ORDERS: If b = 2 and P(U,,. <
Us..) = 1 for all choices of c. then, writing L. for Uy, (lower utility) and U. for Us,
(upper utility ) we have the following result. In this case. P induces a probability distribution

B v P(B) on the set TO of interval orders over C through

P(B) = '1( [ (N (L, > Uy | ) [ M (L, < Ut;j] ) . (2.15)
(ed)cC2-B

(a.b)leb




General Results for
Probabilistic Measurement

(Regenwetter, 1996, IMP)

(Regenwetter & Marley, 2001, JMP)

Preferences

Utilities

Probabilities over
Relations or
Relational Structures

Real VValued

Random Variables

Probability Measure over

Space of Real Representations
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Majority rule:
(Condorcet
Criterion)

Majority Winner
e (Candidate who Is ranked ahead of any other
candidate by more than 50%
e Candidate who beats any other candidate
In palrwise competition




Kenneth Arrow’s (1951)
Nobel Prize winning
Impossibility Theorem

o List of Axioms of Rationality

* Impossibility to simultaneously satisfy all
Axioms

e Majority permits “cycles”.



The Obsession with Cycles

P




Majority Cycles

ABC 1 person

BCA 1 person
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Majority Cycles

ABC 1 person

A beats C 1 time

BCA 1 person

CAB 1 person

C beats A 2 times

A is majority preferred to B

B is majority preferred to C

C is majority preferred to A




Majority Cycles

ABC 1 person
BCA 1 person

Democratic
Decision
Making

at Risk!?!

o



$1,000,000 Question:

Where is the empirical evidence
for voting paradoxes In practice?

Oops....

For instance, hardly any evidence that
majority cycles have ever occurred among
serious contenders of major elections.

Actually, evidence circumstantial at best.



Where Is the evidence for cycles?

Majority Winner
e Candidate who is ranked ahead of any other candidate by more than 50%
« Candidate who beats any other candidate in pairwise competition

Plurality: Choose one

SNTV & Limited Vote: Choose k many
Approval Voting: Choose any subset
STV (Hare), AV (IRV): Rank top k many
Cumulative Voting: Give m pts to k many
Survey Data: Thermometer, Likert Scales




Example 1:
Probabilistic Models for Approval Voting
and
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A 40 | AB 2

B 20 | AC 8

C 20 |BC 10
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Example 1:
Probabilistic Models for Approval Voting
and
Majority Rule

A 40 | AB 2 A: 50 votes
B 2 | AC 8 B: 32 votes

C: 38 votes
C 20 |BC 10

A Is the Approval Voting Winner!

Is there a Majority Winner? Who Is it?



Sorry! Majority Winner
not defined for Approval
Voting

Majority Winner
 Candidate who is ranked ahead of any other
candidate by more than 50%

« Candidate who beats any other candidate
In pairwise competition

Majority Winner is Counterfactual




Example 1:
Probabilistic Models for Approval Voting
and
Majority Rule

A 40 | AB 2 A beats B 48 times

B 20 | AC 8 B beats A 30 times

C 20 |BC 10

A is majority preferred to B



Example 1:
Probabilistic Models for Approval Voting
and
Majority Rule

A 40 | AB 2 A beats C 42 times

B 20 | AC 8 C beats A 30 times

C 20 |BC 10

A is majority preferred to B

A is majority preferred to C



Example 1:
Probabilistic Models for Approval Voting
and
Majority Rule

A 40 | AB 2 B beats C 22 times

B 20 | AC 8 C beats B 28 times

C 20 BC 10

A is majority preferred to B

A is majority preferred to C

EXs 3

C is majority preferred to B



Example 1:
Probabilistic Models for Approval VVoting
and
Majority Rule

A 40 | AB 2 ABC 8
ACB 32| aABC 2
B 20 | AC 8
BCA 20| ACB 8
C 20 [BC 10
CBA 20| BCA 5
CBA 5




Example 1:
Probabilistic Models for Approval VVoting
and
Majority Rule

A 40 | AB 2 ABC 8
ACB 32| aABC 2
B 20 | AC 8
BCA 20| ACB 8
C 20 [BC 10
CBA 20| BCA 5
CBA 5

A is majority tied with B
A is majority tied with C
C is majority preferred to B

EXel




Majority Winner
may be Model Dependent

First computation: Topset Voting Model

(Regenwetter, 1997, MSS)
(Niederee & Heyer, 1997, Luce volume)

Second computation: Size-Independent Model
(Falmagne & Regenwetter, 1996, JMP)
(Doignon & Regenwetter, 1997, JIMP)
(Regenwetter & Grofman, 1998a,b; SCW, MS)
(Regenwetter & Doignon, 1998, JMP)
(Regenwetter, Marley & Joe, 1998, AJP)



Order by
AV scores

Majority Order
Topset Model

Majority Order
SIM Model

TIMS E1

TIMS E2

MAA1l

MAAZ2

A25

AT72

IEEE
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Preliminary Conclusions:

Majority Preference Relation

IS model dependent
should be treated in an inference framework
may or may not be robust




A General Concept of Majority Rule

Linear Orders “complete rankings”

Weak Orders “rankings with possible ties”
Semiorders “rankings with (fixed) threshold”
Interval Orders “rankings with (variable) threshold”
Partial Orders asymmetric, transitive

Asymmetric Binary Relations
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Real Representation
of Weak Orders

>

(a,b)eB < u(a) > u(b)

2
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Variable Preferences:

Probability Distribution
on Binary Relations

Variable Utilities:

Jointly Distributed Family of
Utility Random Variables
(Random Utilities)

(parametric or nonparametric)



Random Utility Representations

_ Interval Orders

/Li>Uj|(i,j)eB\
P(B) =P and
\Ling|(i,j)¢B)




A General Definition
of Majority Rule




A General Definition
of Majority Rule

Given a probability distribution
P:B—]0,]]
B 95 P(B)
on any set B of binary relations,
a is strictly majority preferred to b
if and only if

Z(a,b)eB P(B) = Z(b,a)eB' P(B|)

For Utility Functions or Random Utility Models
choose a Random Utility Representation
and obtain a consistent Definition



Examples:

| majority preferred to |

S
P(U,>U,;+54)>P(U, > U, +54)



Weak Utility Model
Weak Stochastic Transitivity
Transitivity of Majority Preferences

Definition 1.2.1 A weak utility model is a set of binary choice probabilities for which
there exists a real-valued function w over C such that

1
Ped i ? And “I[_{“.:I i “I[_”r.-:"

When C is finite, then the weak utility model is equivalent to weak stochastic transitivity

of the binary choice probabilities, which we define next [LSG5].

Definition 1.2.2 Weak stochastic transitivity of binary choice probabilities holds when

Rl

— ;_”:'f. i

o] —

& Pae =

o] =

Ped =



Remember: No Cycles in 7 Approval Voting Data Sets
(1 analysis ambiguous)

Let’s analyze National Survey Data!
1968, 1980, 1992, 1996 ANES

Feeling Thermometer Ratings
translated Into
Weak Orders or Semiorders




1968 NES

Weak Order
Probabilities

H

32 | N

W

H N

08 \w

N

H

W

27

.05

2T

TISZ2

.07



1968 NES
Weak Order
Net Probabilities

.26

.05

.03

Majority l

25

2SI

-.04

-.05




1968 NES
Semiorder
Net Probabilities

Threshold
of 10

23

Majority l

19

09 -.03

.02



H
ézglsiol\rlgesr 02 V,\Y -.04 Threshold
er f 54
Net Probabilities °
0
0
-.19

19

Majority

.04 W -.02




ANES Strict Majority
Social Welfare Orders

Year Threshold

1963 0, ..., 96




ANES Strict Majority
Social Welfare Orders

Year Threshold SWO
Clinton
1992 0, ...,99 Bush
Perot




However:
There I1s no Theory-Free
Majority Preference Relation



ANES Strict Majority
Social Welfare Orders

Threshold

Year
0,..., 29

1980
30, ..., 99




ANES Strict Majority
Social Welfare Orders

Threshold
Year
0,...,49
85, ..., 99
1996

50, ...,84




Preliminary Conclusions:

Majority Preference Relation

IS model dependent

We did not see any indication of cycles!




Borda Scoring rule:

« 15t ranked candidate gets 2 points,
« 2"dranked candidate gets 1 point,

« 3" ranked candidate gets O point.

ith

In general, the 1" ranked among Il candidates gets N-1 points.




Scoring rule:

o I1stranked candidate gets x points,
« 2" ranked candidate getsy < x points,
« 3" ranked candidate gets z <y points.

In general, the ith ranked among Il candidates gets f(n-1)

many points with fincreasing:




Plurality Scoring rule:

* 1stranked candidate gets 1 point,

o other candidates get O points.




How about a General Concept
of Scoring Rules?

Let’'s generalize the concept of
Ranks from Linear Orders to

Arbitrary Finite Binary Relations



Generalizing ranks
beyond linear orders

(1)
(2)
(3)
(4)
(5)
(6)

f ()
c (?)
a—} b~ (7?)
d {’F'

e (7)



In-degree, Out-degree
and Differential of an object

i In-degree (C) =1
¢ (3) Out-degree (C) =2
a—>b A(c) = Differential () =
| f In-degree (C) - Out-degree (C) — -1
e n+1+ A(c)
Rank (¢) =
2




Generalizing ranks
beyond linear orders

(1) f (2.5
@ (3)
3
(3) _
d (4)

@ N e (4.5
(5) n+1+ A(c)

Rank (¢) =
(6) 2




Some properties of generalized rank

. Average generalized rank is 1*1
2

 Minimal possible rankis 1

 Maximal possible generalized rank is n



Borda Scoring rule:

(for n=3 candidates)

« 1stranked candidate gets 2 points,

« candidate with rank = 1.5 gets 1.5 points,
e 2" ranked candidate gets 1 point,
 candidate with rank = 2.5 gets 0.5 points,

« 3" ranked candidate gets O point.

In general, the it ranked among Il candidates gets N-1 points.




Borda scores derived from semiorder probabilities

________

R
LR .04 _
" C Borda (R) =
A1 A .05
R/A\- Cy 2%(.1+.11+.04) +

1*(.04+.12+.02+.05) +

C R 5*(.03+.01+.02+.1) +
lEA/ ‘ \\119_1;0/2 ‘
\ ] \ .
A RG] RIS h 0%(.04+.08+.07) =
R\ % 0L Az ] A
04 LC A/R < ARG .07 =1.02
. C
i 'R |
Semiorder LR 04

Threshold=10 ' 1980 NES



Borda scores derived from semiorder probabilities

L C 04
11R /A\ 1‘\5..@\.‘05
........ SC_A SA L
R / \R / -
18 01.A/ R 1.05
‘ 0L 2 ~o,.02 e
R 0088 AT
07 (¢ G 14
1 00%c ‘ \ g /02 .
04 LCIS A ARSIy IR 07
R AT AR
03 C\ é / \\\\\ 08
Semiorder R

Threshold=10

Borda (R) =
1.02

Borda (A) =
0.92

Borda (C) =
1.07

1980 NES



Plurality Scoring rule:

(for n candidates)

* Istranked candidate gets 1 point,
e other candidates get O points.

f (2.5)
c (3)
DN
(3.5) al/—> b (3.
d (4)

™~

Note: 1T no (single) candidate has rank equal to 1,

e (4.5)

a given ballot is effectively ignored



Plurality scores o

erived from semiorder probabilities

" ok Plurality (R)=
- R AT 1%(.1+.11+.04) =
NG =0.25
17 01
T LC -
‘ 0L Plurality (A)=
07 RCA< e =01
JA_: o0 A7 Plurality (C)=
N 1 017A = .26
03 R‘"'CNT‘C E
Semiorder R 04 1980 NES

Threshold=10



Empirical example:
NES thermometer scores

Social ordering depends on:

- model of preferences
[translation of raw data into binary relations]

- social choice function
[Majority, Borda, Plurality, others]

- data



Empirical example: 1968 NES

Various scoring rules «—Threshold=0.1,2, ..., 97

Plur wAsh
Out-degree

In-degree

A-plw\sh

HWN

TR
WHN

W>(H=N) .
Wi Candidates: H, N, W
(W=N)>H
NWH
N>(H=W)

Data: thermometer scores {1, ..., 97}

NHW
(H=N)>W
HNW

H>(W=N)

Model: semiorders with threshold: 0 ... 97

Scoring rules: Plurality, Antiplurality (with or
without sharing), Borda, In-degree, Out-degree




ANES Strict Majority
Social Welfare Orders

Year Threshold

1963 0, ..., 96




Empirical example: 1980 NES

V ] ] q I IIIl
/ / eShOId O, 1! 2’ bl | 100
s a2l o 20 30l selsslael 3 ) anl s I I I N T R R R R T T e e

Plur

Plur wAsh
Out-degree
Borda
In-degree
A-plw\sh
Antipl

2-

ACR) Candidates: A, C, R

(A=R)>C

» . Data: thermometer scores {1, ..., 100}

(gCRgg . Model: semiorders with threshold: 0 ... 100
Scoring rules: Plurality, Antiplurality (with or
without sharing), Borda, In-degree, Out-degree




ANES Strict Majority
Social Welfare Orders

Threshold

Year
0,...,29

1980
30, ..., 99




Flur

Empirical example: 1992 NES

Flur wish

A=plze
Borda
A<plze

A-plwish

Artip]

somelule

BCP
(B=C)>P
CEP
C{B=F)
CPB
(C=F)>B
PCE
P>(B=C)
PEC
(B=F)>C
BPC
B(C=F)

Candidates: B, C, P

Data: thermometer scores {1, ..., 100}
Model: semiorders with threshold: 0 ... 100

Scoring rules: Plurality, Antiplurality (with or
without sharing), Borda, In-degree, Out-degree




ANES Strict Majority
Social Weltare Orders

Year Threshold SWO
Clinton
1992 0, ...,99 Bush
Perot




Empirical example: 1996 NES

Flur

Flur wish

Azplse
Borda
Adplse

A-plwish

Antipl

SotmeEule

CPD

e Candidates: C, D, P
P>{C=D)
FPD—%; : Data: thermometer scores {1, ..., 100}

Bf,ff;:p) Model: semiorders with threshold: 0 ... 100

DCF

(-0pF Scoring rules: Plurality, Antiplurality (with or

C>(P=D) without sharing), Borda, In-degree, Out-degree




ANES Strict Majority
Social Welfare Orders

Threshold
Year
0,...,49
85, ..., 99
1996

50, ...,84




Feeling Thermometer NES

Polling

Preferences

Probabilities over
Binary Relations

Majority (Condorcet) Winner:

Data: Data
EXIists
Model Dependence

Often the same as
. Borda Winner
Aggregation and Winner by

other Scoring
Rules
(Congruence)



Rating, Ranking, Choice

Data:

Approval Voting
Feeling Thermometers
Feeling Thermometer Panel

Preferences

Binary Relation

Probabilities over
Binary Relations

Stochastic Process
on Binary Relations

AN

Aggregation

Utilities

Real Valued Function

Real VValued
Random Variables

Real Valued
Stochastic Process




Feeling Thermometer
Panel Data:

/

Preferences

Stochastic Process
on Binary Relations

NES
Polling
Data



Camaro

most power for the buck



Camaro

most power for the buck

President Bush
sent troups to lraq

N _




Question:

Can we infer the perceived properties
of the information environment
without looking at the physical information flow?

Can we analyze a Presidential Campaign
without content analysis of the mass media?



Model Primitives:

» Preferences: Weak Orders



























Model Primitives:

Preferences:

e Preference Distribution:

* Preference Change:

Information:
Continuous time:
Time zero:

Weak Orders

Probability on WO
Transitions between WO

Tokens of information
Stochastic process (Poisson)
Beginning of campaign



Information Environment:

EXTREMELY POSITIVE

moderately positive

moderately negative




Tokens of Information:

y 4
Alternative A Is the best: A

Alternative A 1S not bad: 3

Alternative A Is not great: a

Alternative A IS the worst: '



Poisson Process









Operation of the Tokens:

-

I J 1
K J K




Operation of the Tokens:




Main psychological features:

 Extreme Information tends to move you towards
an extreme state

e Moderate Information tends to move you towards
the indifferent state

e Extreme information is discarded when incompatible
with current extreme belief

* Need several steps to move from one extreme to the
opposite extreme

e Current model has no reinforcement feature



Let’s look into the black box

Beginning of the campaign

Initial Preference:







Conversation with a neighbor:

Bush 1S 2 e Republicar









Television Interview:

e Clinton talks about
Medicare













Evening Headlines:

Bush disagrees with
fellow Republicans
about Foreign
Policy













Party Time:

Clinton
Wil

Ly
save America

Improve Economy

=

Rescue
nvironment

























Random Walk:

Theorem:

The asymptotic distribution exists
and can be computed analytically



Some Interesting Parameters:

y 4

i : : Probability of |
Positive Bias Ratio

for Alternative i

Probability of i

Negative Bias Ratio Eronability o '
for Alternative i

Probability of i




Positive Bias Ratio
for Clinton

Probability of

y 4
C

Probability of

C

Net tendency of information
that moves Clinton to the top










* O~
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Data:

ICPSR:

1992 NES Feeling Thermometer Ratings
e before the election
e after the election

Self-Ratings on Partisanship Scale

(Party ID, pre-election WO, post-election WQO)
3x13x13



Goodness-of Fit of
Asymptotic Model Vs. Single Time

Data
; p-value
Pre-Election Good 1.6 .23
o0 ‘ (18)
Post-Election  Very poor  36.5 (‘i‘;‘;

(MLE, N=2,024)

New process started between the 2 interviews.



Hypothesis Tests (92 Pre-election):

Asymptotic Submodels

VS, Reject/Retain 5 p-value
Asymptotic Model Hypothesis (df)
Same
Information Flow Reject 950 <-000006
all Parties (12)




Hypothesis Tests (92 Pre-election):

Asymptotic Submodels

VS, Reject/Retain 5 p-value
Asymptotic Model Hypothesis (df)
Same
Information about Perot Reject 12 02
all Parties )
Same
Information about Perot Retain 5.6 06

for Dem. & Rep. (2)




Full Stochastic Model

& Submodels

9 p-value

G (df)

Full Stochastic Model Excellent 2682 384

vs. Data Fit ) (262)

Same

Information Flow Reject 47.9 0001
before and after Election (18)




Overall Analysis

Hypothesis Tests & Parameter Estimates
validated by literature about 92 campaign

Note:
We did not even glimpse at the mass media!



Conclusions

(Probabilistic) Binary Preference Relations
(Random) Utility Representations:

Powerful Framework
Towards General Theory of Decision Making
 Analysis of Social Choice in Practice
using an Inference Framework

Preference Aggregation Model Dependent
Where are the Majority Cycles??
Congruence among Social Choice Rules
Study Persuasion without Control of Stimuli
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