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Background: a power grid is three systems

DISTRIBUTION

GENERATION

TRANSMISSION

Daniel Bienstock (Columbia University) Power grid vulnerability analysis Dimacs 2010 2 / 45



Challenges to analysis

Power grids follow the laws of physics, characterized by nonlinear,
nonconvex equations that make fast computation difficult.

Furthermore, direct control is difficult: we cannot dictate how
power will flow.

Power grids are subject to “noise” which is difficult to model
accurately.

Power grids can exhibit non-monotone behavior as a result of
control or adversarial actions.

Power grids can cascade.

Daniel Bienstock (Columbia University) Power grid vulnerability analysis Dimacs 2010 3 / 45



Challenges to analysis

Power grids follow the laws of physics, characterized by nonlinear,
nonconvex equations that make fast computation difficult.

Furthermore, direct control is difficult: we cannot dictate how
power will flow.

Power grids are subject to “noise” which is difficult to model
accurately.

Power grids can exhibit non-monotone behavior as a result of
control or adversarial actions.

Power grids can cascade.

Daniel Bienstock (Columbia University) Power grid vulnerability analysis Dimacs 2010 3 / 45



Challenges to analysis

Power grids follow the laws of physics, characterized by nonlinear,
nonconvex equations that make fast computation difficult.

Furthermore, direct control is difficult: we cannot dictate how
power will flow.

Power grids are subject to “noise” which is difficult to model
accurately.

Power grids can exhibit non-monotone behavior as a result of
control or adversarial actions.

Power grids can cascade.

Daniel Bienstock (Columbia University) Power grid vulnerability analysis Dimacs 2010 3 / 45



Challenges to analysis

Power grids follow the laws of physics, characterized by nonlinear,
nonconvex equations that make fast computation difficult.

Furthermore, direct control is difficult: we cannot dictate how
power will flow.

Power grids are subject to “noise” which is difficult to model
accurately.

Power grids can exhibit non-monotone behavior as a result of
control or adversarial actions.

Power grids can cascade.

Daniel Bienstock (Columbia University) Power grid vulnerability analysis Dimacs 2010 3 / 45



Challenges to analysis

Power grids follow the laws of physics, characterized by nonlinear,
nonconvex equations that make fast computation difficult.

Furthermore, direct control is difficult: we cannot dictate how
power will flow.

Power grids are subject to “noise” which is difficult to model
accurately.

Power grids can exhibit non-monotone behavior as a result of
control or adversarial actions.

Power grids can cascade.

Daniel Bienstock (Columbia University) Power grid vulnerability analysis Dimacs 2010 3 / 45



AC power flows – polar coordinates

→ Voltage at a node (“bus”) k is of the form Uk ejθk , where j =
√

−1

→ Power flowing on edge (“line”) {k , m} equals pkm + jqkm, where

pkm = U2
k gkm − Uk Um gkm cos θkm − Uk Um bkm sin θkm

qkm = −U2
k (bkm + bsh

km) + Uk Um bkm cos θkm − Uk Um gkm sin θkm

Here, θkm
.
= θk − θm

gkm, bkm, bsh
km are known parameters (series conductance, series reactance,

shunt susceptance)
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Voltage at k = Uk ejθk ; power on line {k , m} = pkm + jqkm, where

pkm = U2
k gkm − Uk Um gkm cos θkm − Uk Um bkm sin θkm

qkm = −U2
k (bkm + bsh

km) + Uk Um bkm cos θkm − Uk Um gkm sin θkm

( θkm
.
= θk − θm)

Pk = Σ{k ,m}pkm (active power), Qk = Σ{k ,m}qkm (reactive power)

Power flow problem: Choose the vectors p, q, θ, P, Q so as to satisfy all
equations above, and

meet demand requirements and generator constraints

and, ideally, meet thermal constraints (flow limits) on the power lines
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Research challenges

→ Do we have fast and reliable algorithm for the power flow problem?

Should not require human input in order to terminate.

When no “acceptable” solution exists, should produce a certificate
that this is the case.

What about the cases where multiple solutions exist?

After a contingency has take place, or a control has been applied:
which solution should be instantiated?

What if all solutions are “bad”?
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Solution methodologies

Newton-Raphson (iterative) algorithms to solve system of
equations

The claim: this “always” works fast. At least in the case of a
“normal” system.

New result: Low et al (2010). Some (many?) optimal power flow
problems can be solved using semidefinite programming.
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Linearized (“DC”) model: sin(θi − θj) ≈ (θi − θj) for θi ≈ θj

A power flow is a solution f , θ to:∑
ij fij −

∑
ij fji = bi , for all i , where

bi > 0 for each generator i ,

bi < 0 for demand node i ,

xij fij − θi + θj = 0 for all (i, j). ( xij = “reactance”)

Lemma: Given a choice for b with
∑

i bi = 0 (a requirement),
the system has a unique (in f) solution.
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A quote from:

Final Report on the August 14, 2003 Blackout in the United States
and Canada: Causes and Recommendations, U.S.-Canada Power
System Outage Task Force, April 5, 2004. (https://reports.energy.gov)

Cause 1 was “inadequate system understanding” – stated 20 times

Cause 2 was “inadequate situational awareness” – stated 14 times

Cause 3 was “inadequate tree trimming” – stated 4 times

Cause 4 was “inadequate RC diagnostic support” – stated 5 times

Daniel Bienstock (Columbia University) Power grid vulnerability analysis Dimacs 2010 9 / 45



A quote from:

Final Report on the August 14, 2003 Blackout in the United States
and Canada: Causes and Recommendations, U.S.-Canada Power
System Outage Task Force, April 5, 2004. (https://reports.energy.gov)

Cause 1 was “inadequate system understanding”

– stated 20 times

Cause 2 was “inadequate situational awareness” – stated 14 times

Cause 3 was “inadequate tree trimming” – stated 4 times

Cause 4 was “inadequate RC diagnostic support” – stated 5 times

Daniel Bienstock (Columbia University) Power grid vulnerability analysis Dimacs 2010 9 / 45



A quote from:

Final Report on the August 14, 2003 Blackout in the United States
and Canada: Causes and Recommendations, U.S.-Canada Power
System Outage Task Force, April 5, 2004. (https://reports.energy.gov)

Cause 1 was “inadequate system understanding” – stated 20 times

Cause 2 was “inadequate situational awareness” – stated 14 times

Cause 3 was “inadequate tree trimming” – stated 4 times

Cause 4 was “inadequate RC diagnostic support” – stated 5 times

Daniel Bienstock (Columbia University) Power grid vulnerability analysis Dimacs 2010 9 / 45



A quote from:

Final Report on the August 14, 2003 Blackout in the United States
and Canada: Causes and Recommendations, U.S.-Canada Power
System Outage Task Force, April 5, 2004. (https://reports.energy.gov)

Cause 1 was “inadequate system understanding” – stated 20 times

Cause 2 was “inadequate situational awareness” – stated 14 times

Cause 3 was “inadequate tree trimming” – stated 4 times

Cause 4 was “inadequate RC diagnostic support” – stated 5 times

Daniel Bienstock (Columbia University) Power grid vulnerability analysis Dimacs 2010 9 / 45



Cascades

Generator

Load (demand)
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Cascades
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Cascades
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Cascades

Daniel Bienstock (Columbia University) Power grid vulnerability analysis Dimacs 2010 14 / 45



Cascades

= lost demand
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Cascades
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Cascades
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Formal cascade model (Dobson et al)

→ Initial fault event takes place (an “act of God”).

For r = 1, 2, . . . ,

1. Reconfigure demands and generator output levels.
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Islanding

supply  > demand
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Formal cascade model (Dobson et al)

→ Initial fault event takes place (an “act of God”).

For r = 1, 2, . . . ,

1. Reconfigure demands and generator output levels.

2. New power flows are instantiated.

3. The next set of faults takes place.
(Stochastic or history-dependent criterion)

Daniel Bienstock (Columbia University) Power grid vulnerability analysis Dimacs 2010 20 / 45



Formal cascade model (Dobson et al)

→ Initial fault event takes place (an “act of God”).

For r = 1, 2, . . . ,

1. Reconfigure demands and generator output levels.

2. New power flows are instantiated.

3. The next set of faults takes place.
(Stochastic or history-dependent criterion)

Daniel Bienstock (Columbia University) Power grid vulnerability analysis Dimacs 2010 20 / 45



Formal cascade model (Dobson et al)

→ Initial fault event takes place (an “act of God”).

For r = 1, 2, . . . ,

1. Reconfigure demands and generator output levels.

2. New power flows are instantiated.

3. The next set of faults takes place.

(Stochastic or history-dependent criterion)

Daniel Bienstock (Columbia University) Power grid vulnerability analysis Dimacs 2010 20 / 45



Formal cascade model (Dobson et al)

→ Initial fault event takes place (an “act of God”).

For r = 1, 2, . . . ,

1. Reconfigure demands and generator output levels.

2. New power flows are instantiated.

3. The next set of faults takes place.
(Stochastic or history-dependent criterion)

Daniel Bienstock (Columbia University) Power grid vulnerability analysis Dimacs 2010 20 / 45



Outage mechanism

fe = flow on line e

ue = flow “limit” (threshold) on e

Prob( e fails) = F (|fe|/ue), where F (x) → 1 as x → +∞.

Set f̃ r
e = αe|f r

e | + (1 − αe)f̃ r−1
e , where 0 ≤ αe ≤ 1 is given.

→ f̃ r
e = running average of |fe|.

→ r = round (time).

→ e fails if f̃e > ue. or: e fails if f̃e ≥ ue
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Stochastic faults

e fails if ue < f̃ r
e ,

e does not fail if (1 − γ)ue > f̃ r
e , (γ = tolerance)

if (1 − γ)ue ≤ f̃ r
e ≤ ue then e fails with probability 1/2
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Formal cascade model (Dobson et al)

→ Initial outage event takes place (an “act of God”).

For r = 1, 2, . . . ,

1. Reconfigure demands and generator output levels.

2. New power flows are instantiated.

3. The next set of outages takes place.
(Stochastic or history-dependent criterion)

→ If no more faults occur or too much demand has been lost, STOP
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Online control

→ Initial outage event takes place.

Compute control algorithm.

For r = 1, 2, . . . , R − 1

1. Reconfigure demands and generator output levels.

2. New power flows are instantiated.

3a. Take measurements and apply control to shed demand.

3b. Reconfigure generator outputs; get new power flows.

4. The next set of outages takes place.

At round R, reduce demands so as to remove any line overloads.
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Deterministic, no history model

“Optimal” control via integer programming formulation

?

f r
j = flow on arc j at round r

y r
j = 1, if arc j fails in round r , 0 otherwise

d r
j = demand at node i in round r

and many other variables
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max
X
i∈D

dR
i

Subject to:
X

j∈δ+(i)

f r
j −

X
j∈δ−(i)

f r
j =

8<: sr
i i ∈ G

−d r
i i ∈ D

0 otherwise
∀ 1 ≤ r ≤ R (1)

f r
j = π

r
j − ν

r
j ∀ j ∈ A and 1 ≤ r ≤ R (2)

π
r
j ≤ D̃pr

j , ν
r
j ≤ D̃nr

j , ∀ j ∈ A and 1 ≤ r ≤ R (3)

pr
j + nr

j = 1 −
r−1X
h=1

yh
j , ∀ j ∈ A and 1 ≤ r ≤ R (4)

π
r
j + ν

r
j − uj ≤ D̃y r

j ∀ j ∈ A and 1 ≤ r ≤ R (5)

π
r
j + ν

r
j ≥ uj y

r
j ∀ j ∈ A and 1 ≤ r ≤ R − 1 (6)

π
R
j + ν

R
j ≤ uj ∀ j ∈ A (7)

|φr
i − φ

r
j − xj f

r
j | ≤ Mj

r−1X
h=1

yh
j ∀j ∈ A (8)

0 ≤ sr
i ≤ s̃i ∀ i ∈ G, 0 ≤ d r

i ≤ d̃i ∀ i ∈ D, (9)

pr
j , nr

ij , y r
j = 0 or 1, ∀ j ∈ A and 1 ≤ r ≤ R (10)

0 ≤ π
r
j , 0 ≤ ν

r
j , ∀ j ∈ A and 1 ≤ r ≤ R. (11)
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What’s bad about the formulation

probably can’t solve it for medium to large networks

stochastic variant probably needed, harder

optimal solutions = complex policies
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Adaptive affine controls

For each demand v , and round r , control cr
v , br

v , sr
v to be

computed

→ Parameterized by integer r > 0.

At round r ,

Let κ = maximum overload of any line within radius r of v

If κ > cr
v , demand at v reduced (scaled) by a factor

max
{

1, sr
v (cr

v − κ) + br
v
}

.

The goal: pick control to maximize demand being served at the end of
round R.
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For each demand v , and round r , control cr
v , br

v , sr
v

At round r , if κ > cr
v , demand at v reduced (scaled) by a factor

min
{

1, [ sr
v (cr

v − κ) + br
v ]+

}
.

This talk: r = n (number of nodes)

Special case: (optimal scaling problem)

Insist that for each r , (cr
v , br

v , sr
v) = (cr , br , sr) for every v

Then, equivalent problem:

In round r , let αr(K ) ≤ 1 be chosen for each component of the
network in round r

If node v ∈ component K , then its demand is scaled by αr(K )
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Notation:

β̂ = supply/demand vector at time 0

f̂ = corresponding power flows at time 0

ΘR(t, β) : R+ → R+ = total demand, at the end of round R, using
optimal control, if the supply/demand vector is t β

Note: supply/demand = tβ means flow = t f̂

Theorem:

ΘR(t, β̂) is nondecreasing piecewise-linear with at most
mR/R! + O(mR−1) breakpoints. m = no. of arcs

In round 1, the optimal scale is equal to uj/(t f̂j) for some arc j .
So arc j will become critical

And recursively ...

Robust/stochastic version?
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General case: simulation-based optimization

Given a control vector ũ = (cr
v , br

v , sr
v) (over all v and r ),

Θ(ũ) = throughput (total demand) satisfied at end of cascade

Maximization of Θ(ũ) should be (very?) fast

Optimization should be robust (noisy process)

From a strict perspective, Θ(ũ) is not even continuous

Θ(ũ) is obtained through a simulation
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Derivative-free optimization

Conn, Scheinberg, Vicente, others

Rough description:

Sample a number of control vectors ũ

Use the sample points to construct a convex approximation to Θ̃

Optimize this approximation; this yields a new sample point

Scalability to large dimensionality?
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“First order” method

Given a control vector ũ

1 Estimate the “gradient” g = ∇Θ̃(ũ) through finite differences.

Requires O(1) simulations per demand node.

2 Estimate step size argmax Θ(ũ + σg)

→ Easily parallelizable
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Line searches
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Current parallel implementation: boss-nerd

Boss carries out search algorithm

Nerds simulate cascades with given control

Communication using Unix sockets
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Scaling

Example: 10000 nodes, 19309 lines

5 gradient steps

8-core i7 CPUs (3 machines total)

cores wall-clock sec
2 94379
4 47592
8 28136
16 14618
24 9918
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Initial experiments with Eastern Interconnect

15023 nodes, 23769 lines.

2122 generator nodes, 6261 demand nodes

“Equivalent” DC flow version

Methodology for experiments
1 Generate an interdiction of the grid (“initial event”)
2 Compute control and simulate
3 At least three rounds of cascade after initial event
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Computing a control

(1) Solve scaling problem – let (c∗, b∗, s∗) be optimal

(2) Partition demand nodes into “small” number of segments
Σ1, . . . ,Σk . Example = demand quantiles.

Perform segmented gradient search starting from (c∗, b∗, s∗).

Look for a control with (cr
v , br

v , sr
v) = constant for each given r

and all v in a common Σi .

(3) Perform full gradient search starting from the output in (2).
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Experiments

K random lines taken out

highly loaded lines more likely to be taken out; connectivity preserved

K yield, (%) yield, wallclock
no control control (sec)

1 90.04 95.03 134
2 12.54 50.13 87
5 32.94 81.05 107
10 2.02 36.97 97
20 1.64 27.84 159
50 0.83 16.96 209
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Conjectures

It is best to stop the cascade in the first round

It is best to apply control in the first round only, and ride out the
cascade

(Answer: both wrong)
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Details: cascade with 50 (highly loaded) random lines taken out

No control ⇒ yield = 0%

Optimal round 1 only constant control ⇒ yield = 38%

Optimal scaling control ⇒ yield = 45%

Plus segmented gradient seach ⇒ yield = 50%
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Load distribution at time zero (load of arc j =
|fj |
uj

)

load no. of arcs
1505 1

58 1
48 2
32 1
22 2
19 1
11 1
7 2
6 2
5 4
4 6
3 18
2 181

Optimal round 1 scale = 0.51, so 44 faults
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Out-of-sample testing: use stochastic faults

at round r ,

e fails if ue < f̃ r
e ,

e does not fail if (1 − γ)ue > f̃ r
e , (γ = tolerance)

if (1 − γ)ue ≤ f̃ r
e ≤ ue then e fails with probability 1/2

What is the impact of γ?
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γ = 0.03, 0.10, 0.20,

10000 runs
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