Mathematical Representations of Preference and Utility (\& their role in Social Choice)

DI MACS Tutorial

Social Choice \& Computer Science

Michel Regenwetter
University of Illinois at Urbana-Champaign

Multi-Year I nterdisciplinary Effort

- Collaborators:

Doignon, Falmagne, Grofman,
Marley, Rykhlevskaia, Tsetlin

- Past NSF SBR 9730076, Duke B-School
- Past UIUC Research Board
- Book forthcoming with

Cambridge University Press

2 Conceptual Distinctions in the Decision Sciences

Descriptive
 Theory \& Data

Individual
Judgment and
Decision Making

Behavioral Decision Research

Social
Choice

2 Conceptual Distinctions in the Decision Sciences

Descriptive
 Theory \& Data

Individual
Judgment and
Decision Making

Social
Choice
??? ???

2 Conceptual Distinctions in the Decision Sciences

Descriptive
 Theory \& Data

Social
Choice

Criteria for a Unified Theory of Decision Making

(Inspired by Luce and Suppes, Handbook of Math Psych,1965)
\checkmark Treat individual \& group decision making in a unified way
\checkmark Reconcile normative \& descriptive work
\checkmark Integrate \& compare competing normative benchmarks
\checkmark Reconcile theory \& data
\checkmark Encompass \& integrate multiple choice, rating and ranking paradigms
\checkmark Integrate \& compare multiple representations of preference, utilities \& choices
\checkmark Develop dynamic models as extensions of static models

- Systematically incorporate statistics as a scientific decision making apparatus

Rating, Ranking, Choice Data:

Approval Voting Feeling Thermometers Feeling Thermometer Panel

Utilities

Real Valued Function

Real Valued
Random Variables

Real Valued
Stochastic Process

Rating, Ranking, Choice Data:

Approval Voting Feeling Thermometers Feeling Thermometer Panel

Preferences

Binary Relation

Probabilities over
Binary Relations

Stochastic Process
on Binary Relations

Utilities

Real Valued Function

Real Valued
Random Variables

Real Valued Stochastic Process

Rating, Ranking, Choice Data:

Approval Voting Feeling Thermometers Feeling Thermometer Panel

Preferences

Binary Relation
Probabilities over
Binary Relations
Stochastic Process
on Binary Relations

Utilities

Real Valued Function
Real Valued
Random Variables
Real Valued
Stochastic Process

Rating, Ranking, Choice Data:

Approval Voting Feeling Thermometers Feeling Thermometer Panel

Preferences

Binary Relation
Probabilities over
Binary Relations
Stochastic Process
on Binary Relations

Utilities

Real Valued Function

Real Valued
Random Variables

Real Valued
Stochastic Process

Rating, Ranking, Choice Data:

Approval Voting Feeling Thermometers Feeling Thermometer Panel

Utilities

Real Valued Function

Real Valued Random Variables

Stochastic Process on Binary Relations

Evolution
Real Valued Stochastic Process

Rating, Ranking, Choice Data:

Approval Voting Feeling Thermometers Feeling Thermometer Panel

Utilities

Real Valued Function

Real Valued
Random Variables

Real Valued
Stochastic Process

Binary (Preference) Relations

For a standard reference with the definitions used here, see, e.g., Roberts [Rob79]. A binary relation on a fixed finite set \mathcal{C} takes the form $B \subseteq \mathcal{C} \times \mathcal{C}$. For any binary relation B, its reverse is $B^{-1}=\{(b, a) \mid(a, b) \in B\}$ and let $\bar{B}=[\mathcal{C} \times \mathcal{C}]-B$. Given binary relations B, B^{\prime}, let $B B^{\prime}=\left\{(a, c) \in \mathcal{C} \times \mathcal{C} \mid \exists b\right.$ such that $(a, b) \in B$ and $\left.(b, c) \in B^{\prime}\right\}$. This is also commonly referred to as the relative product of B and B^{\prime}. Let $I d=\{(c, c) \mid c \in \mathcal{C}\}$ be the identity relation on \mathcal{C}.

A binary relation is said to be
reflexive, if $I d \subseteq B$;
transitive, if $B B \subseteq B$;
asymmetric, if $B \cap B^{-1}=\emptyset$;
antisymmetric, if $B \cap B^{-1} \subseteq I d$;
negatively transitive, if $\overline{B B} \subseteq \bar{B}$;
strongly complete, if $B \cup B^{-1}=\mathcal{C} \times \mathcal{C}$;
complete, if $B \cup B^{-1} \cup I d=\mathcal{C} \times \mathcal{C}$.

Binary (Preference) Relations

A linear order is a transitive, antisymmetric, and strongly complete binary relation. A strict linear order is a transitive, asymmetric, and complete binary relation.

Binary (Preference) Relations

A linear order is a transitive, antisymmetric, and strongly complete binary relation. A strict linear order is a transitive, asymmetric, and complete binary relation.
A weak order is a transitive and strongly complete binary relation.
A strict weak order is an asymmetric and negatively transitive binary relation.

Binary (Preference) Relations

A linear order is a transitive, antisymmetric, and strongly complete binary relation.
A strict linear order is a transitive, asymmetric, and complete binary relation.
A weak order is a transitive and strongly complete binary relation.
A strict weak order is an asymmetric and negatively transitive binary relation.
A binary relation B is a partial order if it is reflexive, transitive, and antisymmetric. A strict partial order is a partial order B which is
transitive and asymmetric

Binary (Preference) Relations

A binary relation B is a partial order if it is reflexive, transitive, and antisymmetric. A strict partial order is a partial order B which : transitive and asymmetric

A semiorder is an interval order B with the additional property that $B B \overline{B^{-1}} \subseteq B$.

Deterministic Models: Real Representations

Axiomatic

Measurement Theory

Quantitative
 Real Valued Functions

Theorem 2.1.8 Let B be a binary relation on a finite set $\mathcal{C} . B$ is a strict weak order if and only if it has a real representation $u: \mathcal{C} \rightarrow \mathbb{R}$ of the following form:

$$
a B b \Leftrightarrow u(a)>u(b) .
$$

If B is a linear order, then it has the above representation, but the converse holds only if u is a one-to-one mapping.

Deterministic Models: Real Representations

Axiomatic

Measurement
Theory

Quantitative
 Real Valued Functions

B is a semiorder if and only if it has a real representation $u: \mathcal{C} \rightarrow \mathbb{R}$ of the following form:

$$
a B b \Leftrightarrow u(a)>u(b)+\epsilon,
$$

where $\epsilon \in \mathbb{R}^{++}$is a fixed strictly positive real valued (utility) threshold.
B is an interval order if and only if it has a real representation $l, u: \mathcal{C} \rightarrow \mathbb{R}$, with $l(x)<u(x)$ (for all x), of the following form:

$$
a B b \Leftrightarrow l(a)>u(b) .
$$

Deterministic Models: Real Representations

Example:

Violations of Expected Utility Theory

Why Probabilistic Models?

Data: Result of Random Sampling

Preferences/Utilities Vary

Between Subjects:
Social Choice (e.g., Voting)
Between and Within Subjects:
Persuasion (e.g., Campaigns)

Deterministic Models: Real Representations

Preferences
 Binary Relation

Utilities

Real Valued Function

Strict Weak Preference Order:

a b	if
c	and only
d	if

Utility Function:

$$
\mathrm{u}(\mathrm{a})=\mathrm{u}(\mathrm{~b})>\ldots>\mathrm{u}(\mathrm{e})
$$

Probabilistic Models: Random Utility Representations

Probabilistic Models: Random Utility Representations

Theorem 2.1.10 A family of jointly distributed real valued utility random variables $\mathbf{U}=$ $\left(\mathbf{U}_{i, c}\right)_{i=1, \ldots, k ; c \in \mathcal{C}}$ satisfies the following properties:

Random Utility Representations of Linear Orders: If $k=1$ and noncoincidence holds, that is, $\mathbb{P}\left(\mathbf{U}_{c}=\mathbf{U}_{d}\right)=0, \forall c, d \in \mathcal{C}$, then \mathbb{P} induces a probability distribution $\pi \mapsto P(\pi)$ on the set Π of linear orders over \mathcal{C} through, for any linear order $\pi=c_{1} c_{2} \ldots c_{N}$ (c_{1} is best, \ldots, c_{N} is worst),

$$
\begin{equation*}
P(\pi)=\mathbb{P}\left(\mathbf{U}_{c_{1}}>\mathbf{U}_{c_{2}} \cdots>\mathbf{U}_{c_{N}}\right) \tag{2.12}
\end{equation*}
$$

Random Utility Representations of Weak Orders: If $k=1$, then, regardless of the joint distribution of \mathbf{U}, \mathbb{P} induces a probability distribution $B \mapsto P(B)$ on the set $\mathcal{S W O}$ of strict weak orders over \mathcal{C} through

$$
\begin{equation*}
P(B)=\mathbb{P}\left(\left[\bigcap_{(a, b) \in B}\left(\mathbf{U}_{a}>\mathbf{U}_{b}\right)\right] \bigcap\left[\bigcap_{(c, d) \in \mathcal{C}^{2}-B}\left(\mathbf{U}_{c} \leq \mathbf{U}_{d}\right)\right]\right) \tag{2.13}
\end{equation*}
$$

Probabilistic Models: Random Utility Representations

Random Utility Representations of Semiorders: If $k=1$, then, regardless of the joint distribution of \mathbf{U}, \mathbb{P} induces a probability distribution $B \mapsto P(B)$ on the set $\mathcal{S O}$ of semiorders over \mathcal{C} through, given a strictly positive threshold $\epsilon \in \mathbb{R}^{++}$,

$$
\begin{equation*}
P(B)=\mathbb{P}\left(\left[\bigcap_{(a, b) \in B}\left(\mathbf{U}_{a}>\mathbf{U}_{b}+\epsilon\right)\right] \cap\left[\bigcap_{(c, d) \in \mathcal{C}^{2}-B}\left(\mathbf{U}_{c}-\mathbf{U}_{d} \leq \epsilon\right)\right]\right) . \tag{2.14}
\end{equation*}
$$

Random Utility Representations of Interval Orders: If $k=2$ and $\mathbb{P}\left(\mathbf{U}_{1, c} \leq\right.$ $\left.\mathbf{U}_{2, c}\right)=1$ for all choices of c, then, writing \boldsymbol{L}_{c} for $\mathbf{U}_{1, c}$ (lower utility) and \mathbf{U}_{c} for $\mathbf{U}_{2, c}$ (upper utility) we have the following result. In this case, \mathbb{P} induces a probability distribution $B \mapsto P(B)$ on the set $\mathcal{I O}$ of interval orders over \mathcal{C} through

$$
\begin{equation*}
P(B)=\mathbb{P}\left(\left[\bigcap_{(a, b) \in B}\left(\boldsymbol{L}_{a}>\mathbf{U}_{b}\right)\right] \cap\left[\bigcap_{(c, d) \in \mathcal{C}^{2}-B}\left(\boldsymbol{L}_{c} \leq \mathbf{U}_{d}\right)\right]\right) \tag{2.15}
\end{equation*}
$$

General Results for Probabilistic Measurement

 (Regenwetter, 1996, JMP)(Regenwetter \& Marley, 2001, JMP)

Probability Measure over Space of Real Representations

Majority rule:

(Condorcet

 Criterion)
Majority Winner

- Candidate who is ranked ahead of any other candidate by more than 50\%
- Candidate who beats any other candidate in pairwise competition

Kenneth Arrow's (1951) Nobel Prize winning Impossibility Theorem

- List of Axioms of Rationality
- Impossibility to simultaneously satisfy all Axioms
- Majority permits "cycles".

Majority Cycles

ABC	1 person
BCA	1 person
CAB	1 person

Majority Cycles

ABC	1 person
BCA	1 person
CAB	1 person

A beats B 2 times
B beats A 1 time

A is majority preferred to \mathbf{B}

Majority Cycles

| ABC 1 person |
| :--- | :--- |
| BCA 1 person |
| CAB 1 person |

B beats C 2 times
C beats B 1 time
A is majority preferred to B
B is majority preferred to \mathbf{C}

Majority Cycles

ABC	1 person
BCA	1 person
CAB	1 person

A beats C 1 time
C beats A 2 times
A is majority preferred to B
B is majority preferred to \mathbf{C}
C is majority preferred to \mathbf{A}

Majority Cycles

ABC	1 person
BCA	1 person
CAB	1 person

Democratic Decision Making at Risk!?!

A is majority preferred to B

B is majority preferred to \mathbf{C}
C is majority preferred to A

\$1,000,000 Question:

Where is the empirical evidence for voting paradoxes in practice?

Oops....
For instance, hardly any evidence that majority cycles have ever occurred among serious contenders of major elections.

Actually, evidence circumstantial at best.

Where is the evidence for cycles?

Majority Winner

- Candidate who is ranked ahead of any other candidate by more than 50%
- Candidate who beats any other candidate in pairwise competition
- Plurality: Choose one
- SNTV \& Limited Vote: Choose k many
- Approval Voting: Choose any subset
- STV (Hare), AV (IRV): Rank top k many
- Cumulative Voting: Give m pts to k many
- Survey Data: Thermometer, Likert Scales

Data are incomplete!!

Example 1:

Probabilistic Models for Approval Voting and Majority Rule

A	40	AB	2
B	20	AC	8
C	20	BC	10

Example 1:

Probabilistic Models for Approval Voting and Majority Rule

A	40	AB	2
B	20	AC	8
C	20	BC	10

$$
\text { A: } 50 \text { votes }
$$

Example 1:

Probabilistic Models for Approval Voting and Majority Rule

A	40	AB	2
B	20	AC	8
C	20	BC	10

A: 50 votes
B: 32 votes

Example 1:
 Probabilistic Models for Approval Voting and Majority Rule

A	40	AB	2
B	20	AC	8
C	20	BC	10

A: 50 votes
B: 32 votes
C: 38 votes

A is the Approval Voting Winner!
Is there a Majority Winner? Who is it?

Sorry! Majority Winner not defined for Approval Voting

Majority Winner

- Candidate who is ranked ahead of any other candidate by more than 50%
- Candidate who beats any other candidate in pairwise competition

Majority Winner is Counterfactual

Example 1:

Probabilistic Models for Approval Voting and
 Majority Rule

A	40	AB	2
B	20	AC	8
C	20	BC	10

A beats B 48 times
B beats A 30 times
A is majority preferred to B

Example 1:

Probabilistic Models for Approval Voting and
 Majority Rule

A	40	AB	2
B	20	AC	8
C	20	BC	10

A beats C 42 times
C beats A 30 times
A is majority preferred to B
A is majority preferred to \mathbf{C}

Example 1:
Probabilistic Models for Approval Voting and
Majority Rule

A	40	AB	2
B	20	AC	8
C	20	BC	10

B beats C 22 times
 C beats B 28 times

A is majority preferred to B
A is majority preferred to \mathbf{C}
C is majority preferred to B
B

Example 1:

Probabilistic Models for Approval Voting and
 Majority Rule

A	40	AB	2
B	20	AC	8
C	20	BC	10

ABC	8		
ACB	32	ABC	2
BCA	20	ACB	8
CBA	20	BCA	5
		CBA	5

Example 1:
Probabilistic Models for Approval Voting and
Majority Rule

A	40	AB	2
B	20	AC	8
C	20	BC	10

$\begin{array}{lr} \text { ABC } & 8 \\ \text { ACB } & 32 \end{array}$		
	ABC	2
BCA 20	ACB	8
CBA 20	BCA	5
	CBA	5

A is majority tied with B
A is majority tied with C
C is majority preferred to B

Majority Winner may be Model Dependent

First computation: Topset Voting Model
(Regenwetter, 1997, MSS)
(Niederee \& Heyer, 1997, Luce volume)
Second computation: Size-Independent Model (Falmagne \& Regenwetter, 1996, JMP)
(Doignon \& Regenwetter, 1997, JMP)
(Regenwetter \& Grofman, 1998a,b; SCW, MS)
(Regenwetter \& Doignon, 1998, JMP)
(Regenwetter, Marley \& Joe, 1998, AJP)

	Order by AV scores	Majority Order Topset Model	Majority Order SIM Model
TIMS E1	b c a	Same as AV order	$\begin{array}{ccc} \hline \mathrm{c} & & \mathrm{~b} \\ \mathrm{~b} & \text { or } & \mathrm{c} \\ \mathrm{a} & & \mathrm{a} \end{array}$

	Order by AV scores	Majority Order Topset Model	Majority Order SIM Model
TIMS E1	b c a	Same as AV order	$\begin{array}{lll} \hline \mathrm{c} & & \mathrm{~b} \\ \mathrm{~b} & \text { or } & \mathrm{c} \\ \mathrm{a} & & \mathrm{a} \\ \hline \end{array}$
TIMS E2		Same as AV order	$\begin{array}{lll} \hline \mathrm{b} & & \mathrm{c} \\ \mathrm{c} & \text { or } & \mathrm{b} \\ \mathrm{a} & & \mathrm{a} \\ \hline \end{array}$

	Order by AV scores	Majority Order Topset Model	Majority Order SIM Model
TIMS E1	b c a	Same as AV order	$\begin{array}{ccc} \hline \mathrm{c} & & \mathrm{~b} \\ \mathrm{~b} & \text { or } & \mathrm{c} \\ \mathrm{a} & & \mathrm{a} \end{array}$
TIMS E2	C b a	Same as AV order	$\begin{array}{lll} \mathrm{b} & & \mathrm{c} \\ \mathrm{c} & \text { or } & \mathrm{b} \\ \mathrm{a} & & \mathrm{a} \end{array}$
MAA1		Same as AV order	a c c or a b b

	Order by AV scores	Majority Order Topset Model	Majority Order SIM Model
TIMS E1	b c a	Same as AV order	$\begin{array}{ccc} \mathrm{c} & & \mathrm{~b} \\ \mathrm{~b} & \text { or } & \mathrm{c} \\ \mathrm{a} & & \mathrm{a} \end{array}$
TIMS E2		Same as AV order	$\begin{array}{lll} \mathrm{b} & & \mathrm{c} \\ \mathrm{c} & \text { or } & \mathrm{b} \\ \mathrm{a} & & \mathrm{a} \\ \hline \end{array}$
MAA1	$\begin{aligned} & \mathrm{c} \\ & \mathrm{a} \\ & \mathrm{~b} \end{aligned}$	Same as AV order	$\begin{array}{lll} \mathrm{a} & & \mathrm{c} \\ \mathrm{c} & \text { or } & \mathrm{a} \\ \mathrm{~b} & & \mathrm{~b} \end{array}$
MAA2	b c a	Same as AV order	Same as AV order

	Order by AV scores	Majority Order Topset Model	Majority Order SIM Model
TIMS E1	b c a	Same as AV order	$\begin{array}{ccc} \hline \mathrm{c} & & \mathrm{~b} \\ \mathrm{~b} & \text { or } & \mathrm{c} \\ \mathrm{a} & & \mathrm{a} \end{array}$
TIMS E2	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~b} \\ & \mathrm{a} \end{aligned}$	Same as AV order	$\begin{array}{lll} \mathrm{b} & & \mathrm{c} \\ \mathrm{c} & \text { or } & \mathrm{b} \\ \mathrm{a} & & \mathrm{a} \end{array}$
MAA1		Same as AV order	$\begin{array}{lll} \mathrm{a} & & \mathrm{c} \\ \mathrm{c} & \text { or } & \mathrm{a} \\ \mathrm{~b} & & \mathrm{~b} \\ \hline \end{array}$
MAA2	b c a	Same as AV order	Same as AV order
A25	b c a	Same as AV order	Same as AV order

	Order by AV scores	Majority Order Topset Model	Majority Order SIM Model
TIMS E1	b c a	Same as AV order	$\begin{array}{ccc} \mathrm{c} & & \mathrm{~b} \\ \mathrm{~b} & \text { or } & \mathrm{c} \\ \mathrm{a} & & \mathrm{a} \end{array}$
TIMS E2	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~b} \\ & \mathrm{a} \\ & \hline \end{aligned}$	Same as AV order	$\begin{array}{lll} \mathrm{b} & & \mathrm{c} \\ \mathrm{c} & \text { or } & \mathrm{b} \\ \mathrm{a} & & \mathrm{a} \end{array}$
MAA1	$\begin{aligned} & \mathrm{c} \\ & \mathrm{a} \\ & \mathrm{~b} \end{aligned}$	Same as AV order	$\begin{array}{lll} \mathrm{a} & & \mathrm{c} \\ \mathrm{c} & \text { or } & \mathrm{a} \\ \mathrm{~b} & & \mathrm{~b} \end{array}$
MAA2	b c a	Same as AV order	Same as AV order
A25	b c a	Same as AV order	Same as AV order
A72	$\begin{aligned} & \mathrm{c} \\ & \mathrm{a} \\ & \mathrm{~b} \end{aligned}$	Same as AV order	Same as AV order

	Order by AV scores	Majority Order Topset Model	Majority Order SIM Model
TIMS E1	b	Same as AV order	$\begin{array}{llll} \mathrm{c} & & \mathrm{~b} \\ \mathrm{~b} & \text { or } & \mathrm{c} \\ \mathrm{c} & & \mathrm{a} \end{array}$
TIMS E2	c	Same as AV order	$\begin{array}{llll} \hline \mathrm{b} & & \mathrm{c} \\ \mathrm{c} & \text { or } & \mathrm{b} \\ \mathrm{a} & & \mathrm{a} \\ \hline \end{array}$
MAA1	$\begin{aligned} & \mathrm{c} \\ & \mathrm{a} \\ & \mathrm{~b} \end{aligned}$	Same as AV order	$\begin{array}{lll} \mathrm{a} & & \mathrm{c} \\ \mathrm{c} & \text { or } & \mathrm{a} \\ \mathrm{~b} & & \mathrm{~b} \end{array}$
MAA2	b	Same as AV order	Same as AV order
A25	b	Same as AV order	Same as AV order
A72	$\begin{aligned} & \text { c } \\ & \text { a } \\ & \text { b } \end{aligned}$	Same as AV order	Same as AV order
IEEE	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~b} \end{aligned}$	Same as AV order	$\begin{array}{lll} \text { Cycle } & \text { a } & \text { a } \\ \text { or } & \text { c } & \text { b } \\ \text { one of } & \text { b } & \text { c } \\ \hline \end{array}$

Preliminary Conclusions:

Majority Preference Relation

is model dependent should be treated in an inference framework may or may not be robust

A General Concept of Majority Rule

Linear Orders
Weak Orders
Semiorders
Interval Orders
Partial Orders
"complete rankings"
"rankings with possible ties"
"rankings with (fixed) threshold"
"rankings with (variable) threshold" asymmetric, transitive

Asymmetric Binary Relations

B

$$
(a, b) \in B \Leftrightarrow u(a)>u(b)
$$

$$
\begin{gathered}
7 \quad 7 \\
\mid \\
3
\end{gathered}
$$

Variable Preferences:
 Probability Distribution
 on Binary Relations

Variable Utilities:
Jointly Distributed Family of
Utility Random Variables
(Random Utilities)
(parametric or nonparametric)

Random Utility Representations

Semiorders Interval Orders

$$
P(B)=P\left(\begin{array}{c}
\mathbf{L}_{i}>\mathbf{U}_{j} \mid(i, j) \in B \\
\text { and } \\
\mathbf{L}_{i} \leq \mathbf{U}_{j} \mid(i, j) \notin B
\end{array}\right)
$$

With $\mathbf{U}_{i}(\omega)=\mathbf{L}_{i}(\omega)+\varepsilon$

$$
\forall \omega
$$

A General Definition of Majority Rule

Given a probability distribution

$$
\begin{aligned}
& P: B \rightarrow[0,1] \\
& B \sigma P(B) \\
& \text { on any set } B \text { of binary relations, }
\end{aligned}
$$

a is strictly majority preferred to b
if and only if

$$
\sum_{(a, b) \in B} P(B)>\sum_{(b, a) \in B^{\prime}} P\left(B^{\prime}\right)
$$

A General Definition of Majority Rule

$$
\begin{aligned}
& \text { Given a probability distribution } \\
& \qquad \begin{array}{c}
P: B \rightarrow[0,1] \\
B \sigma P(B) \\
\text { on any set } B \text { of binary relations, } \\
a \text { is strictly majority preferred to } b \\
\text { if and only if } \\
\sum_{(a, b) \in B} P(B)>\sum_{(b, a) \in B^{\prime}} P\left(B^{\prime}\right)
\end{array}
\end{aligned}
$$

For Utility Functions or Random Utility Models choose a Random Utility Representation and obtain a consistent Definition

Examples:

i majority preferred to j

Proportion $(u(i)>u(j))>$ Proportion $(u(j)>u(i))$

$$
\begin{gathered}
i \text { majority preferred to } j \\
\Leftrightarrow \\
P\left(\mathbf{U}_{i}>\mathbf{U}_{j}+54\right)>P\left(\mathbf{U}_{j}>\mathbf{U}_{i}+54\right)
\end{gathered}
$$

Weak Utility Model Weak Stochastic Transitivity Transitivity of Majority Preferences

Definition 1.2.1 A weak utility model is a set of binary choice probabilities for which there exists a real-valued function w over \mathcal{C} such that

$$
p_{c d} \geq \frac{1}{2} \Leftrightarrow w(c) \geq w(d)
$$

When \mathcal{C} is finite, then the weak utility model is equivalent to weak stochastic transitivity of the binary choice probabilities, which we define next [LS65].

Definition 1.2.2 Weak stochastic transitivity of binary choice probabilities holds when

$$
p_{c d} \geq \frac{1}{2} \quad \& \quad p_{d e} \geq \frac{1}{2} \quad \Longrightarrow \quad p_{c e} \geq \frac{1}{2}
$$

Remember: No Cycles in 7 Approval Voting Data Sets (1 analysis ambiguous)

Let's analyze National Survey Data! 1968, 1980, 1992, 1996 ANES

Feeling Thermometer Ratings translated into Weak Orders or Semiorders

ANES Strict Majority Social Welfare Orders

Year
 1968
 Threshold
 $0, \ldots, 96$
 swo
 Nixon Humphrey Wallace

ANES Strict Majority Social Welfare Orders

However:
There is no Theory-Free Majority Preference Relation

ANES Strict Majority Social Welfare Orders

Year	Threshold	SWO Carter Reagan Anderson
1980	$0, \ldots, 29$	Reagan Carter Anderson

ANES Strict Majority Social Welfare Orders

Threshold

Year

1996

$$
\begin{gathered}
0, \ldots, 49 \\
85, \ldots, 99 \\
50, \ldots, 84
\end{gathered}
$$

Clinton Dole Perot

Dole
Clinton Perot

Preliminary Conclusions:

Majority Preference Relation

is model dependent
We did not see any indication of cycles!

Borda Scoring rule:

- $1^{\text {st }}$ ranked candidate gets 2 points,
- $2^{\text {nd }}$ ranked candidate gets 1 point,
- $3^{\text {rd }}$ ranked candidate gets 0 point.

In general, the $i^{\text {th }}$ ranked among n candidates gets $n-i$ points.

Scoring rule:

- $1^{\text {st }}$ ranked candidate gets x points, - $2^{\text {nd }}$ ranked candidate gets $y<x$ points,
- $3^{\text {rd }}$ ranked candidate gets $\mathrm{z}<\mathrm{y}$ points.

In general, the $i^{\text {th }}$ ranked among n candidates gets $f(n-i)$
many points with f increasing.

Plurality Scoring rule:

- $1^{\text {st }}$ ranked candidate gets 1 point,
- other candidates get 0 points.

How about a General Concept of Scoring Rules?

Let's generalize the concept of
Ranks from Linear Orders to
Arbitrary Finite Binary Relations

Generalizing ranks beyond linear orders

a	(1)	f (?)
a	(1)	
b	(2)	(?) (?)
c	(3)	
d	(4)	
e	(5)	
f	(6)	

In-degree, Out-degree and Differential of an object

$$
\begin{gathered}
\text { In-degree }(\mathrm{c})=1 \\
\text { Out-degree (c)=2}
\end{gathered}
$$

$$
\begin{aligned}
& \Delta(\mathrm{c})=\text { Differential }(\mathrm{c})= \\
& \text { In-degree }(\mathrm{c}) \text { - Out-degree }(\mathrm{c})=-\mathbf{1}
\end{aligned}
$$

$$
\mathbf{n}+1+\Delta(\mathbf{c})
$$

$$
\operatorname{Rank}(c)=
$$

2

Generalizing ranks beyond linear orders

Some properties of generalized rank

- Average generalized rank is $\frac{\mathrm{n}+1}{2}$
- Minimal possible rank is 1
- Maximal possible generalized rank is \mathbf{n}

Borda Scoring rule: (for $\mathrm{n}=3$ candidates)

- $1^{\text {st }}$ ranked candidate gets 2 points,
- candidate with rank $=1.5$ gets 1.5 points,
- $2^{\text {nd }}$ ranked candidate gets 1 point,
- candidate with rank $=2.5$ gets 0.5 points,
- $3^{\text {rd }}$ ranked candidate gets 0 point.

In general, the $i^{\text {th }}$ ranked among n candidates gets $n-i$ points.

Borda scores derived from semiorder probabilities

Borda scores derived from semiorder probabilities

Borda (R) =
 1.02

Borda (A) = 0.92

Borda (C) = 1.07

1980 NES

Plurality Scoring rule: (for n candidates)

- $1^{\text {st }}$ ranked candidate gets 1 point,
- other candidates get 0 points.

Note: If no (single) candidate has rank equal to 1 , a given ballot is effectively ignored

Plurality scores derived from semiorder probabilities

Plurality $(\mathrm{R})=$
$\begin{gathered}1^{*}(.1+.11+.04) \\ = \\ =\mathbf{0 . 2 5}\end{gathered}$
Plurality $(\mathrm{A})=$
$=\mathbf{0 . 1 1}$
Plurality $(\mathrm{C})=$

$$
=.26
$$

1980 NES

Empirical example: NES thermometer scores

Social ordering depends on:

- model of preferences
[translation of raw data into binary relations]
- social choice function
[Majority, Borda, Plurality, others]
- data

Empirical example: 1968 NES

ANES Strict Majority Social Welfare Orders

Year
 1968
 Threshold
 $0, \ldots, 96$
 swo
 Nixon Humphrey Wallace

Empirical example: 1980 NES

Scoring rules: Plurality, Antiplurality (with or without sharing), Borda, In-degree, Out-degree

ANES Strict Majority Social Welfare Orders

Year	Threshold	SWO Carter Reagan Anderson
1980	$0, \ldots, 29$	Reagan Carter Anderson

Empirical example: 1992 NES

Plur																									
Plur wish																									
A>else																									
Borda																									
Acelse																									
A-pl wish																									
Antipl																									
SomeRule																									

Candidates: B, C, P
Data: thermometer scores $\{1, \ldots, 100\}$
Model: semiorders with threshold: 0 ... 100
Scoring rules: Plurality, Antiplurality (with or without sharing), Borda, In-degree, Out-degree

ANES Strict Majority Social Welfare Orders

Empirical example: 1996 NES

CPD					
($C=P$ P) $>D$					
PCD					
$\mathrm{P}>(\mathrm{C}=\mathrm{D})$					
PDC					
$(\mathrm{P}=\mathrm{D})>\mathrm{C}$					
DPC					
D>(C=P)					
DCP					
(C=D) $>$ P					
CDP					
$\mathrm{C}>(\mathrm{P}=\mathrm{D})$					

Candidates: C, D, P
Data: thermometer scores $\{1, \ldots, 100\}$
Model: semiorders with threshold: 0 ... 100
Scoring rules: Plurality, Antiplurality (with or without sharing), Borda, In-degree, Out-degree

ANES Strict Majority Social Welfare Orders

Threshold

Year

1996

$$
\begin{gathered}
0, \ldots, 49 \\
85, \ldots, 99 \\
50, \ldots, 84
\end{gathered}
$$

Clinton Dole Perot

Dole
Clinton Perot

Question:

Can we infer the perceived properties of the information environment without looking at the physical information flow?

Can we analyze a Presidential Campaign without content analysis of the mass media?

Model Primitives:

- Preferences:

Weak Orders

Model Primitives:

- Preferences:
- Preference Distribution:
- Preference Change:
- Information:
- Continuous time:
- Time zero:

Weak Orders

Probability on WO
Transitions between WO

Tokens of information
Stochastic process (Poisson) Beginning of campaign

Information Environment:

EXTREMELY POSITIVE

moderately positive

moderately negative

> EXTREMELY NEGATIVE

Tokens of Information:

Alternative A is the best:

A

Alternative A is not bad: a

Alternative A is not great: a

Alternative A is the worst: A

Poisson Process
先
Ω

Operation of the Tokens:

Operation of the Tokens:

Main psychological features:

- Extreme Information tends to move you towards an extreme state
- Moderate Information tends to move you towards the indifferent state
- Extreme information is discarded when incompatible with current extreme belief
- Need several steps to move from one extreme to the opposite extreme
- Current model has no reinforcement feature

Let's look into the black box

Beginning of the campaign

Republican voter
 Initial Preference:
 Bush is single best
 Indifferent between Clinton \& Perot

Conversation with a neighbor:

Bushisatrue Republicanl

Television Interview:

- Clinton talks about Medicare

Evening Headlines:

Bush disagrees with fellow Republicans about Foreign Policy

Party Time:

Random Walk:

Theorem:

The asymptotic distribution exists and can be computed analytically

Some Interesting Parameters:

Positive Bias Ratio for Alternative i

Probability of I

Probability of i

Negative Bias Ratio for Alternative i

Probability of
Probability of i

Net tendency of information that moves Clinton to the top

Data:

ICPSR:
 1992 NES Feeling Thermometer Ratings
 - before the election
 - after the election

Self-Ratings on Partisanship Scale
(Party ID, pre-election WO, post-election WO) $3 \times 13 \times 13$

Goodness-of Fit of

Asymptotic Model Vs. Single Time

 Data| | Fit | G^{2} | p-value
 (df) |
| :--- | :--- | :--- | :--- |
| Pre-Election | Good | 21.6 | .25
 (18) |
| Post-Election | Very poor | 36.5 | .006
 (18) |

(MLE, $\mathbf{N}=\mathbf{2 , 0 2 4}$)

New process started between the 2 interviews.

Hypothesis Tests (92 Pre-election):

Asymptotic Submodels
VS.
Asymptotic Model
Reject/Retain
Hypothesis
G^{2}
p-value
(df)

Same

Information Flow

all Parties

<. 000006
(12)

Hypothesis Tests (92 Pre-election):

Asymptotic Submodels
Reject/Retain
Hypothesis
G^{2}
p-value
(df)

Same

Information about Perot all Parties

Reject
 12

. 02
(5)

Same

Information about Perot
Retain
5.6 for Dem. \& Rep.

Full Stochastic Model \& Submodels

$$
G^{2} \quad \begin{gathered}
\text { p-value } \\
(\mathbf{d f})
\end{gathered}
$$

Full Stochastic Model vs. Data

Excellent	268.2	. 384
Fit		

Same

Information Flow
 Reject
 47.9
 . 0001
 (18)

Overall Analysis

Hypothesis Tests \& Parameter Estimates validated by literature about 92 campaign

Note:
 We did not even glimpse at the mass media!

Conclusions

(Probabilistic) Binary Preference Relations (Random) Utility Representations:

Powerful Framework
Towards General Theory of Decision Making

- Analysis of Social Choice in Practice using an Inference Framework

Preference Aggregation Model Dependent Where are the Majority Cycles??
Congruence among Social Choice Rules Study Persuasion without Control of Stimuli

